РефератыИностранный языкEmEmmas Dilemma Essay Research Paper Firstly we

Emmas Dilemma Essay Research Paper Firstly we

Emma?s Dilemma Essay, Research Paper


Firstly we arrange EMMA?s Name. 1)EAMM


7)MAEM 2)EMAM


8)MAME 3)MEMA


9)AMME 4)MEAM


10)AEMM 5)MMEA


11)AMEM 6)MMAE


12)EMMA Secondlywe arrange lucy?s name. 1)Lucy


12)Cyul 22)Yulc 2)Luyc


13)Culy 23)Ycul 4)Lycu


14)Culy 24)Yluc 5)Lcuy


15)Cylu 25)Ucyl 6)Lcyu


16)Clyu 7)Ulcy


17)Cuyl 8)Ucly


18)Yluc 9)Uycl


19)Yucl 10)Ulyc


20)Yclu 11)Uylc


21)Ylcu From these 2 investigation I worked out a method: Step1: 1234—Do the last two number first then you get 1243.


1243—Do the last three numbers and try the possibility. 1423. 1432.


1342.


1324, because the number 2 has been the first number of last three


numbers, so


we don?t do it again. Step2:


we have list all arrangements of 1 go front, so we do 2 go front. 2134


and


we do same thing to it, it will like this:


2134—2143, 2143—2431,2413,2314,2341 Step3:


We have finished 2 go first, then let?s do 3 go ahead.


3124—3142, 3142—3241,3214,3412,3421 Step4:


We have finished 3 go ahead, then try 4


4123—4132, 4132—4231,4213,4312,4321 We have list all arrangement of 1234, use this method we can arrange the


number which has 5 figures or more. We are trying to work out a formula which can calculate the number of


arrangement when we look at a number. Let?s list all the arrangment for 1234: 1234


4123 1243


4132 1324


— 6


arrangment


4231 —- 6 arrangement 1342


4213 1432


4321 1423


4312 2134


3124 2143


3143 2341


—- 6 arrangements 3241


— 6 arrangements 2314


3214 2413


3412 2431


3421 So if we time 6 by 4, we would get 24, and we


can get the total arrangements of 24. Let?s try 5 figures: 12345


13245 12354


13254 12435


— 6 arrangements


13452 — 6 arrangements 12453


13425 12534


13524 12543


13542 14235


15432 14253


15423 14352


— 6 arrangements


15324 —- 6 arrangements 14523


15342 14532


15243 14325


15234 Don?t you notice the arrangements of last 4


numbers added up, it equal 24, so if we time 24 by 5, and get 120, and 120 is


the total of arrangements. Carry on, if a number has 6 figure, then the


total of arrangement should be 120 times by 6, and get 720, and 720 is the


total of arrangements. Carry on, if a number has 7 fugure, then the


total of arrangement should be 720 times by 7, and get 5040, the total of


arrangement is 5040. This is my prediction, let?s work it out a


formula, and confirm it. 3


figure with different


number it has 6


arrangements 4


4*6 5


4*6*5 6


4*6*5*6 7


4*6*5*6*7 8


4*6*5*6*7*8 so on We can rewrite it as: 1


fig 1 2


fig 1*2 3


fig 1*2*3 4


fig 1*2*3*4 5


fig 1*2*3*4*5 6


fig 1*2*3*4*5*6 so on There?s a simbol for the frequancy above,


that?s I.For example: 1*2 = 2i 1*2*3 = 3i 1*2*3*4 = 4i so on So if n represent the number of figures of a


number, then it has arrangements of ni. The


formula: NI NI: Can be caculated on caculator. Process: pres key N (the number of figure),


then press key I, then you would get the arrangements. Let?s confirm this formula, if a nuber has 1fig


it has 1 arrangements formular: 1*1=1 It works 2fig


it has 2 arrangements formular: 1*2=2 It works 3fig


it has 6 arrangements formular: 1*2*3=6 It works 4fig


it has 24 arrangements formular: 1*2*3*4=24 It works Formula is confirmed What about if a number has two same figure For


example: 223, 334 Let?s try to work out the frequency of them 223 can be arranged as 232, 322 only 3 arrangements try 4 figures with 2 same numbers 1223 arranged as: 1223


2123


3122 1232


—- 3 arrangements


2132


3212 — 3 arrrangements 1322


2213 —- 6 arrangements 3221


2231


2312


2321 total arrangement is 12 Try 5 fig: 42213


12234 42231


12243 42123


12324 42132


12342 42321


12423 42312


——– 12 arrangements


12432 ——– 12 arrangements 41223


13224 41232


13242 41322


13422 43122


14223 43212


14232 43221


14322 21234


23124


31224 21243


23142


31242 21324


23214


31422 21342


23241


32124 21423


23421


32142 21421


23412 —–24 arrangments


32214 ——- 12 arrangements 22134


24123


32241 22143


24132


32412 22314


24231


32421 22341


24213


34122 22413


24312


34212 22431


24321


34221 so the total arrangements are 12*5=60 We have found the frequency 2


figure with 2 same


number


1arrangements 3


1*3 4


1*3*4 5


1*3*4*5 Let?s work out the formular: if n= number of figures


a= number of arrangements the formular is a=ni/2 Let?s confirm the formular: 2


fig with 2 same number formular: 2/2=1 it works 3


(1*2*3)/2=3 it works 4


(1*2*3*4)/2=12


it works Formular is confirmed What about if 3 numbers are the same let?s try 333 only on arrangement Try 3331


3331


3313 —— 4 arrangements


3133


1333 Try 33312 33312


31233


12333


33321


31323


13233 —4 arrangements 33123


31332 —-12 arrangements 13323 33132


32331


13332 33231


32313 33213


32133 21333 23133—-4 arrangements 23313 23331 Total arrangements are 4*5=20 Let?s try 6 fig with 3 same number 333124


332134 333142


332143 333214


334321 333241


332314 333412


332341 —–24 arrangements 333421


332413 331234


332431 331243


334123 331324


334132 331342


334213 331423


334231 331432


334312 312334


321334 312343


so on —-12 arrangements 312433 313234 313243


34——-


313324


— 12


arrangements


so on —–12 arrangements 313342 313423 313432 314233 314323 314332 123334


133324


2—- 123343


133342


so on


——–20 arrangements 123433


133234 124333


133243 124332


133423 — 20 arrangements 4—- 134323


133432


so on ———20 arrangements 134233


142333 132334


143233 132343


143323 132433


143332 Total arrangement for 6 figure with 3 same


number is 120, 20*6 Let?s see the construction: 3


fig with 3same


number 1

>

arrangement 4


1*4 5


1*4*5 6


1*4*5*6 Can you see the pattern?so the formula for three sames numbers of a


number is: a= ni/6 let?s review the formula: formula for different number: a=ni formula for 2 same number: a=ni/2formular for 3 same number: a=ni/6 Let?s put them is this way: n 1 2 3


x 1 2 6


n represent the number of figures of a number x represent the divided number in the formular Do you notice that x equal the last x time n,


so I expect the formula for 4 sames number of a number is:


a= ni/24 Let?s


confirm it: try 4 same number. 4 fig, one arrangement. a=n/24=(1*2*3*4)/24=1


the formular works try 5 figures 11112 11121 11211 —– 5 arrangements 12111 21111 a=n/24=(1*2*3*4*5)/24=5


the formular works So formula is confirmed Let?s investigate the formula, and improve it. n 1 2 3 4 5 x 1 2 6 24 110 so the formula for this is x=ni so if A represent arrangement, and n represent


numbers of figures, x represent the number fo same number, and the formula is: a=ni/xi


*notic I can not be cancel out. What about if a number has 2 pairs of same number. what would happen to


the formula. Let?s try 4 fig with 2 pairs of 2 same number. 1122


2122 1212


2212 —– 6 arrangements 1221


2221 let?s see if the formula still work a=(1*2*3*4)/2=12 No, it doesn?t work but if we divide it by two. let?s try 6 fig, with 2 pairs of 3 same numbers 111222


121212


222111 211212 112122


121122


221211 211221 112212


122112 –10 arrangements 221121 212112 —10


arrangements 112221


122121


221112 212121 121221


122211


211122 212211 total arrangement is 20 let?s see the formular: a=(1*2*3*4*5*6)/1*2*3 =120 no, it doesn?t work


but if we divide it by another 6 which is (1*2*3) Can you see the pattern, the formular still


work if we times the mutiply again. For example: for 4 figures with 2 pairs of 2 same number. a=(1*2*3*4)/(1*2*1*2)=6 it works so I expect it still work for 6 figures with 2


pairs of 3 same number. follow this formula, I predict the arrange for


this is a=(1*2*3*4*5*6)/1*2*3*1*2*3=20 111222


121221 122121


2—– 112122


121212 122211 ——– 10


arrangement so on


——10 arrangements 112212


121122 112221


122112 Total arrangement= 20 the formula work I expect the arrangements for 8 fig will be a=


(1*2*3*4*5*6*7*8)/1*2*3*4*1*2*3*4=70 let?s confirm 11112222


11211222 11221212 11121222


11212122 11221221 11122122


11212212 11222112


——— 15 arrangements 11122212


11212221 11222121 11122221


11221122 11222211 12111222


12122112 12212121 12121212 12112122


12122121 12212211 12211212 12112212


12122211 12221112 ————–20


arrangements 12112221


12211122 12221121 12121122


12211221 12221211 12121221


12212112 12222111 2——- so on ——35 arrangement Total arrangement is 70, it works the formular is confirmed This formula can be written as: a=ni/xixi x represent the number of figures of same


number What about a number with difference number of figure of same number. For example: 11122,111122 let?s try if the formula still work. The formula is a=ni/xixi but we need to change the formula, because


there are 2 pairs of same numbers with different number of figures. so we


change the formula to a=ni/x1i*x2i Let?s try 5 figures with 3 same number, and 2


same number. According to the formula, I expect the total


arrangement for this is a=(1*2*3*4*5)/(3*2*1*2*1)=10 11122


12211 11212


21112 11221


21121 ——-10 arrangements 12112


21211 12121


22111 The formular still works. Let?s try 7 fig, with 3 same number, and 4 same


number. I expect the total arrangement is a=(1*2*3*4*5*6*7)/(3*2*1*4*3*2*1)=35 1112222


1222211


2222111 2211212 1121222


1222121


2221211 2211221 1122122


1222112


2221121 2212112—–10 arrangements 1122212


1221221—–15 arrangements 2221112


2212121 1122221


1221212


2211122 2212211 1212221


1221122 1212212 1212122 1211222 2111222


2112221 2121221 2122211 2112122


2121122


2122112


——— 10 arrangements 2112212


2121212 2122121 Total arrangment is 35, the formular works. The formular is confirmed. What about three pairs of same number The formmular need to be rewritten as


a=ni/xixixi There are three xi need to mutiple ni, because


there are three pairs of same number. if there are two pair of same number of figures


of same number, then there are only two xi need to mutiply, and if there are


two pair of different number of figures of same number, then there would be x1i


and x2i need to mutiply. Let?s confirm the formular. let?s try 112233, according the formula, I


expect the total arrangements is a=(1*2*3*4*5*6)/(1*2*1*2*1*2)=90 Let?s confirmed 112233


121233 123123 131223 132231 112323 121323 123132 131232 132123 112332


121332 123213 131322 132132 —— 30 arrangements 113223 122133 123231 132321 133122 113232 122313 123312 132312 133212 113322 122331 123321 132213 1332212——-


3—— so


on ——30


arrangements


so on ——— 30arrangements The total arrangement is 90, the formular


works. Formular is confirmed What about three pairs of different number of figures of a number For example: 122333 according the formula, the total arrangment is a=(1*2*3*4*5*6)/(1*1*2*1*2*3)=60 Let?s confirm it: 122333


212333


231332


3——– 123233


213233


232133


so


on ——- 30 arrangements 123323 213323 232313 123332


213332 232331 —–30 arrangements 132233 221333 233123 132323 223133 233132 132332 223313 133213 133223 223331 233231 133232 231233 233312 133322 231323 233321 The formular works Formular is confirmed From the investigation above we find out the formular for calculating


the number of arrangements, it?s a=ni/xi a represent the total arrangements n represent the number of figures of the number I represent the key I x represent the numbers of figures of same


number of the number if there are more than one pair of same number,


x2, or x3, so on may added to the formular, it depend how many pairs of same


number. For example: for


2 pairs of same number of figures of same number of a number the formula is a=ni/xixi for 2 pairs of different number of figures of


same number of a number the formula is a=ni/x1ix2i for 3 pairs of same number of figures of same


number of a number the formula is a=ni/xixixi form 3 pairs of different number of figures of


same number of a number the formular is a=ni/x1ix2ix3i. The formular can be also used to the


arrangements of letter. For example: xxyy the arrangement for this is


a=(4*3*2*1)/(2*1*2*1)=6 xxyyy the arrangement for this is


a=(5*4*3*2*1)/(3*2*1*2*1)=10 xxxxxxyyyyyyyyyy the arrangement for this is a=ni/x1ix2i=(16*15*14*13*12*11*10*9*8*7*6*5*4*3*2*1)/(10*9*8*7*6*5*4*3*3*2*1*6*5*4*3*2*1)=8008 The total arrangement is 8008. Use this formular, we can find out the total


arrangements of all numbers and letters.

Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Emmas Dilemma Essay Research Paper Firstly we

Слов:2310
Символов:16225
Размер:31.69 Кб.