МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ
Всероссийский Заочный Финансово-Экономический Институт
Филиал в г. Барнауле
Курсовая работа
по дисциплине «Информатика»
на тему
«Внешняя память компьютера»
Исполнитель:
Группа
№ зачетной книжки
Руководитель:
Барнаул 2005
Содержание
Введение 3
1. Внешняя память 5
2. жесткие диски 8
3. Дисковые массивы RAID 11
4. Компакт-диски 13
5. Практическая часть 17
Заключение 26
Список литературы 27
Введение
Под внешней памятью компьютера подразумевают обычно как носители информации (то есть устройства, где она непосредственно хранится), так и устройства для чтения/записи информации, которые чаще всего называют накопителями.
Как правило, для каждого носителя информации существует свой накопитель.
Первые носители информации для ЭВМ были бумажными (перфокарты, перфоленты). Для работы с ними существовало 2 отдельных устройства: перфоратор – для записи информации, счетчик – для считывания информации и передачи ее в оперативную память. Позднее появились магнитные носители информации (магнитные ленты, магнитные барабаны, магнитные диски), накопители которых совмещали в себе и устройство считывания, и устройство записи. А такое устройство, как винчестер, совмещает в себе и носитель, и накопитель. Для оптических носителей информации (компакт-дисков, цифровых дисков) накопители могут как совмещать функции чтения/записи, так и быть специализированными, например, только для чтения.
Накопители на жестких магнитных дисках (НЖМД или винчестеры) представляют собой внешние ЗУ, в которых носителем информации являются жесткие несменные магнитные диски, объединенные в пакет.
НЖМД предназначены для долговременного хранения информации, постоянно используемой при работе с ПК: программ операционной системы, часто используемых пакетов программ, редакторов документов, трансляторов с языков программирования, документов и программ, подготовленных пользователем и т. д.
В настоящее время ПК без НЖМД практически не выпускаются. Если компьютер включен в локальную компьютерную сеть, то он может работать без собственного жесткого диска, но тогда он использует жесткий диск центрального сервера.
Винчестер устанавливается внутри системного блока и внешне представляет собой герметичную металлическую коробку, внутри которой расположены несколько дисков, объединенных в один пакет, магнитные головки чтения/записи, механизм вращения диска и перемещения головок.
Основными характеристиками винчестера являются:
- емкость, то есть максимальный объем данных, который можно записать на носитель;
- быстродействие, определяемое временем доступа к нужной информации, временем ее считывания/записи и скоростью передачи данных;
- время безотказной работы, характеризующее надежность устройства.
Емкость НЖМД зависит от модели ПК. Первый винчестер (начало 80-х годов) имел «колоссальную емкость» 10 Мбайт. Считается, что объем современного винчестера должен быть не менее 2 – 3 Гбайт. Последние модели ПК имеют винчестеры емкостью свыше 120 Гбайт, ожидается появление винчестеров емкостью до 320 Гбайт.
Чаще всего винчестер имеет имя С:. Однако емкость винчестера обычно очень велика, поэтому для удобства работы винчестер разбивают на участки. Каждый такой участок воспринимается операционной системой как отдельный диск и называется «логическим диском». Имена таких дисков – C:, D:, Е: и т. д. по алфавиту.
ВНЕШНЯЯ ПАМЯТЬ
Устройства внешней памяти или, иначе, внешние запоминающие устройства весьма разнообразны. Их можно классифицировать по целому ряду признаков: по виду носителя, типу конструкции, по принципу записи и считывания информации, методу доступа и т.д.
Носитель - материальный объект, способный хранить информацию.
В зависимости от типа носителя все ВЗУ можно подразделить на накопители на магнитной ленте и дисковые накопители.
Накопители на магнитной ленте, в свою очередь, бывают двух видов: накопители на бобинной магнитной ленте (НБМЛ) и накопители на кассетной магнитной ленте (НКМ- стриммеры). В ПК используются только стриммеры.
Диски относятся к машинным носителям информации с прямым доступом. Понятие прямой доступ означает, что ПК может "обратиться" к дорожке, на которой начинается участок с искомой информацией или куда нужно записать новую информацию, непосредственно, где бы ни находилась головка записи/чтения накопителя.[2]
Накопители на дисках более разнообразны
накопители на гибких магнитных дисках (НГМД), иначе, на флоппи-дисках или на дискетах; накопители на жестких магнитных дисках (НЖМД) типа "винчестер"; накопители на сменных жестких магнитных дисках, использующие эффект Бернулли; накопители на флоптических дисках, иначе, floptical-накопители; накопители сверхвысокой плотности записи, иначе, VHD-накопители; накопители на оптических компакт-дисках CD-ROM (Compact Disk ROM); накопители на оптических дисках типа СС WORM (Continuous Composite Write Once Read Many - однократная запись - многократное чтение);накопители на магнитооптических дисках (НМОД) и др.
Тип накопления |
Емкость, Мбайт |
Время доступа, мс |
Трансфер, Кбайт/с |
Вид доступа |
НГМД |
1,2; 1,44 |
65-100 |
150 |
Чтение/запись |
Винчестер |
250-4000 |
8-20 |
500-3000 |
Чтение/запись |
Бернулли |
20-230 |
20 |
500-3000 |
Чтение/запись |
Floptical |
20,8 |
65 |
100-300 |
Чтение/запись |
VHD |
120-240 |
65 |
200-600 |
Чтение/запись |
CD-ROM |
250-1500 |
15-300 |
150-1500 |
Только чтение |
CC WORM |
120-1000 |
15-150 |
150-1500 |
Чтение/ однократная запись |
НМОД |
128-1300 |
15-150 |
300-1000 |
Чтение/запись |
Примечание Время доступа - средний временной интервал, в течение которого накопитель находит требуемые данные - представляет собой сумму времени для позиционирования головок чтения/записи на нужную дорожку и ожидания нужного сектора. Трансфер - скорость передачи данных при последовательном чтении.
Магнитные диски (МД) относятся к магнитным машинным носителям информации. В качестве запоминающей среды у них используются магнитные материалы со специальными свойствами (с прямоугольной петлей гистерезиса), позволяющими фиксировать два магнитных состояния - два направления намагниченности. Каждому из этих состояний ставятся в соответствие двоичные цифры: 0 и 1. Накопители на МД (НМД) являются наиболее распространенными внешними запоминающими устройствами в ПК. Диски бывают жесткими и гибкими, сменными и встроенными в ПК. Устройство для чтения и записи информации на магнитном диске называется дисководом.
Все диски: и магнитные, и оптические характеризуются своим диаметром или, иначе, форм-фактором. Наибольшее распространение получили диски с форм-факторами 3,5" (89 мм) и 5,25" (133 мм). Диски с форм-фактором 3,5" при меньших габаритах имеют большую емкость, меньшее время доступа и более высокую скорость чтения данных подряд (трансфер), более высокие надежность и долговечность.
Информация на МД записывается и считывается магнитными головками вдоль концентрическихокружностей - дорожек (треков). Количество дорожек на МД и их информационная емкость зависят от типа МД, конструкции накопителя на МД, качества магнитных головок и магнитного покрытия.
Каждая дорожка МД разбита на сектора. В одном секторе дорожки может быть помещено 128, 256, 512 или 1024 байт, но обычно 512 байт данных. Обмен данными между НМД и ОП осуществляется последовательно целым числом секторов. Кластер - это минимальная единица размещения информации на диске, состоящая из одного или нескольких смежных секторов дорожки.[3]
2. Жесткие диски
В качестве накопителей на жестких магнитных дисках (НЖМД) широкое распространение в ПК получили накопители типа "винчестер".
Термин винчестер возник из жаргонного названия первой модели жесткого диска емкостью 16 Кбайт (IBM, 1973 г.), имевшего 30 дорожек по 30 секторов, что случайно совпало с калибром "30/30" известного охотничьего ружья "Винчестер".
В этих накопителях один или несколько жестких дисков, изготовленных из сплавов алюминия или из керамики и покрытых ферролаком, вместе с блоком магнитных головок считывания/записи помещены в герметически закрытый корпус. Емкость этих накопителей благодаря чрезвычайно плотной записи, получаемой в таких несъемных конструкциях, достигает нескольких тысяч мегабайт; быстродействие их также значительно более высокое, нежели у НГМД.
Максимальные значения на 1995 г.:
емкость 5000 Мбайт (стандарт емкости на 1995 г.-850 Мбайт); скорость вращения 7200 об./мин; время доступа - 6 мс; трансфер - 11 Мбайт/с. НЖМД весьма разнообразны. Диаметр дисков чаще всего 3,5" (89 мм), но есть и другие, в частности 5,25" (133 мм) и 1,8" (45 мм). Наиболее распространенная высота корпуса дисковода 25 мм у настольных ПК, 41 мм - у машин-серверов, 12 мм - у портативных ПК и др.
В современных винчестерах стал использоваться метод зонной записи. В этом случае все пространство диска делится на несколько зон, причем во внешних зонах секторов размещается больше данных, чем во внутренних. Это, в частности, позволило увеличить емкость жестких дисков примерно на 30%.
Для того чтобы получить на магнитном носителе структуру диска, включающую в себя дорожки и сектора, над ним должна быть выполнена процедура, называемая физическим, или низкоуровневым, форматированием (physical, или low-level formatting). В ходе выполнения этой процедуры контроллер записывает на носитель служебную информацию, которая определяет разметку цилиндров диска на сектора и нумерует их. Форматирование низкого уровня предусматривает и маркировку дефектных секторов для исключения обращения к ним в процессе эксплуатации диска.
Максимальная емкость и скорость передачи данных существенно зависят от интерфейса, используемого накопителем.
Распространенный сейчас интерфейс AT Attachment (ATA), широкоизвестный и под именем Integrated Device Electronics (IDE), предложенный в 1988 г. пользователям ПК IBM PC/AT, ограничивает емкость одного накопителя 504 Мбайтами (эта емкость ограничена адресным пространством традиционной адресации "головка - цилиндр - сектор": 16 головок * 1024 цилиндра * 63 сектора * 512 байт в секторе = 504 Кбайта = 528 482 304 байта) и обеспечивает скорость передачи данных 5-10 Мбайт/с.
Интерфейс Fast ATA-2 или Enhanced IDE (EIDE), использующий как традиционную (но расширенную) адресацию по номерам головки, цилиндра и сектора, так и адресацию логических блоков (Logic Block Address LBA), поддерживает емкость диска до 2500 Мбайт и скорость обмена до 16 Мбайт/с. С помощью EIDE к материнской плате может подключаться до четырех накопителей, в том числе и CD-ROM, и НКМЛ. Для старых версий BIOS для поддержки EIDE нужен специальный драйвер.
Наряду с ATA и ATA-2 широко используются и две версии более сложных дисковых интерфейсов Small Computer System Interface (интерфейс малых компьютерных систем): SCSI и SCSI-2. Их достоинства: высокая скорость передачи данных (интерфейс Fast Wide SCSI-2 и ожидаемый в ближайшее время интерфейс SCSI-3 поддерживают скорость до 40 Мбайт/с), большое количество (до 7 шт.) и максимальная емкость подключаемых накопителей. Их недостатки: высокая стоимость (примерно в 5 -10 раз дороже ATA), сложность установки и настройки. Интерфейсы SCSI-2 и SCSI-3 рассчитаны на использование в мощных машинах-серверах и рабочих станциях.
Для повышения скорости обмена данными процессора с дисками НЖМД следует кэшировать. КЭШ-память для дисков имеет то же функциональное назначение, что и КЭШ для основной памяти, т.е. служит быстродействующим буфером памяти для кратковременного хранения информации, считываемой или записываемой на диск. КЭШ-память может быть встроенной в дисковод, а может создаваться программным путем (например, драйвером Microsoft Smartdrive) в оперативной памяти. Скорость обмена данными процессора с КЭШ-памятью диска может достигать 100 Мбайт/с.
В ПК имеется обычно один, реже несколько накопителей на жестких магнитных дисках. Однако в MS DOS (MicroSoft Disk Operation System - дисковая операционная система фирмы Microsoft) программными средствами один физический диск может быть разделен на несколько "логических" дисков; тем самым имитируется несколько НМД на одном накопителе.[5]
3. Дисковые массивы RAID
В машинах-серверах баз данных и в суперЭВМ часто применяются дисковые массивы RAID (Redundant Array of Independent Disks - матрица с резервируемыми независимыми дисками), в которых несколько накопителей на жестких дисках объединены в один большой логический диск, при этом используются основанные на введении информационной избыточности методы обеспечения достоверности информации, существенно повышающие надежность работы системы (при обнаружении искаженной информации она автоматически корректируется, а неисправный накопитель в режиме Plug and Play (вставляй и работай) замещается исправным).[1]
Существует несколько уровней базовой компоновки массивов RAID:
1-й уровень включает два диска, второй из которых является точной копией первого;
2-й уровень использует несколько дисков специально для хранения контрольных сумм и обеспечивает самый сложный функционально и самый эффективный метод исправления ошибок;
3-й уровень включает четыре диска: три информационных, а четвертый хранит контрольные суммы, обеспечивающие исправление ошибок в первых трех;
4-й и 5-й уровни используют диски, на каждом из которых хранятся свои собственные контрольные суммы.
Дисковые массивы второго поколения - RAID6 и RAID7. Последние могут объединять до 48 физических дисков любой емкости, формирующих до 120 логических дисков; имеют внутреннюю КЭШ-память до 256 Мбайт и разъемы для подключения внешних интерфейсов типа SCSI. Внутренняя шина X-bus имеет пропускную способность 80 Мбайт/с (для сравнения: трансфер SCSI-3 до 40 Мбайт/с, а скорость считывания с физического диска до 5 Мбайт/с).
Среднее время наработки на отказ в дисковых массивах RAID - сотни тысяч часов, а при 2-м уровне компоновки - до миллиона часов. В обычных НМД эта величина не превышает тысячи часов. Информационная емкость дисковых массивов RAID - от 3 до 700 Гбайт (максимальная достигнутая в 1995 г. емкость дисковых накопителей 5,5 Тбайта=5500 Гбайт).
Применяются и НЖМД со сменными пакетам и дисков (накопители Бернулли), использующие пакеты из дисков диаметром 133 мм, они имеют емкость от 20 до 230 Мбайт и меньшее быстродействие, но более дорогие, чем винчестеры. Основное их достоинство: возможность накопления и хранения пакетов вне ПК.
Основные направления улучшения характеристик НМД:
использование высокоэффективных дисковых интерфейсов (E1DE, SCSI); использование более совершенных магнитных головок, позволяющих увеличить плотность записи и, следовательно, емкость диска и трансфер (без увеличения скорости вращения диска).
4. Компакт-диски
.
Общии сведения о компакт-дисках
В 1982 году фирмы Sony и Philips завершили работу над форматом CD-аудио (Compact Disk), открыв тем самым эру цифровых носителей на компакт-дисках. Принцип работы этих дисков – оптический. Чтение и запись осуществляется лазером. В компакт-диске данные кодируются и записываются в виде последовательности отражающих и не отражающих участков. Отражение интерпретируется как единица, «впадина» - как ноль.
Приведу некоторые технические параметры компакт-дисков. Рабочая длина волны лазера - 780 нм. Диаметр компакт-диска 120 мм. Толщина диска 1,2 мм. Объем диска 700 Мб (74 мин аудио). Вес 14-33 г. Цепочка углублений (pits) расположена по спирали как в грампластинке, но в направлении от центра (фактически CD является устройством последовательного доступа с ускоренной перемоткой). Интервал между витками - 1.6 мкм, ширина пита - 0.5 мкм, глубина - 0.125 мкм (1/4 длины волны луча лазера в поликарбонате), минимальная длина - 0.83 мкм (рис. 1).
Рис. 1. Поверхность компакт-диска.
Существуют модификации в 80 минут (700 МБ), 90 минут (791 МБ) и 99 минут (870 MB). Номинальная (1x) скорость передачи данных - 150 КБ/сек (176400 байт/сек аудио или "сырых" данных, 4.3 Мбит/сек "физических" данных). В то время как все магнитные диски вращаются с постоянным числом оборотов в минуту, то есть с неизменной угловой скоростью (CAV, Constant Angular Velocity), компакт-диск вращается обычно с переменной угловой скоростью, чтобы обеспечить постоянную линейную скорость при чтении (CLV, Constant Linear Velocity). Таким образом, чтение внутренних сторон осуществляется с увеличенным, а наружных - с уменьшенным числом оборотов. Именно этим обуславливается достаточно низкая скорость доступа к данным для компакт-дисков по сравнению, например, с винчестерами.[2]
Классификация компакт-дисков
Существует множество стандартов и форматов компакт-дисков – в зависимости от назначения и производителей. Приведу для примера далеко не все существующие: Audio CD (CD-DA), CD-ROM (ISO 9660, mode 1 & mode 2), Mixed-mode CD, CD-ROM XA (CD-ROM eXtended Architecture, mode 2, form 1 & form 2), Video CD, CD-I (CD-Interactive), СD-I-Ready, CD-Bridge, Photo CD (single & multi-session), Karaoke CD, CD-G, CD-Extra, I-Trax, Enhanced CD (CD Plus), Multi-session CD, CD-Text, CD-WO (Write-Once). Полное описание их займет слишком много места, и это не является целью написания данной работы.
В зависимости же от количества возможных операций записи компакт-диски разделяются на:
Формат компакт-дисков
Поверхность диска разделена на области:
· PCA (Power Calibration Area). Используется для настройки мощности лазера записывающим устройством. 100 элементов.
· PMA (Program Memory Area). Сюда временно записываются координаты начала и конца каждого трека при извлечении диска из записывающего устройства без закрытия сессии. 100 элементов.
· Вводная область (Lead-in Area) - кольцо шириной 4 мм (диаметр 46-50 мм) ближе к центру диска (до 4500 секторов, 1 минута, 9 MB). Состоит из 1 дорожки (Lead-in Track). Содержит TOC (абсолютные временные адреса дорожек и начала выводной области, точность - 1 секунда).
· Область данных (program area, user data area).
· Выводная область (Lead-out) - кольцо 116-117 мм (6750 секторов, 1.5 минуты, 13.5 MB). Состоит из 1 дорожки (Lead-out Track).
Каждый байт данных (8 бит) кодируется 14-битным символом на носителе (кодировка EFM). Символы отделяются 3-битными промежутками, выбираемыми так, чтобы на носителе не было более 10 нулей подряд.
Из 24 байтов данных (192 бита) формируется кадр (F1-frame), 588 битов носителя, не считая промежутков:
· синхронизация (24 бита носителя)
· символ субкода (биты субканалов P, Q, R, S, T, U, V, W)
· 12 символов данных
· 4 символа контрольного кода
· 12 символов данных
· 4 символа контрольного кода
При декодировании могут использоваться различные стратегии обнаружения и исправления групповых ошибок (вероятность обнаружения против надежности коррекции).
Последовательность из 98 кадров образует сектор (2352 информационных байта). Кадры в секторе перемешаны, чтобы уменьшить влияние дефектов носителя. Адресация сектора произошла от аудиодисков и записывается в формате A-Time - mm:ss:ff (минуты:секунды:доли, доля в секунде от 0 до 74). Отсчет начинается с начала программной области, т.е. адреса секторов вводной области отрицательные. Биты субканалов собираются в 98-битные слова для каждого субканала (из них 2 бита - синхронизация). Используются субканалы:
· P - маркировка окончания дорожки (min 150 секторов) и начала следующей (min 150 секторов).
· Q - дополнительная информация о содержимом дорожки:
o число каналов
o данные или звук
o можно ли копировать
o признак частотных предыскажений (pre-emphasis): искусственный подъем высоких частот на 20 дБ
o режим использования подканала
- q-Mode 1: во вводной области здесь хранится TOC, в программной области - номера дорожки, адреса, индексы и паузы
- q-Mode 2: каталоговый номер диска (тот же, что на штрих-коде) - 13 цифр в формате BCD (MCN, ENA/UPC EAN)
- q-Mode 3: ISRC (International Standard Recording Code) - код страны, владельца, год и серийный номер записи
o CRC-16
Последовательность секторов одного формата объединяется в дорожку (трек) от 300 секторов (4 секунды, см. субканал P) до всего диска. На диске может быть до 99 дорожек (номера от 1 до 99). Трек может содержать служебные области:
· пауза - только информация субканалов, нет пользовательских данных
· pre-gap - начало трека, не содержит пользовательских данных и состоит из двух интервалов: первый длиной не менее 1 секунды (75 секторов) позволяет "отстроиться" от предыдущего трека, второй длиной не менее 2 секунд задает формат секторов трека
· post-gap - конец трека, не содержит пользовательских данных, длиной не менее 2 секунд
Вводная цифровая область должна завершаться постзазором. Первый цифровой трек должен начинаться со второй части предзазора. Последний цифровой трек должен завершаться постзазором. Выводная цифровая область не содержит предзазора.[5]
Практическая часть
Вариант 14
Используя ППП на ПК, необходимо определить расходы на содержание одного учащегося в группе продленного дня в городской школе в год по имеющимся данным.
Показатель |
Принято в текущем году |
Проект на следующий год |
Средняя сумма расходов на одного учащегося в год: |
||
заработная плата в год, руб |
100,00 |
200,00 |
начисления на заработную плату, % |
38,50 |
38,50 |
расходы на мягкий инвентарь, руб |
200,00 |
200,00 |
Расходы на питание: |
||
норма расходов на питание в день, руб. |
10,00 |
12,00 |
число дней функционирования групп |
210,00 |
210,00 |
Вычислите:
· Сумму расходов на питание учащегося в текущем и проектируемом году;
· Сумму расходов на содержание учащегося в текущем и проектируемом году;
· Абсолютное и относительное изменение исчисленных показателей проектируемого года к показателям текущего в виде таблицы.
Введите текущее значение даты между таблицей и ее названием.
По данным таблицы постройте гистограмму с заголовком, названием осей координат и легендой.
1. Выбор ППП.
В данной задаче наиболее целесообразно применить и использовать табличный процессор MS Excel. Так как в нем можно наиболее полно отразить алгоритм работы, проектирование и графическое представление форм данных по нашей задаче.
2.Описание алгоритма решения задачи.
ТС - общая сумма затрат на содержание одного учащегося, Z – заработная плата, D – начисления на заработную плате, C – затраты на мягкий инвентарь, N – норма на питание в день, K – количество дней функционирования групп.
Сумма расходов на питание N*K
Сумма расходов на содержание учащегося Z+(Z*D/100)+C
Абсолютное изменение исчисленных показателей проектируемого года к показателям текущего: ABSпроект
– ABSтекущ
|
Относительное изменение исчисленных показателей проектируемого года к показателям текущего: (ABSпроект
– ABSтекущ
)*100/(N*K)тек
Рисунок 1 Неформализованное описание решения задачи
Проектирование форм выходных документов и графическое представление данных по выбранной задаче.
3 Структура шаблонов таблиц
Таблица.1 «Расходы на содержание одного учащегося»
Колонка электронной таблицы |
Наименование (реквизиты) |
Тип данных |
Формат данных |
|
длина |
Точность |
|||
B |
Показатель |
текстовый |
67 |
|
C |
Принято в текущем году |
Числовой |
14 |
2 |
D |
Принято в текущем году |
Числовой |
20 |
2 |
Таблица 2 Расходы на содержание одного учащегося в группе продленного дня в городской школе в год
Колонка электронной таблицы |
Наименование (реквизиты) |
Тип данных |
Формат данных |
|
длина |
Точность |
|||
B |
Показатель |
текстовый |
67 |
|
C |
Принято в текущем году |
Числовой |
14 |
2 |
D |
Принято в текущем году |
Числовой |
20 |
2 |
E |
Абсолютное изменение исчисленных показателей проектируемого года к показателям текущего (руб) |
Числовой |
19 |
2 |
F |
Относительное изменение исчисленных показателей проектируемого года к показателям текущего (%) |
Числовой |
19 |
2 |
4 Расположение таблиц на рабочих листах MS Excel.
Таблица 3 Расходы на содержание одного учащегося
Таблица 4. Итоговая таблица расходы на содержание учащегося в группе продленного дня в городской школе.
5 Шаблоны таблиц с исходными данными
Таблица 6 Расходы на содержание одного учащегося
Показатель |
Принято в текущем году |
Проект на следующий год |
Средняя сумма расходов на одного учащегося в год: |
||
заработная плата в год, руб |
C10 |
D10 |
начисления на заработную плату, % |
C11 |
D11 |
расходы на мягкий инвентарь, руб |
C12 |
D12 |
Расходы на питание: |
||
норма расходов на питание в день, руб. |
C14 |
D14 |
число дней функционирования групп |
C15 |
D15 |
Таблица 6 Расходы на содержание одного учащегося в группе продленного дня в городской школе в год.
Показатель |
в текущем году |
проектируемом году |
Абсолютное изменение исчисленных показателей проектируемого года к показателям текущего (руб) |
Относительное изменение исчисленных показателей проектируемого года к показателям текущего (%) |
Сумма расходов на питание учащегося, руб |
C14*C15 |
D14*D15 |
D24-C24 |
E24*100/C24 |
Сумма расходов на содержание учащегося, руб |
C10+(C11*C10/100)+C12 |
D10+(D11*D10/100)+D12 |
D25-C25 |
E25*100/C25 |
Итого (руб): |
СУММ(C24:C25) |
СУММ(D24:D25) |
СУММ(E24:E25) |
СУММ(F24:F25) |
6
Инструкция пользователя.
Последовательность действий пользователя при решении задачи:
Для запуска программы MS Excel из главного меню Windows нажимаем кнопку Пуск
и выбираем MS
Excel
в меню Программы.
Вводим исходные данные в электронную таблицу формы кассового ордера
1. После того как ввели исходные данные, выделяем необходимые ячейки, выбираем формат ячейки и отмечаем необходимый тип данных (числовой, Дата, текстовый, денежный), в денежном формате выбираем число десятичных знаков
2. Выделяем всю таблицу и копируем ее на новый лист.
3. На новом листе выделяем всю таблицу выбираем в панели инструментов Данные →Фильтр→ Автофильтр
. С помощью автофильтра мы можем отфильтровать данные по получателям и по видам оплат.
4. По полю сумма подводим итог и что бы итог отображался при фильтровании данных используем Вставка функции →математические→ ПРОМЕЖУТОЧНЫЕ.ИТОГИ
далее выбираем область данных суммы.
5. Далее строим гистограмму.
7
Технология построения диаграмм
· Нажимаем кнопку Мастер диаграмм
на панели инструментов Стандартная.
· Осуществляем построение нужной диаграммы:
Шаг 1.
Выбираем Тип ( Гистограмма ) и Вид ( Обычная
) диаграммы, нажимаем кнопку Далее.
Шаг
2. Нажимаем закладку Ряд,
в окне Ряд
удаляем если есть лишние Ряды
, Нажимаем добавить ряд, далее выделяем нужный диапазон в нашем случае(предельные издержки и предельная выручка) в окне подписи по оси Х
нажимаем флажок:
В окне Источник данных диаграмм
указываем диапазон
наименование товара путем выделения соответствующей зоны в
таблице, нажимаем флажок, нажимаем кнопку Далее.
Шаг 3.
Выбираем необходимые заголовки и нажимаем кнопку
Далее.
Шаг 4.
Выполняем указания Мастера диаграмм
и нажимаем
кнопку Готово.
• Устанавливаем курсор в свободное место диаграммы, щелкаем
кнопкой мыши и удерживая кнопку перетаскиваем диаграмму на
необходимое поле Листа.
Щелкаем кнопкой мыши в любой из точек на рамке Области диаграммы и растягиваем рамку диаграммы до нужного размера.
Заключение
В данной курсовой мы рассмотрели тему «Внешняя память компьютера». А также выполнили практическую часть использовав табличный процессор MS Excel. Так как в нем можно наиболее полно отразить алгоритм работы, проектирование и графическое представление форм данных по нашей задаче.
В теоретической части рассмотрели виды внешней памяти:
· Магнитные диски (МД)
· Жесткие диски
· Дисковые массивы RAID
· Компакт-диски
А так же дали определение внешней памяти компьютера. Под ней подразумевают обычно как носители информации (то есть устройства, где она непосредственно хранится), так и устройства для чтения/записи информации, которые чаще всего называют накопителями.
Список литературы
1. Гейн А.Г., Сенокосов А.И., Шолохович В.Ф. Информатика: 7-9 кл. Учеб. для общеобразоват. учеб. заведений — М.: Дрофа, 2002.
2. Каймин В.А., Щеголев А.Г., Ерохина Е.А., Федюшин Д.П. Основы информатики и вычислительной техники: Проб. учеб. для 10-11 классов средн. школы. — М.: Просвещение, 2001.
3. Кушниренко А.Г., Лебедев Г.В., Сворень Р.А. Основы информатики и вычислительной техники: Учеб. для средн. учеб. заведений. — М.: Просвещение, 2003.
4. Семакин И., Залогова Л., Русаков С., Шестакова Л. Информатика: уч. по базовому курсу. — М.: Лаборатория Базовых Знаний, 1999.
5. Угринович Н. Информатика и информационные технологии. Учебное пособие для общеобразовательных учреждений. — М.: БИНОМ, 2003. — 464 с. (§ 2.14. Хранение информации, с. 91-98).