РефератыИнформатика, программированиеПрПрименение методов линейного программирования в военном деле. Симплекс-метод

Применение методов линейного программирования в военном деле. Симплекс-метод

РЕФЕРАТ

Тема:
«Применение
методов линейного
программирования
в


военном
деле. Симплекс-метод»

курсанта
2-го курса I
взв. 8-й роты


Дальневосточного
военного института


им. К.К.
Рокоссовского


Верещак
Дмитрия Владимировича

ПЛАН


Что такое
линейное
программирование


Основные
направления
использования
линейного
программирования
в военном деле


1.Задачи
о перевозках
(транспортная)
задача


2.Задачи
оптимального
распределения
средств



поражения


Симплекс-метод


Заключение


I.ЧТО
ТАКОЕ ЛИНЕЙНОЕ
ПРОГРАММИРОВАНИЕ

Каждый
человек ежедневно,
не всегда осознавая
это решает
проблему: как
получить наибольший
эффект, обладая
ограниченными
средствами.


Наши
средства и
ресурсы всегда
ограничены.
Жизнь была бы
менее интересной
, если бы это
было не так. Не
трудно выиграть
сражение, имея
армию в 10 раз
большую, чем
у противника;
Ганнибалу,
чтобы разбить
римлян при
Каннах, командуя
вдвое меньшей
армией, нужно
было действовать
очень обдуманно.


Чтобы
достичь наибольшего
эффекта, имея
ограниченные
средства, надо
составить план,
или программу
действий. Раньше
план в таких
случаях составлялся
«на глазок»
(теперь, впрочем,
зачастую тоже).
В середине XX
века был создан
специальный
математический
аппарат, помогающий
это делать «по
науке». Соответствующий
раздел математики
называется
математическим
программированием.
Слово «программирование»
здесь и в аналогичных
терминах («линейное
программирование,
динамическое
программирование»
и т.п.) обязано
отчасти историческому
недоразумению,
отчасти неточному
переводу с
английского.
По-русски лучше
было бы употребить
слово «планирование».
С программированием
для ЭВМ математическое
программирование
имеет лишь то
общее, что
большинство
возникающих
на практике
задач математического
программирования
слишком громоздки
для ручного
счета, решить
их можно только
с помощью ЭВМ,
предварительно
составив программу.


Временем
рождения линейного
программирования
принято считать
1939г., когда была
напечатана
брошюра Леонида
Витальевича
Канторовича
«Математические
методы организации
и планирования
производства».
Поскольку
методы, изложенные
Л.В.Канторовичем,
были мало пригодны
для ручного
счета, а быстродействующих
вычислительных
машин в то время
не существовало,
работа Л.В.Канторовича
осталась почти
не замеченной.


Свое
второе рождение
линейное
программирование
получило в
начале пятидесятых
годов с появлением
ЭВМ. Тогда началось
всеобщее увлечение
линейным
программированием,
вызвавшее в
свою очередь
развитие других
разделов
математического
программирования.
В 1975 году академик
Л.В.Канторович
и американец
профессор
Т.Купманс получили
Нобелевскую
премию по
экономическим
наукам за «вклад
в разработку
теории и оптимального
использования
ресурсов в
экономике».


Эти
премии получили
свое название
в честь их учредителя
– известного
химика и изобретателя
Альфреда Нобеля,
они должны были
присуждаться
за научные
открытия в
области физики,
химии, физиологии
или медицины,
за литературные
произведения,
«отражающие
человеческие
идеалы», а так
же тем, кто «внесет
весомый вклад
в сплочение
народов, уничтожение
рабства, снижение
численности
существующих
армий и содействие
мирной договоренности».
Математикам
премия не
предназначалась.
Однако в 1969 году
Шведский банк
по случаю 300-летия
со дня своего
образования
учредил премию
памяти А.Нобеля
– по экономическим
наукам. Она то
и была присуждена
в 1975 году Л.В.Канторовичу
и Т.Купмансу
за создание
новой математической
науки (получившей
название линейного
программирования)
и применение
этой теории
в экономике.


В
автобиографии,
представленной
в Нобелевский
комитет, Леонид
Витальевич
Канторович
рассказывает
о событиях,
случившихся
в 1939 году. К нему,
26-летнему
профессору-математику,
обратились
за консультацией
сотрудники
лаборатории
планерного
треста, которым
нужно было
решить задачу
о наиболее
выгодном
распределении
материала между
станками. Эта
задача сводилась
к нахождению
максимума
линейной функции,
заданной на
многограннике.
Максимум такой
функции достигался
в вершине, однако
число вершин
в этой задаче
достигало
миллиарда…
Поэтому простой
перебор вершин
не годился.
Леонид Витальевич
писал: «оказалось,
что эта задача
не является
случайной. Я
обнаружил
большое число
разнообразных
по содержанию
задач, имеющих
аналогичный
математический
характер: наилучшее
использование
посевных площадей,
выбор загрузки
оборудования,
рациональный
раскрой материала,
распределение
транспортных
грузопотоков…
Это настойчиво
побудило меня
к поиску эффективного
метода их решения».
И уже летом
1939 года была сдана
в набор книга
Л.В.Канторовича
«Математические
методы организации
и планирования
производства»,
в которой
закладывались
основания того,
что ныне называется
математической
экономикой.


Но
вернемся в 1939
год. Говорят,
что истина
рождается
ересью и увы,
так случилось
и с идеями
Л.В.Канторовича
в области экономики.
Они не встретили
понимания в
момент их зарождения,
были объявлены
ересью, и его
работа была
прервана.


Концепции
Леонида Витальевича
вскоре после
войны были
переоткрыты
на западе.
Американский
экономист
Т.Купманс в
течении многих
лет привлекал
внимание математиков
к ряду задач,
связанных с
военной тематикой.
Он активно
способствовал
тому, чтобы был
организован
математический
коллектив для
разработки
этих проблем.
В итоге было
осознано, что
надо научиться
решать задачи
о нахождении
экстремумов
линейных функций
на многогранниках,
задаваемых
линейными
неравенствами.
По предложению
Купманса этот
раздел математики
получил название
линейного
программирования.


Американский
математик
А.Данциг в 1947 году
разработал
весьма эффективный
конкретный
метод численного
решения задач
линейного
программирования
(он получил
название симплекс
метода). Идеи
линейного
программирования
в течении пяти
шести лет получили
грандиозное
распространение
в мире, и имена
Купманса и
Данцига стали
повсюду широко
известны.


Примерно
в это время
Купманс узнал,
что еще до войны
в далекой России
уже было сделано
нечто похожее
на разработку
начал линейного
программирования.
Как легко было
бы Данцигу и
Купмансу
проигнорировать
эту информацию!
Маленькая
книжица, изданная
ничтожным
тиражом, обращенная
даже не а экономистам,
а к организаторам
производства,
с минимумом
математики,
без четко описанных
алгоритмов,
без доказательств
теорем – словом,
стоит ли принимать
такую книжку
во внимание…
Но Купманс
настаивает
на переводе
и издании на
западе книги
Канторовича.
Его имя и идеи
становятся
известны всем.
Воздадим должное
благородству
американского
ученого!


А
самому Леониду
Витальевичу
– как естественно
было бы ему,
испытав первые
грозные удары
ретроградов,
остеречься
от «грехов»
молодости,
забыть про всю
эту экономику
и вернуться
к математике.
Но Л.В.Канторович
продолжает
писать математические

/>работы, навеянные
экономическими
идеями, участвует
и в конкретных
разработках
на производстве.
При этом (одновременно
с Данцигом, но
не зная его
работ) он разрабатывает
метод, позже
названный
симплекс-методом.
Как только в
50-е годы образуется
маленький
просвет и кое
что из запретного
становится
возможным, он
организует
группу студентов
на экономическом
факультете
ЛГУ для обучения
методам оптимального
планирования.
А начиная с
1960 года Леонид
Витальевич
занимается
только экономической
и связанной
с нею математической
проблемами.
Его вклад в
этой области
был отмечен
Ленинской
премией в 1965 году
(присуждена
ему совместно
с В.С.Немчиновым
и В.В.Новожиловым)
и, как уже говорилось,
Нобелевской
премией в 1975 году.

II.ОСНОВНЫЕ
НАПРАВЛЕНИЯ
ИСПОЛЬЗОВАНИЯ
ЛИНЕЙНОГО
ПРОГРАММИРОВАНИЯ
В ВОЕННОМ ДЕЛЕ.

Наиболее
распространенными
направлениями
использования
линейного
программирования
в военном деле
являются:


задача
о перевозках
(транспортная
задача)


задача
на распределение
сил и средств
(распределение
сил и средств
поражения по
целям, распределение
сил и средств
разведки и
др.)


ЗАДАЧИ
О ПЕРЕВОЗКАХ
(ТРАНСПОРТНАЯ
ЗАДАЧА).


Эти
задачи являются
исторически
одними из первых,
для решения
которых использовалось
линейное
программирование.
В зависимости
от выбранного
критерия
эффективности
различают
транспортные
задачи по пробегу,
по стоимости,
по времени,
совместно по
критериям
пробега и стоимости,
с ограничениями
по пропускной
способности
дорог и транспорта,
задачи в сетевой
постановке
и др.


Сформулируем
в общем виде
транспортную
задачу линейного
программирования
по критерию
стоимости. Эта
задача имеет
значение тогда,
когда время
не является
определяющим
фактором при
организации
перевозок.


Пусть
имеется m
складов, в
которых сосредоточен
некоторый
однородный
продукт (ГСМ,
боеприпасы
и т.д.) в количествах
соответственно
аi(i=1,2,…,m)
единиц. Имеется
n потребителей
этого продукта
в количествах
соответственно
bj(j=1,2,…,n)
единиц. На
основании
опытов и расчетов
известно, что
на доставку
одной единицы
продукта с
i-того склада
j-тому потребителю
затрачивается
сij денежных
единиц.


Все
значения cij
являются постоянными
величинами.
Перечисленные
исходные данные
помещены в
таблице 1.


Обозначим
через xij0
(i=1,2,…,m; j=1,2,…n)
количество
продукта,
планируемого
для доставки
с i-того
склада j-тому
потребителю.
Естественно,
что если xij=0,
то доставка
продукта с
i-того склада
j-тому потребителю
не планируется.
План обеспечения
всех потребителей
определяется
таблицей (матрицей):


(1)

Таблица
1.






















































Склады


Потребители Запасы
на складах
1 2 N


1


cn



c12



c1n



a1


2

c21


c22


c2n



a2





M

cm1


cm2


cmn



am


Потребность

b1



b2



bn


Очевидно,
можно предложить
большое число
планов (1) обеспечения
потребителей,
но при выборе
любого из них
должны быть
учтены условия:


(2)


(3)

Выражения
(2) определяют,
что с любого
склада можно
взять продукта
не более имеющихся
там запасов.
Выражения (3)
означают, что
каждый потребитель
обеспечивается
полностью его
заявке. По смыслу
задачи должно
выполняться
условие:

Последнее
выражение
означает, что
запасов на
складах достаточно
для снабжения
всех потребителей.


Суммарная
стоимость
перевозок для
любого выбранного
плана (1) определяется
выражением:


(4)

Транспортная
задача линейного
программирования
по критерию
стоимости
формулируется
следующим
образом.


Найти
такие значения
xij
(т.е. найти такой
план перевозок
(1)), удовлетворяющий
условиям (2), (3),
при которых
суммарная
стоимость
перевозок (4)
будет минимальной.


При
больших m
и n эта
задача решается
на ЭВМ. Для этого
нужно ввести
в машину исходные
данные, помещенные
в таблице 1 и
воспользоваться
разработанной
программой.
При небольших
m и n задача
может быть
решена вручную
с использованием
общих методов
решения. Для
значений m
и n до 5-6 задачу
часто удается
решить путем
прикидочных
расчетов, перебором
вариантов и
логических
размышлений.


Задача.
Для обеспечения
ГСМ четырех
танковых соединений
имеется три
склада. Известны
запасы ГСМ и
потребности
в нем соединений.
Определение
стоимости
доставки одной
тонны ГСМ из
каждого склада
в любое соединение.
Все исходные
данные записаны
в таблице 2.


Сформулировать
задачу линейного
программирования
для данных
условий и определить
такой план
снабжения ГСМ
соединений,
при котором
суммарный
расход на его
провозку будет
минимальным.


Решение:
Обозначим через
xij(i=1,2,3;
j=1,2,3,4) количество
ГСМ, планируемых
для доставки
с i-того
склада (i=1,2,3)
j-тому соединению
(j=1,2,3,4).

Таблица
2.











































Склады


Соединения Запасы
ГСМ на складах
1 2 3 4


1



x11=350


3*




x12=0


4



x13=50


x14=500


3*


900


2



x21=0


5



x22=200


4



x23=0


7



x24=0


8


300
3

x31=0


4



x32=250


3*



x33=350


5*



x34=0


4


60
Потребность
в ГСМ
350 450 400 500
Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Применение методов линейного программирования в военном деле. Симплекс-метод

Слов:2021
Символов:18443
Размер:36.02 Кб.