Министерство РФ по связи и информатизации
«Поволжская государственная академия телекоммуникаций и информатики»
Кафедра «программного обеспечения информационных технологий
»
КОНТРОЛЬНАЯ РАБОТА ПО КУРСУ:
«Теория вычислительных процессов»
2010
Задание 1
Построить базис стандартной схемы;
Реализовать стандартную схему в графовой и линейной формах;
Составить интерпретацию для заданной стандартной схемы;
6 | Расчет суммы чисел Фибоначчи | Расчет суммы первых четырех чисел Фибоначчи |
Числа Фибоначчи (Fi
) определяются по формулам F0
= F1
= 1; Fi
= Fi –1
+ Fi –2
при i = 2, 3, ... (каждое очередное число равно сумме двух предыдущих).
Вычислим сумму первых четырёх чисел Фибоначчи, которые не превосходят заданного натурального числа М. Зададим число M = 4.
алгоритм
Фибоначчи (аргумент целое
М, результат целое
S)
дано
| M>0
начало цел
F0, F1, F2
F0:=1; F1:=1; F2:=2
S:=4 | 4 – сумма первых трех чисел Фибоначчи
начинается пока
F2<=M
F0:=F1; F1:=F2; F2:=F0+F1 | серия переприсваиваний
S:=S+F2;
кончается
S:=S–F2 | из S вычитается последнее значение F2, превосходящее M
Конец
Исполнение алгоритма
F0
|
F1
|
F2
|
S
|
F2<M
|
1 | 1 | 2 | 4 | + |
1 | 2 | 3 | 4+3 | + |
2 | 3 | 5 | 7+5 | − (кц) |
12-5=7 |
Базис класса стандартных схем программ
Полный базис класса стандартных схем
состоит из 4-х непересекающихся, счетных множеств символов и множества операторов - слов, построенных из этих символов.
Множества символов полного базиса:
1. X = {F0
, F1
, F2
, S, M} - множество символов, называемых переменными
;
2. Множество функциональных символов
; верхний символ задает местность символа
; нульместные символы называют константами и обозначают начальными буквами латинского алфавита a, b, c...;
3. Множество предикатных символов
; нульместные символы называют логическими константами;
4. {program, uses, var, begin, end} - множество специальных символов.
Множество операторов включает пять типов:
1. начальный оператор
- слово вида start(F0
, F1
, F2
), где F0
, F1
, F2
- переменные, называемые результатом этого оператора;
2. заключительный оператор
- слово вида stop(S), S - терм; вхождения переменных в терм S называются аргументами этого оператора;
3. оператор
присваивания
– F0
:=1; F1
:=1; F2
:=2; S:=4; F0
:=F1
; F1
:=F2
; F2
:=F0
+F1
; S:=S+F2
; S:=S–F2
;
4. условный оператор
(тест) – логическое выражение; F2
<=M;
5. оператор петли
- односимвольное слово While
.
Графовая форма стандартной схемы на рис. 1.
Рис. 1
Линейная форма стандартной схемы
Turbo
Pascal
Program SummaFib;
Uses Crt;
Var M, {zadannoe chislo}
F0, F1, F2, {3 posledovatelnyh chisla Fibonachchi}
S : Integer; {summa chisel Fibonachi}
BEGIN
ClrScr;
Write('Vvedite naturalnoe M : ');
ReadLn(M);
F0:=1; F1:=1; F2:=2;
S:=4; {4 - summa pervih 3-h chisel Fibonachchi}
Write('Chisla Fibonachchi, ne prevoshodyaschie ', M, ' :', F0:4, F1:4);
While F2<=M do
begin
F0:=F1; F1:=F2; Write(F1 : 4);
F2:=F0+F1; S:=S+F2;
end;
S:=S-F2; {vychitanie iz summy poslednego chisla, kotoroe prevoshodit M}
WriteLn; WriteLn;
WriteLn('OTVET: Summa etih chisel ravna = ', S); ReadLn
END
.
Задание 2
Построить базис рекурсивной схемы;
Составить интерпретацию для заданной рекурсивной схемы (рис. 2);
Составить протокол выполнения программы;
6 |
Составить рекурсивную программу-функцию подсчета количества всех положительных делителей натурального числа n. | Рассчитать количество делителей для числа 10. |
Рис. 2
TURBO PASCAL
program Chislo;
uses crt;
type r=array[1..10] of integer;
var
d,x:integer;
a:r;
y:integer;
begin
clrscr;
y:=1;
textcolor(6);
write('NAHOZHDENIE DELITELEJ');
gotoxy(2,2);
textcolor(9);
write('Vedite chislo, u kotorogo nado najti kolichestvo delitelej: ');
readln(x);
textcolor(6);
write ('Deliteli chisla ' ,x, ' : ');
for d:=1 to x div 2 do
begin
textcolor(9);
if x mod d=0 then begin
writ
inc(y);end;end; {Y:= Y + 1}
writeln(x);
textcolor(5);
write('Kolichestvo delitelej: ' ,y);
readln
;
end
.
Результат работы PASCAL-программы (рис. 3)
Рис. 3
Задание 3
Разработать алгоритм программы, решающей поставленную задачу;
Составить стандартную схему программы и записать полученную программу в линейной форме (рис. 4);
Для каждого оператора программы, записанного в линейной форме определить слабейшие предусловия.
6 | Расчет суммы чисел Фибоначчи |
Рис. 4
Turbo Pascal
Program SummaFib;
Uses Crt;
Var M, {Zadannoe chislo}
F0, F1, F2, {3 posledovatelnyh chisla Fibonachchi}
S : Integer; {Summa chisel Fibonachch}
BEGIN
ClrScr;
Write('Vvedite naturelnoe chislo M: ');
ReadLn(M);
F0:=1; F1:=1; F2:=2;
S:=4; {4 - summa pervyh 3-x chisel Fibonachchi}
Write('Chisla Fibonachchi, ne prevoshodyaschie ', M, ' :', F0:4, F1:4);
While F2<=M do
begin
F0:=F1; F1:=F2; Write(F1 : 4);
F2:=F0+F1; S:=S+F2;
end;
S:=S-F2; {vychitanie iz summy poslednego chisla, kotoroe prevoshodit M}
WriteLn; WriteLn;
WriteLn('O T V E T: Summa etih chisel ravna ', S); ReadLn
END
.
Результаты работы Pascal-программы (рис. 5).
Рис. 5
Слабейшие предусловия операторов:
1. начальный оператор
- слово вида start(F0
, F1
, F2
), где F0
= 1, F1
= 1,
F2
- переменные, называемые результатом этого оператора;
2. заключительный оператор
- слово вида stop(S), где S = 2 - терм; вхождения переменных в терм S называются аргументами этого оператора;
3. оператор присваивания
– F0
:=1; F1
:=1; F2
:=2; S:=4; F0
:=F1
, где F1
=1; F1
:=F2
, где F2
=2; F2
:=F0
+F1
, где F0
=1, F1
=1; S:=S+F2
, где S=4, F2
=3; S:=S–F2
, где S=4, F2
=2;
4. условный оператор
(тест) – логическое выражение; F2
<=M, где F2
=2,
M>1;
5. оператор петли
- односимвольное слово While
. Слабейшее предусловие такое же, как в условном операторе
.
Задание 4
Разработать алгоритм программы, решающей поставленную задачу;
Составить стандартную схему программы и записать полученную программу в линейной форме (рис. 6);
Используя метод индуктивных утверждений и правила верификации Хоара произвести верификацию программы.
6 | Расчет произведения чисел Фибоначчи |
Рис. 6
Turbo Pascal
Program ProizFib;
Uses Crt;
Var M, {zadannoe chislo }
F0, F1, F2, {tri posledovatelnyh chisla Fibonachchi}
S : Integer; {summa chisel Fibonachchi}
R : Real; {proizvedenie chisel Fibonachchi}
BEGIN
ClrScr;
Write('Vvedite naturalnoe chislo M: ');
ReadLn(M);
F0:=1; F1:=1; F2:=2;
S:=4; {4 - summa pervyh 3-x chisel Fibonachchi}
R:=2; {2 - proizvedenie pervyh 3-x chisel Fibonachchi}
Write('Chisla Fibonachchi, ne prevoshodyaschie ', M, ' :', F0:4, F1:4);
While F2<=M do
begin
F0:=F1; F1:=F2; Write(F1 : 4);
F2:=F0+F1; S:=S+F2; R:=R*F2
end;
S:=S-F2; {vychitanie iz summy poslednego chisla, kotoroe prevoshodit M}
R:=R/F2; {Delenie iz proizvedeniya chisla, kotoroe prevoshodit M}
WriteLn; WriteLn;
WriteLn('O T V E T: Summa etih chisel ravna: ', S); ReadLn;
WriteLn; WriteLn;
WriteLn('O T V E T: Proizvedenie etix chisel ravno: ', R); ReadLn
END
.
Результаты работы Pascal-программы (рис. 7).
Рис. 7
Задание 5
Составить алгоритм выполняемого процесса;
Определить множества условий и событий для процесса;
Построить сеть Петри для моделируемого процесса.
6 | Работа банкомата в режиме выдачи наличных денежных средств |
Условиями для рассматриваемой системы являются:
а) банкомат ждет;
б) запрос поступил и ждет;
в) банкомат обрабатывает запрос;
г) запрос обработан.
Событиями для этой системы являются:
1.Запрос поступил.
2. Банкомат начинает обработку запроса.
3. Банкомат заканчивает обработку запроса.
4. Результат обработки выдаются деньги клиенту.
Для перечисленных событий можно составить следующую таблицу их пред- и постусловий (рис. 8).
Событие | Предусловия | Постусловия |
1 2 3 4 |
нет а, б в г |
б в г, а нет |
|
||
Рис. 8
Предусловие выполняется для события 2.