«ИНСТИТУТ УПРАВЛЕНИЯ»
(г. Архангельск)
Волгоградский филиал
Кафедра «_______________________________»
Контрольная работа
по дисциплине: « безопасность жизнедеятельности
»
тема: «ионизирующее излучение и защита от них
»
Выполнил студент
гр.
ФК – 3 – 2008
Зверков А. В.
(Ф.И.О.)
Проверил преподаватель:
_________________________
Волгоград 2010
Содержание
Введение 3
1.Понятие ионизирующего излучения 4
2. Основные методы обнаружения ИИ 7
3. Дозы излучения и единицы измерения 8
4. Источники ионизирующего излучения 9
5. Средства защиты населения 11
6. Радиационный контроль 12
7. Рекомендации по защите от ионизирующих излучений 13
Заключение 16
Список используемой литературы 17
Введение
С ионизирующим излучением и его особенностями человечество познакомилось совсем недавно: в 1895 году немецкий физик В.К. Рентген обнаружил лучи высокой проникающей способности, возникающие при бомбардировке металлов энергетическими электронами (Нобелевская премия, 1901 г.), а в 1896 г. А.А. Беккерель обнаружил естественную радиоактивность солей урана. Вскоре этим явлением заинтересовалась Мария Кюри, молодой химик, полька по происхождению, которая и ввела в обиход слова «радиоактивность». В 1898 году она и ее муж Пьер Кюри обнаружили, что уран после излучения превращается в другие химические элементы. Один из этих элементов супруги назвали полонием в память о родине Марии Кюри, а еще один – радием, поскольку по-латыни это слово обозначает «испускающий лучи». Хотя новизна знакомства состоит лишь в том, как люди пытались ионизирующее излучение использовать, а радиоактивность, и сопутствующие ей ионизирующие излучения существовали на Земле задолго до зарождения на ней жизни и присутствовали в космосе до возникновения самой Земли.
Нет необходимости говорить о том положительном, что внесло в нашу жизнь проникновение в структуру ядра, высвобождение таившихся там сил. Но как всякое сильнодействующее средство, особенно такого масштаба, радиоактивность внесла в среду обитания человека вклад, который к благотворным никак не отнесёшь.
Появилось также число пострадавших от ионизирующей радиации, а сама она начала осознаваться как опасность, способная привести среду обитания человека в состояние, не пригодное для дальнейшего существования.
Причина не только в тех разрушениях, которые производит ионизирующее излучение. Хуже то, что оно не воспринимается нами: ни один из органов чувств человека не предупредит его о приближении или сближением с источником радиации. Человек может находиться в поле смертельно опасного для него излучения и не иметь об этом ни малейшего представления.
Такими опасными элементами, в которых соотношение числа протонов и нейтронов превышает 1…1,6. В настоящее время из всех элементов таблицы Д.И. Менделеева известно более 1500 изотопов. Из этого количества изотопов лишь около 300 стабильных и около 90 являются естественными радиоактивными элементами.
Продукты ядерного взрыва содержат более 100 нестабильных первичных изотопов. Большое количество радиоактивных изотопов содержится в продуктах деления ядерного горючего в ядерных реакторах АЭС.
Таким образом, источниками ионизирующего излучения являются искусственные радиоактивные вещества, изготовленные на их основе медицинские и научные препараты, продукты ядерных взрывов при применении ядерного оружия, отходы атомных электростанций при авариях на них.
1.Понятие ионизирующего излучения
Радиационная опасность для населения и всей окружающей среды связана с появлением ионизирующих излучений (ИИ), источником которых являются искусственные радиоактивные химические элементы (радионуклиды), которые образуются в ядерных реакторах или при ядерных взрывах (ЯВ). Радионуклиды могут попадать в окружающую среду в результате аварий на радиационно-опасных объектах (АЭС и др. объектах ядерного топливного цикла – ЯТЦ), усиливая радиационный фон земли.
Ионизирующими излучениями называют излучения, которые прямо или косвенно способны ионизировать среду (создавать раздельные электрические заряды). Все ионизирующие излучения по своей природе делятся на фотонные (квантовые) и корпускулярные. К фотонному (квантовому) ионизирующему излучению относятся гамма-излучение, возникающее при изменении энергетического состояния атомных ядер или аннигиляции частиц, тормозное излучение, возникающее при уменьшении кинетической энергии заряженных частиц, характеристическое излучение с дискретным энергетическим спектром, возникающее при изменении энергетического состояния электронов атома и рентгеновское излучение, состоящее из тормозного и/или характеристического излучений. К корпускулярному ионизирующему излучению относят α-излучение, электронное, протонное, нейтронное и мезонное излучения. Корпускулярное излучение, состоящее из потока заряженных частиц (α-, β-частиц, протонов, электронов), кинетическая энергия которых достаточна для ионизации атомов при столкновении, относится к классу непосредственно ионизирующего излучения. Нейтроны и другие элементарные частицы непосредственно не производят ионизацию, но в процессе взаимодействия со средой высвобождают заряженные частицы (электроны, протоны), способные ионизировать атомы и молекулы среды, через которую проходят. Соответственно, корпускулярное излучение, состоящее из потока незаряженных частиц, называют косвенно ионизирующим излучением.
Нейтронное и гамма излучение принято называть проникающеё радиацией или проникающим излучением.
Ионизирующие излучения по своему энергетическому составу делятся на моноэнергетические (монохроматические) и немоноэнергетические (немонохроматические). Моноэнергетическое (однородное) излучение – это излучение, состоящее из частиц одного вида с одинаковой кинетической энергией или из квантов одинаковой энергии. Немоноэнергетическое (неоднородное) излучение – это излучение, состоящее из частиц одного вида с разной кинетической энергией или из квантов различной энергии. Ионизирующее излучение, состоящее из частиц различного вида или частиц и квантов, называется смешанным излучением.
При авариях реакторов образуются a+
,b±
частицы и g-излучение. При ЯВ дополнительно образуются нейтроны -n°
.
Рентгеновское и g-излучение обладают высокой проникающей и достаточно ионизирующей способностью (g в воздухе может распространяться до 100м и косвенно создать 2-3 пары ионов за счёт фотоэффекта на 1 см пути в воздухе). Они представляют собой основную опасность как источники внешнего облучения. Для ослабления g-излучения требуются значительные толщи материалов.
Бета- частицы (электроны b-
и позитроны b+
) краткобежны в воздухе (до 3,8м/МэВ), а в биоткани – до несколько миллиметров. Их ионизирующая способность в воздухе 100-300 пар ионов на 1 см пути. Эти частицы могут действовать на кожу дистанционно и контактным путём (при загрязнении одежды и тела), вызывая «лучевые ожоги». Опасны при попадании внутрь организма.
Альфа – частицы (ядра гелия) a+
краткобежны в воздухе (до 11 см), в биоткани до 0,1 мм. Они обладают большой ионизирующей способностью (до 65000 пар ионов на 1 см пути в воздухе) и особо опасны при попадании внутрь организма с воздухом и пищей. Облучение внутренних органов значительно опаснее наружного облучения.
Последствия облучения для людей могут быть самыми различными. Они во многом определяются величиной дозы облучения и временем её накопления. Возможные последствия облучения людей при длительном хроническом облучении, зависимость эффектов от дозы однократного облучения приведены в таблице.
Таблица 1. Последствия облучения людей.
Таблица 1. | ||
Радиационные эффекты облучения
|
||
1 | 2 | 3 |
Телесные (соматические)
|
Вероятностные телесные (соматические - стохастические)
|
Гинетические
|
1 | 2 | 3 |
Воздействуют на облучаемого. Имеют дозовый порог. |
Условно не имеют дозового порога. | Условно не имеют дозового порога. |
Острая лучевая болезнь |
Сокращение продолжительности жизни. | Доминантные генные мутации. |
Хроническая лучевая болезнь. | Лейкозы (скрытый период 7-12 лет). | Рецессивные генные мутации. |
Локальные лучевые повреждения. | Опухоли разных органов (скрытый период до 25 лет и более). | Хромосомные абберации. |
2. Основные методы обнаружения ИИ
Чтобы избежать ужасных последствий ИИ, необходимо производить строгий контроль служб радиационной безопасности с применением приборов и различных методик. Для принятия мер защиты от воздействия ИИ их необходимо своевременно обнаружить и количественно оценить. Воздействуя на различные среды ИИ вызывают в них определенные физико-химические изменения, которые можно зарегистрировать. На этом основаны различные методы обнаружения ИИ.
К основным относятся: 1) ионизационный, в котором используется эффект ионизации газовой среды, вызываемой воздействием на неё ИИ, и как следствие – изменение ее электропроводности; 2) сцинтилляционный, заключающийся в том, что в некоторых веществах под воздействием ИИ образуются вспышки света, регистрируемые непосредственным наблюдением или с помощью фотоумножителей; 3) химический, в котором ИИ обнаруживаются с помощью химических реакций, изменения кислотности и проводимости, происходящих при облучении жидкостных химических систем; 4) фотографический, заключающийся в том, что при воздействии ИИ на фотопленку на ней в фотослое происходит выделение зерен серебра вдоль траектории частиц; 5) метод, основанный на проводимости кристаллов, т.е. когда под воздействием ИИ возникает ток в кристаллах, изготовленных из диэлектрических материалов и изменяется проводимость кристаллов из полупроводников и др.
3. Дозы излучения и единицы измерения
Действие ионизирующих излучений представляет собой сложный процесс. Эффект облучения зависит от величины поглощенной дозы, ее мощности, вида излучения, объема облучения тканей и органов. Для его количественной оценки введены специальные единицы, которые делятся на внесистемные и единицы в системе СИ. Сейчас используются преимущественно единицы системы СИ. Ниже в таблице 10 дан перечень единиц измерения радиологических величин и проведено сравнение единиц системы СИ и внесистемных единиц.
Таблица 2. Основные радиологические величины и единицы
Таблица 2 | |||
Величина | Наименование и обозначение единицы измерения | Соотношение между единицами | |
Внесистемные | Си | ||
Активность нуклида, А |
Кюри (Ки, Ci) | Беккерель (Бк, Bq) | 1 Ки = 3.7*1010
Бк |
Экспозиционная доза, X |
Рентген (Р, R) | Кулон/кг (Кл/кг, C/kg) | 1 Р = 2.58*10-4
Кл/кг |
Поглощенная доза, D |
Рад (рад, rad) | Грей (Гр, Gy) | 1 рад = 10-2
Гр |
Эквивалентная доза, Н |
Бэр (бэр, rem) | Зиверт (Зв, Sv) | 1 бэр=10-2
Зв |
Интегральная доза излучения |
Рад-грамм (рад*г, rad*g) | Грей- кг (Гр*кг, Gy*kg) | 1 рад*г=10-5
Гр*кг |
Таблица 3. Зависимость эффектов от дозы однократного (кратковременного) облучения человека.
Таблица 3. | ||
Доза | Эффект | |
Грей | Рад | |
50 | 5000 | Пороговая доза поражения центральной нервной системы («электронная смерть») |
6,0 | 600 | Минимальная абсолютно-смертельная доза |
4,0 | 400 | Средне-смертельная доза (доза 50% выживания) |
1,5 | 150 | Доза возникновения первичной лучевой реакции (в зависимости от дозы облучения различают четыре степени острой лучевой болезни: 100-200 рад – 1ст., 200-400 рад – 2 ст., 400-600 рад – 3 ст
., свыше 600 рад – 4ст.) |
1,0 | 100 | Порог клинических эффектов |
0,1 | 10 | Уровень удвоения генных мутаций |
Необходимо учитывать, что радиоактивное облучение, полученное в течение первых четырёх суток, принято называть однократными, а за большое время – многократными. Доза радиации, не приводящая к снижению работоспособности (боеспособности) личного состава формирований (личного состава армии во время войны): однократная (в течение первых четырёх суток) – 50 рад; многократная: в течение первых 10-30 суток – 100 рад; в течение трёх месяцев – 200 рад; в течение года – 300 рад. Не путать, речь идёт о потере работоспособности, хотя последствия облучения сохраняются.
4. Источники ионизирующего излучения
Различают ионизирующее излучение естественного и искусственного происхождения.
Облучению от естественных источников радиации подвергаются все жители Земли, при этом, одни из них получают большие дозы, чем другие. В зависимости, в частности, от местожительства. Так уровень радиации в некоторых местах земного шара, там, где особенно залегают радиоактивные породы, оказывается значительно выше среднего, в других местах - соответственно, ниже. Доза облучения зависит также от образа жизни людей. Применение некоторых строительных материалов, использование газа для приготовления пищи, открытых угольных жаровен, герметичность помещений и даже полеты на самолетах - все это увеличивает уровень облучения за счет естественных источников радиации.
Земные источники радиации в сумме ответственны за большую часть облучения, которому подвергается человек за счет естественной радиации. Остальную часть радиации вносят космические лучи.
Космические лучи, в основном, приходят к нам из глубин Вселенной, но некоторая их часть рождается на Солнце во время солнечных вспышек. Космические лучи могут достигать поверхности Земли или взаимодействовать с ее атмосферой, порождая вторичное излучение и приводя к образованию различных радионуклидов.
За последние несколько десятилетий человек создал несколько сотен искусственных радионуклидов и научился использовать энергию атома в самых разных целях: в медицине и для создания атомного оружия, для производства энергии и обнаружения пожаров, для поиска полезных ископаемых. Все это приводит к увеличению дозы облучения как отдельных людей, так и населения Земли в целом.
Индивидуальные дозы, получаемые разными людьми от искусственных источников радиации, сильно различаются. В большинстве случаев эти дозы весьма невелики, но иногда облучение за счет техногенных источников оказывается во много тысяч раз интенсивнее, чем за счет естественных.
В настоящее время основной вклад в дозу, получаемую человеком от техногенных источников радиации, вносят медицинские процедуры и методы лечения, связанные с применением радиоактивности. Во многих странах этот источник ответствен практически за всю дозу, получаемую от техногенных источников радиации.
Радиация используется в медицине как в диагностических целях, так и для лечения. Одним из самых распространенных медицинских приборов является рентгеновский аппарат. Получают все более широкое распространение и новые сложные диагностические методы, опирающиеся на использование радиоизотопов. Как ни парадоксально, но одним из способов борьбы с раком является лучевая терапия.
Источником облучения, вокруг которого ведутся наиболее интенсивные споры, являются атомные электростанции, хотя в настоящее время они вносят весьма незначительный вклад в суммарное облучение населения. При нормальной работе ядерных установок выбросы радиоактивных материалов в окружающую среду очень невелики. Атомные электростанции являются лишь частью ядерного топливного цикла, который начинается с добычи и обогащения урановой руды. Следующий этап - производство ядерного топлива. Отработанное в АЭС ядерное топливо иногда подвергают вторичной обработке, чтобы извлечь из него уран и плутоний. Заканчивается цикл, как правило, захоронением радиоактивных отходов. Но на каждой стадии ядерного топливного цикла в окружающую среду попадают радиоактивные вещества.
5. Средства защиты населения
1. Коллективные средства защиты: убежища, быстровозводимые убежища (БВУ), противорадиационные укрытия (ПРУ), простейшие укрытия (ПУ);
2. Индивидуальные средства защиты органов дыхания: фильтрующие противогазы, изолирующие противогазы, фильтрующие респираторы, изолирующие респираторы, самоспасатели, шланговые, автономные, патроны к противогазам;
3. Индивидуальные средства защиты кожи: фильтрующие, изолирующие;
4. Приборы дозиметрической разведки;
5. Приборы химической разведки;
6. Приборы - определители вредных примесей в воздухе;
7. Фотографии.
6.
Радиационный контроль
Под радиационной безопасностью понимается состояние защищённости настоящего и будущего поколения людей, материальных средств и окружающей среды от вредного воздействия ИИ.
Радиационный контроль является важнейшей частью обеспечения радиационной безопасности, начиная со стадии проектирования радиационно-опасных объектов. Он имеет целью определение степени соблюдения принципов радиационной безопасности и требований нормативов, включая не превышение установленных основных пределов доз и допустимых уровней при нормальной работе, получение необходимой информации для оптимизации защиты и принятия решений о вмешательстве в случае радиационных аварий, загрязнения местности и зданий радионуклидами, а также на территориях и в зданиях с повышенным уровнем природного облучения. Радиационный контроль осуществляется за всеми источниками излучения.
Радиационному контролю подлежат: 1) радиационные характеристики источников излучения, выбросов в атмосферу, жидких и твердых радиоактивных отходов; 2) радиационные факторы, создаваемые технологическим процессом на рабочих местах и в окружающей среде; 3) радиационные факторы на загрязненных территориях и в зданиях с повышенным уровнем природного облучения; 4) уровни облучения персонала и населения от всех источников излучения, на которые распространяется действие настоящих Норм.
Основными контролируемыми параметрами являются: годовая эффективная и эквивалентная дозы; поступление радионуклидов в организм и их содержание в организме для оценки годового поступления; объёмная или удельная активность радионуклидов в воздухе, воде, продуктах питания, строительных материалов; радиоактивное загрязнение кожных покровов, одежды, обуви, рабочих поверхностей.
Поэтому, администрация организации может вводить дополнительные, более жесткие числовые значения контролируемых параметров - административные уровни.
Причём государственный надзор за выполнением Норм радиационной безопасности осуществляют органы Госсанэпиднадзора и другие органы, уполномоченные Правительством Российской Федерации в соответствии с действующими нормативными актами.
Контроль за соблюдением Норм в организациях, независимо от форм собственности, возлагается на администрацию этой организации. Контроль за облучением населения возлагается на органы исполнительной власти субъектов Российской Федерации.
Контроль за медицинским облучением пациентов возлагается на администрацию органов и учреждений здравоохранения.
7. Рекомендации по защите от ионизирующих излучений
Человек подвергается облучению двумя способами. Радиоактивные вещества могут находиться вне организма и облучать его снаружи; в этом случае говорят о внешнем облучении. Или же они могут оказаться в воздухе, которым дышит человек, в пище или в воде и попасть внутрь организма. Такой способ облучения называют внутренним.
От альфа-лучей можно защититься путём:
- увеличения расстояния до ИИИ, т.к. альфа-частицы имеют небольшой пробег;
- использования спецодежды и спецобуви, т.к. проникающая способность альфа-частиц невысока;
- исключения попадания источников альфа-частиц с пищей, водой, воздухом и через слизистые оболочки, т.е. применение противогазов, масок, очков и т.п.
В качестве защиты от бета-излучения используют:
- ограждения (экраны), с учётом того, что лист алюминия толщиной несколько миллиметров полностью поглощает поток бета-частиц;
- методы и способы, исключающие попадание источников бета-излучения внутрь организма.
Защиту от рентгеновского излучения и гамма-излучения необходимо организовывать с учётом того, что эти виды излучения отличаются большой проникающей способностью. Наиболее эффективны следующие мероприятия (как правило, используемые в комплексе):
- увеличение расстояния до источника излучения;
- сокращение времени пребывания в опасной зоне;
- экранирование источника излучения материалами с большой плотностью (свинец, железо, бетон и др.);
- использование защитных сооружений (противорадиационных укрытий, подвалов и т.п.) для населения;
- использование индивидуальных средств защиты органов дыхания, кожных покровов и слизистых оболочек;
- дозиметрический контроль внешней среды и продуктов питания.
Для населения страны, в случае объявления радиационной опасности существуют следующие рекомендации:
- укрыться в жилых домах. Важно знать, что стены деревянного дома ослабляют ионизирующее излучение в 2 раза, а кирпичного - в 10 раз. Погреба и подвалы домов ослабляют дозу излучения от 7 до 100 и более раз;
- принять меры защиты от проникновения в квартиру (дом) радиоактивных веществ с воздухом. Закрыть форточки, уплотнить рамы и дверные проёмы;
- сделать запас питьевой воды. Набрать воду в закрытые ёмкости, подготовить простейшие средства санитарного назначения (например, мыльные растворы для обработки рук), перекрыть краны;
- провести экстренную йодную профилактику (как можно раньше, но только после специального оповещения!). Йодная профилактика заключается в приёме препаратов стабильного йода: йодистого калия или водно-спиртового раствора йода. При этом достигается стопроцентная степень защиты от накопления радиоактивного йода в щитовидной железе. Водно-спиртовой раствор йода следует принимать после еды 3 раза в день в течение 7 суток: а) детям до 2 лет - по 1-2 капли 5%-ной настойки на 100 мл молока или питательной смеси; б) детям старше 2 лет и взрослым - по 3-5 капель на стакан молока или воды. Наносить на поверхность кистей рук настойку йода в виде сетки 1 раз в день в течение 7 суток.
Начать готовиться к возможной эвакуации : подготовить документы и деньги, предметы, первой необходимости, упаковать лекарства, минимум белья и одежды. Собрать запас консервированных продуктов. Все вещи следует упаковать в полиэтиленовые мешки. Постараться выполнить следующие правила: 1) принимать консервированные продукты; 2) не пить воду из открытых источников; 3) избегать длительных передвижений по загрязненной территории, особенно по пыльной дороге или траве, не ходить в лес, не купаться; 4) входя в помещение с улицы, снимать обувь и верхнюю одежду.
В случае передвижения по открытой местности используйте подручные средства защиты:
- органов дыхания: прикрыть рот и нос смоченными водой марлевой повязкой, носовым платком, полотенцем или любой частью одежды;
- кожи и волосяного покрова: прикрыть любыми предметами одежды, головными уборами, косынками, накидками, перчатками.
Заключение
И так как только были открыты ионизирующие излучения и их вредное воздействие на живые организмы, появилась необходимость контролировать облучение этими излучениями человека. Каждый человек должен знать об опасности радиации и уметь защищаться от нее.
Радиация по своей природе вредна для жизни. Малые дозы облучения могут «запустить» не до конца еще изученную цепь событий, приводящих к раку или генетическим повреждениям. При больших дозах радиация может разрушать клетки, повреждать ткани органов и явиться причиной скорой гибели организма.
В медицине одним из самых распространенных приборов является рентгеновский аппарат, также получают все более широкое распространение и новые сложные диагностические методы, опирающиеся на использование радиоизотопов. Как ни парадоксально, но одним из способов борьбы с раком является лучевая терапия, хотя и облучение направлено на исцеление больного, но нередко дозы оказываются неоправданно высокими, поскольку дозы, получаемые от облучения в медицинских целях, составляют значительную часть суммарной дозы облучения от техногенных источников.
Огромный ущерб приносят и аварии на объектах, где присутствует радиация, яркий этому пример Чернобыльская АЭС
Таким образом необходимо всем нам задуматься, чтобы не получилось так, что упущенное сегодня может оказаться совершенно непоправимым завтра.
Список используемой литературы
1. Небел Б. Наука об окружающей среде. Как устроен мир. В 2 томах, М., «Мир», 1994.
2. Ситников В.П. Основы безопасности жизнедеятельности. –М.: АСТ. 1997.
3. Защита населения и территорий от ЧС. (ред. М.И.Фалеев) – Калуга: ГУП «Облиздат», 2001.
4. Смирнов А.Т. Основы безопасности жизнедеятельности. Учебник для 10, 11 классов СШ. – М.: Просвещение, 2002.
5. Фролов . Основы безопасности жизнедеятельности. Учебник для студентов учебных заведений среднего профессионального образования. – М.: Просвещение, 2003.
6. Интернет ресурсы: www.neuch.ru;www. student.km.ru;www. works.tarefer.ru.