РефератыИнформатика, программированиеУсУсложнение решающего правила при управлении в задачах распознавания образов

Усложнение решающего правила при управлении в задачах распознавания образов

Бекмуратов К.А.


Рассматривается один из возможных принципов усложнения решающего правила непрерывного пространства признаков, порождаемого опорными объектами конкретного образа. Предложена процедура нахождения предельного значения размерности признакового пространства, в котором возможно кусочно-линейное разделение образов и гарантированы требуемые качество и надежность распознавания, необходимые в системах управления.


В работе [1] описан метод формирования пространства непрерывных признаков, приводящий к безошибочному разделению образов. Введено понятие непрерывного признака и показано, что если набирать пространство только из определенных в [1] признаков, то можно достичь безошибочного разделения образов.


В данной работе так же, как и в [2], рассмотрим случай, когда в пространстве непрерывных признаков размерности n безошибочное разделение обучающей последовательности невозможно.


Пусть на некотором множестве мощности объектов определены подмножества при , представляющие собой образы на обучающей выборке


Допустим, что - подмножество на , соответствующее конкретному образу , а - подмножество на , соответствующее остальным образом


Требуется с использованием обучающую выборки найти решающее правило , указывающее принадлежность любого объекта из одному


из заданных образов или с вероятностью ошибки, не превышающей , достигаемой с надежностью (1-), и определить целесообразности усложнения решающих правил при синтезе непрерывных признаковых пространств.


Если обучающая последовательность не может быть безошибочно разделима выбранным решающим правилом, то в общем случае справедлива теорема Вапника - Червоненкиса [3], смысл которой состоит в том, что если в n-мерном пространстве признаков решающее правило совершает ошибок при классификации обучающей последовательности длины , то с вероятностью можно утверждать, что вероятность ошибочной классификации составит величину, меньшую ,


,


где N- число всевозможных правил заданного класса, которое можно построить в пространстве заданной размерности.


Предположим, что в процессе обучения из последовательно поступивших непрерывных свойств относительно опорных объектов синтезирована подсистема непрерывных признаков. В зависимости от состава случайной и независимой выборки процесс обучения может остановиться при любом значении n, но если разделение конкретной обучающей выборки наступило в n-мерном пространстве, то число N всевозможных решающих правил в классе не должно превышать числа всех подмножеств множества, состоящего из элементов, т.е.


,


где


.


Логарифмируя получим


(1)


Если учесть , то (1) принимает вид


, (2)


где можно оценить в виде


(3)


Подставляя (3) в (2), получаем


(4)


Используя теорему Вапника-Червоненкиса [3], можно вычислить предельную размерность пространства


, (5)


которая при заданных гарантирует требуемые e и h.


Пусть вычислено максимально допустимое значени

е размерности пространства в виде (5) и в этом пространстве фиксирована линейная решающая функция


(6)


Далее, для того чтобы в процессе обучения синтезировать пространство, в котором линейное решающее правило (6) безошибочно разделило бы обучающую выборку длины , и при этом размерность пространства не превышала бы , необходимо на признаки наложить дополнительные требования. Зная предельную размерность простанства (8), можно оценить минимально допустимую разделяющую силу каждого выбираемого признака в виде



Минимально допустимая разделяющая сила признака позволяет при синтезе непрерывного пространства использовать не все признаки, а выбирать только те, разделяющая сила которых удовлетворяет неравенству



Допустим, что в синтезированном пространстве непрерывных признаков размерности n линейная решающая функция (9) совершает ошибки с частотой . Тогда рассмотрим соотношение


, (7)


где N* - соответствует решающему правилу, работающему с частотой ошибки , N**- безошибочно разделяющая обучающая последовательность длины .


С использованием этого соотношения, можно установить целесообразность усложнения решающего правила в случае, если в пространстве размерности n ещё не достигнуто безошибочное разделение обучающей выборки.


Известно [3], что если вместо линейного правила используется кусочно-линейное и оно безошибочно разделяет обучающую выборку длины l, то в соответствии (7) вместо n следует выбирать величину


n=nk+k , (8)


где k - число линейных решающих правил, составляющих искомое кусочно - линейное правило. Используя соотношения (7) и (8), ответим на вопрос: стоит ли усложнять решение, если линейное правило в пространстве размерности n не обеспечивает безошибочного разделения обучающей выборки. Для этого нужно сделать подстановку:


, (9)


В этом случае усложнение решающего правила, определяемое числом k, не приведёт к снижению вероятности ошибки, если будет выполнено соотношение (7) после подстановки (8). Из этого условия можно найти такое значение k, выше которого теряет всякий смысл усложнение решающего правила, действующего в пространстве непрерывных признаков размерности n:


. (10)


Таким образом, если выбирать n и k согласно (5) и (10), то процедура позволяет, при синтезе пространства, использовать не все признаки, а выбирать только те, разделяющая сила которых позволяет при заданных обеспечить требуемые значения ε и η.


Список литературы


1. Бекмуратов. К.А. Процедура формирования непрерывных признаковых пространств при последовательном обучении. Узб. Журнал // «Проблемы информатики и энергетики».- 1994.-№4.-С.17-20.


2. К.А. Бекмуратов. Пошаговая проверка целесообразности усложнения решающего правила при последовательном обучении задаче распознавания. Узб. Журнал // «Проблемы информатики и энергетики». -2000. -№1. – С. 16-19.


3. Вапник В.Н., Червоненкис А.Я. Теория распознавания образов.(Статистические проблемы обучения). – М.: Наука, 1974. –С. 415.

Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Усложнение решающего правила при управлении в задачах распознавания образов

Слов:774
Символов:6431
Размер:12.56 Кб.