Общее описание метода ветвей и границ организации полного перебора возможностей. Решение задачи о коммивояжере методом ветвей и границ: основная схема. Пусть - конечное множество и - вещественно-значная функция на нем; требуется найти минимум этой функции и элемент множества, на котором этот минимум достигается. Когда имеется та или иная дополнительная информация о множестве, решение этой задачи иногда удается осуществить без полного перебора элементов всего множества M. Но чаще всего полный перебор производить приходится. В этом случае обязательно возникает задача, как лучше перебор организовать. Метод ветвей и границ - это один из методов организации полного перебора. Он применим не всегда, а только тогда, когда выполняются специфические дополнительные условия на множество M и минимизируемую на нем функцию. А именно, - предположим, что имеется вещественно-значная функция j на множестве подмножеств множества M со следующими двумя свойствами: для (здесь - множество, состоящее из единственного элемента ); 2) если и , то . В этих условиях можно организовать перебор элементов множества M с целью минимизации функции на этом множестве так: разобьем множество M на части (любым способом) и выберем ту из его частей W1, на которой функция j минимальна; затем разобьем на несколько частей множество W1 и выберем ту из его частей W2, на которой минимальна функция j; затем разобьем W2 на несколько частей и выберем ту из них, где минимальна j, и так далее, пока не придем к какому-либо одноэлементному множеству . Это одноэлементное множество называется рекордом. Функция j, которой мы при этом выборе пользуемся, называется оценочной. Очевидно, что рекорд не обязан доставлять минимум функции f; однако, вот какая возможность возникает сократить перебор при благоприятных обстоятельствах. Описанный выше процесс построения рекорда состоял из последовательных этапов, на каждом из которых фиксировалось несколько множеств и выбиралось затем одно из них. Пусть - подмножества множества M, возникшие на предпоследнем этапе построения рекорда, и пусть множество оказалось выбранным с помощью оценочной функции. Именно при разбиении и возник рекорд, который сейчас для определенности обозначим через . Согласно сказанному выше, , ; кроме того, по определению оценочной функции, . Предположим, что ; тогда для любого элемента m множества M, принадлежащего множеству , будут верны неравенства; это значит, что при полном переборе элементов из M элементы из уже вообще не надо рассматривать. Если же неравенство не будет выполнено, то все элементы из надо последовательно сравнить с найденным рекордом и как только отыщется элемент, дающий меньшее значение оптимизируемой функции, надо им заменить рекорд и продолжить перебор. Последнее действие называется улучшением рекорда. Слова метод ветвей и границ связаны с естественной графической интерпретацией всего изложенного: строится многоуровневое дерево, на нижнем этаже которого располагаются элементы множества M, на котором ветви ведут к рекорду и его улучшениям и на котором часть ветвей остаются “оборванными”, потому что их развитие оказалось нецелесообразным. Мы рассмотрим сейчас первый из двух запланированных в этом курсе примеров применения метода ветвей и границ - решение задачи о коммивояжере. Вот ее формулировка. Имеется несколько городов, соединенных некоторым образом дорогами с известной длиной; требуется установить, имеется ли путь, двигаясь по которому можно побывать в каждом городе только один раз и при этом вернуться в город, откуда путь был начат (“обход коммивояжера”), и, если таковой путь имеется, установить кратчайший из таких путей. Формализуем условие в терминах теории графов. Города будут вершинами графа, а дороги между городами - ориентированными (направленными) ребрами графа, на каждом из которых задана весовая функция: вес ребра - это длина соответствующей дороги. Путь, который требуется найти, это - ориентированный остовный простой цикл минимального веса в орграфе (напомним: цикл называется остовным, если он проходит по всем вершинам графа; цикл называется простым, если он проходит по каждой своей вершине только один раз; цикл называется ориентированным, если начало каждого последующего ребра совпадает с концом предыдущего; вес цикла - это сумма весов его ребер; наконец, орграф называется полным, если в нем имеются все возможные ребра); такие циклы называются также гамильтоновыми. Очевидно, в полном орграфе циклы указанного выше типа есть. Заметим, что вопрос о наличии в орграфе гамильтонова цикла достаточно рассмотреть как частный случай задачи о коммивояжере для полных орграфов. Действительно, если данный орграф не является полным, то его можно дополнить до полного недостающими ребрами и каждому из добавленных ребер приписать вес ¥, считая, что ¥ - это “компьютерная бесконечность”, т.е. максимальное из всех возможных в рассмотрениях чисел. Если во вновь построенном полном орграфе найти теперь легчайший гамильтонов цикл, то