Marie And Pierre Curie Essay, Research Paper
Marie and Pierre Curie
March 7,1999 Chemistry Report Period 6 Marie and Pierre Curie And the Discovery of Polonium and Radium Marie Marie Sklodowska ( a.k.a.) was born in Warsaw in 1867. Her parents were teachers who believed strongly in the importance of education. Marie had her first lessons in physics and chemistry from her father. She had a brilliant aptitude for study and a great thirst for knowledge; however, advanced study was not possible for women in Poland. Marie dreamed of being able to study at the Sorbonne in Paris, but this was beyond the means of her family. To solve the problem, Marie and her elder sister, Bronya, came to an arrangement: Marie should go to work as a governess and help her sister with the money she managed to save so that Bronya could study medicine at the Sorbonne. When Bronya had taken her degree she, in her turn, would contribute to the cost of Marie’s studies. So it was not until she was 24 that Marie came to Paris to study mathematics and physics. Bronya was now married to a doctor of Polish origin, and it was at Bronya’s urgent invitation to come and live with them that Marie took the step of leaving for Paris. By then she had been away from her studies for six years, nor had she had any training in understanding French. But her keen interest in studying and her joy at being at the Sorbonne with all its opportunities helped her surmount all difficulties. To save herself a two-hour journey, she rented a little attic in the Quartier Latin. There the cold was so intense that at night she had to pile on everything she had in the way of clothing so as to be able to sleep. But as compensation for all her privations she had total freedom to be able to devote herself completely to her studies. After two years, in 1893, she took her degree in physics, and in the following year, in 1894, she came second in a degree in mathematics. After three years she had brilliantly passed examinations in physics and mathematics. Her goal was to take a teacher’s diploma and then to return to Poland. There occurred an event that was to be of decisive importance in her life. She met Pierre Curie. He was 35 years old, eight years older, and an internationally known physicist, but an outsider in the French scientific community a serious idealist and dreamer whose greatest wish was to be able to devote his life to scientific work. He was completely indifferent to outward distinctions and a career. He earned a living as the head of a laboratory at the School of Industrial Physics and Chemistry where engineers were trained and he lived for his research into crystals and into the magnetic properties of bodies at different temperatures. His father, who was a physician, educated him with the help of a private teacher. Pierre with help from his brother discovered piezoelectricity, which means that a difference in electrical potential is seen when mechanical stresses are applied on certain crystals, including quartz. Such crystals are now used in microphones, electronic apparatus and clocks. Marie and Pierre discovered that they had a fondness for each other. They married at the town hall at Sceaux, where Pierre’s parents lived. They were given money as a wedding present, the invested it for some bikes. The two mostly study and often took bike rides to relax. With persuasion by Marie and Pierre’s father, Pierre submitted his doctoral thesis in 1895. It concerned “different types of magnetism, and contained a presentation of the connection between temperature and magnetism that is now known as Curie’s Law”. In 1896 Marie passed her teacher’s diploma, coming first in her group. Pierre and Marie had a daughter Irene who was born in September 1987. Pierre had managed to arrange that Marie should be allowed to work in the school’s laboratory, and in 1897 she finished a number of investigations into the magnetic properties of steel on behalf of an industrial association. Deciding after a time to go on doing research, Marie looked around for a subject for a doctoral thesis. Marie decided to make a systematic investigation of the mysteries “uranium rays, after fellow colleague Becquerel’s discovered that gases through which the rays pass become able to conduct electricity. She had an excellent help at her disposal an electrometer for the measurement of weak electrical currents, which was constructed by Pierre and his brother, and was based on the piezoelectric effect. Just after a few days Marie discovered that thorium gives off the same rays as uranium. Her lasting systematic studies of the different chemical compounds gave the surprising result that the strength of the radiation did not depend on the compound that was being studied. It depended only on the amount of uranium or thorium. Chemical compounds of the same element generally had very different chemical and physical properties: one uranium compound is a dark powder, the another is a transparent yellow crystal. But Marie wondered what was affective for the radiation they gave off. What was only the amount of uranium they contained. The she drew the conclusion that the ability to radiate did not depend on the order of the atoms in a molecule, it must be linked to the interior of the atom itself. This discovery was absolutely revolutionary. From a conceptual point of view it is her most important contribution to the development of physics. She now went through the whole periodic system. Her findings were that only uranium and thorium gave off this radiation. Marie’s next idea, simple but brilliant, was to study the natural ores pitchblende contain uranium and thorium. She got samples from geological museums and found that the ores were four to five times more active than the amount of uranium. It was her guess that a new element was far more active and than uranium was present in small amounts in the ore. Interesting new ideas were opening up. Pierre gave up his research into crystals and symmetry in nature, which he was strongly, involved in and joined Marie in her project. They found that the strong activity came with the fractions containing bismuth or barium. When Marie continued her analysis of the bismuth fractions, she found that every time she managed to take away an amount of bismuth, a residue with greater activity was left. At the end of June 1898, they had a substance that was about 300 times more strongly active than uranium. In the work they published in July 1898, they write, ‘ We thus believe that the substance that we have extracted from pitchblende contains a metal never known before, akin to bismuth in its analytic properties. If the existence of this new metal is confirmed, we suggest that it should be called polonium after the name of the country of origin of one of us’. It was also in this work that they used the term radioactivity for the first time. After another few months of work, the Curies informed the l’Acad?mie des Sciences, on 26 December 1898, that they had demonstrated a reason for having come upon an additional very active substance that behaved chemically almost like pure barium. They suggested the name of radium for the new element. In order to prove the new elements, the Curies would have to produce them in reliable amounts, they would have to determine their atomic weight and preferably isolate them. To do this the Curies would need tons of the costly pitchblende. Marie considered that radium ought to be left in the residue. A sample was sent to them from Bohemia and the slag was found to be even more active than the original mineral. Several tons of pitchblende was later put at their disposal through the good offices of the Austrian Academy of Sciences. It was now that there began the heroic ?poque in their life that has become legendary. The two needed more room for their research, the principle at the school Pierre used to work at helped h
Bibliography
Madame Curie
Encarta 1999