Polyetene Essay, Research Paper
polyethene – sucks arse dosn’t it!!!
Year 11 Chemistry Unit 1 POLYETHENE-ain’t it choice! word count : 1131 Polyethene also known as polyethylene or polythene, was the first of the polymers to be discovered. Polyethene is a polymer produced by reacting oxygen and ethene, in this reaction the small ethene molecules attach together to form long chain polymer molecules. This process is known as addition polymerisation. Polyethene in our world today has many uses, some of these are: ? mouldings-plastic bottles, lids and caps, different types of containers. ? films-glad wrap and various plastic bags. ? cable coverings-various pipes and insulating wire and cables As you can see polyethene has a huge variety of both domestic and industrial uses, this is fairly impressive when you see that polyethene has only been around sense 1933. Polyethene is a thermoplastic material which is often described as wax-like it is extremely tough and is has an excellent chemical resistance. It is also less dense than water and is the simplest polymer, these attributes lead to polythene being an extremely useful substance. Ethene (C2H4), is a simple hydrocarbon molecule which consists of 2 carbon atoms and 4 hydrogen atoms. Ethene’s main use is in the production of polythene yet it is one of the most widely used petrochemicals in the world. Ethene is an unsaturated colourless gas which can be ignited in the presence of oxygen. Below is a diagram of ethene: Polyethene is produced by allowing the free roaming ethene gas molecules to bond together to form long chain polyethene molecules. In order for this to work a catalyst must be used, a catalyst is a substance that can alter the rate of a chemical reaction without undergoing any chemical change itself. During this process thousands of ethene molecules bond to from each molecule of polyethene. Polyethene is simply a set of ethene molecules bonded together to form a chain, these chains can often stretch up to many many times longer than the original ethene molecule. Below is a diagram of polyethene: Although normally ethene monomers have little attraction for one another, yet the polyethene molecules have a strong attraction for one another. When polyethene molecules are attracted and bond high-density polyethene is formed, thus polyethene is either formed by low-density or high-density polymerisation. Ethene can undergo the process called polymerisation due to the fact that it is unsaturated and because it has a double bond between its two carbon atoms. Both High-density and low-density polyethene have different uses. Low-density polyethene is used in the production of products such as various bags, plastic bottles, cling wraps, and insulating cables. Low pressure polymerisation with the use of certain catalysts; has meant that the process of polymerization can be achieved at fairly low pressure (20 atmospheres or 2000 kPa) and at temperatures of approximately 100?C. The reactor itself contains a polyethene bed placed on a perforated plate. It works by allowing the recycled gas to enter near its base, the gas then passes through the plate and pushes up through the bed causing it to bubble. Finally the catalyst converts the ethene to polyethene, once the polyethene is cooled it forms a fine powder called ‘fluff’ which is then collected and transported to a storage bin. Any ethene gas which has not reacted passes through a compressor and then a cooler, and is processed again. High-density polyethene is used to produce items such as lids, caps, baskets, bowls and large containers such as garbage bins. These polyethene products are created in what is
.
(1993) Production of SBR, Kemcor Australia Resources Kit – Section 6, Kemcor Australia, Melbourne. Jones, Elvins. Miskin, Lukins. Sanders, Ross (1995) Chemistry One, Reed International Books, Melbourne