РефератыИнформатика, программированиеРеРешение задач методом северо-западного угла, рапределительного, минимального и максимального элемента по строке

Решение задач методом северо-западного угла, рапределительного, минимального и максимального элемента по строке











































Пункт


назначения


Пункт


отправления


1


2


3


4


Запасы


1


1


7


3


6


21


2


7


1


1


4


26


3


3


3


7


3


25


4


1


3


5


5


24


Потребности


25


19


24


28


S = 96



Допустимый план методом северо-западного угла

Сущность его состоит в следующем. Будем распределять груз, начиная с загрузки левой верхней, условно называемой северо-западной, клетки (1; 1), двигаясь затем от нее по строке вправо или по столбцу вниз. В клетку (1; 1) занесем меньшее из чисел a 1, b 1, т.е. x 11 =min (a 1, b 1). Если а 1 >b 1, то x 11 =b 1 и первый потребитель В 1 будет полностью удовлетворен. В дальнейшем 1-й столбец таблицы в расчет не принимается; в нем переменные. Двигаясь вправо по первой строке таблицы, заносим в соседнюю клетку (1; 2) меньшее из чисел (a 1 - b 1) и b 2, т.е. x 12 = min ((a 1 - b 1), b 2). Если (a 1 - b 1) <b 2, то запасы первого поставщика исчерпаны и первая строка таблицы в дальнейшем в расчет не принимается. Переходим к аналогичному распределению запаса груза второго поставщика. Если b 1 >a 1 то х 11 =min (a 1, b 1) =а 1. При этом запас первого поставщика будет исчерпан, а потому. Первая строка из дальнейшего рассмотрения исключается. Переходим к распределению запасов второго поставщика. В клетку (2; 1) заносим наименьшее из чисел (a 2, b 1 - а 1). Заполнив таким образом клетку (1; 2) или (2; 1), переходим к загрузке следующей клетки по второй строке либо по второму столбцу. Процесс распределения по второй, третьей и последующим строкам (столбцам) производится аналогично распределению по первой строке или первому столбцу до тех пор, пока не исчерпаются ресурсы.


Ai* - излишек нераспределенного груза от поставщика Ai


Bj* - недостача в поставке груза потребителю Bj


Помещаем в клетку (1,1) меньшее из чисел A1*=21 и B1*=25


Так как запасы поставщика A1 исчерпаны, то строка 1 в дальнейшем в расчет не принимается


Помещаем в клетку (2,1) меньшее из чисел A2*=26 и B1*=4


Так как спрос потребителя B1 удовлетворен, то столбец 1 в дальнейшем в расчет не принимается


Помещаем в клетку (2,2) меньшее из чисел A2*=22 и B2*=19


Так как спрос потребителя B2 удовлетворен, то столбец 2 в дальнейшем в расчет не принимается


Помещаем в клетку (2,3) меньшее из чисел A2*=3 и B3*=24


Так как запасы поставщика A2 исчерпаны, то строка 2 в дальнейшем в расчет не принимается


Помещаем в клетку (3,3) меньшее из чисел A3*=25 и B3*=21


Так как спрос потребителя B3 удовлетворен, то столбец 3 в дальнейшем в расчет не принимается


Помещаем в клетку (3,4) меньшее из чисел A3*=4 и B4*=28


Так как запасы поставщика A3 исчерпаны, то строка 3 в дальнейшем в расчет не принимается


Помещаем в клетку (4,4) меньшее из чисел A4*=24 и B4*=24












































Пункт


назначения


Пункт


отправления


1


2


3


4


Запасы


1


1


21


7


-


3


-


6


-


21


2


7


4


1


19


1


3


4


-


26


3


3


-


3


-


7


21


3


4


25


4


1


-


3


-


5


-


5


24


24


Потребности


25


19


24


28


S = 96



Стоимость перевозок Z = 1×21+4×7+1×19+1×3+7×21+3×4+5×24 = 350


Допустимый план методом северо-западного угла


Алгоритм состоит из двух шагов:


Предварительный шаг


Общеповторяющийся шаг


Предварительный шаг:


Находим допустимый ациклический план.


Составляем систему потенциалов.


Анализируем систему на потенциальность.


Общеповторяющийся шаг:


Положительные разности , находим наибольшую, включаем эту клетку в набор и строим на ней цикл.


Означиваем цикл.


Выбираем наименьшее значение перевозки в клетках отрицательной полуцепи.


Из перевозок в каждой клетке отрицательной полуцепи вычитаем Q, а к положительным перевозка прибавляется. Эта операция – сдвиг по циклу на величину Q.


Пересчитываем систему потенциалов.


Проверяем систему на потенциальность.


Если система не потенциальна, то переходим к пункту 1 общеповторяющегося шага.


Полагая потенциал U1=0, определяем остальные потенциалы из соотношения Ui+Vj=Ci,j(i=1. . m, j=1. . n), просматривая все занятые клетки.


Потенциалы Ui, Vj:


U1=0 V1=C1,1-U1= 1 U2=C1,2-V1= 6 V2=C2,2-U2= - 5 V3=C2,3-U2= - 5 U3=C3,3-V3= 12 V4=C3,4-U3= - 9 U4=C4,4-V4= 14 Определяем значения оценок Si,j=Ci,j-(Ui+Vj) для всех свободных клеток S1,2 = c1,2 - (u1 + v2) = 12.


S1,3 = c1,3 - (u1 + v3) = 8.


S1,4 = c1,4 - (u1 + v4) = 15.


S2,4 = c2,4 - (u2 + v4) = 7.


S3,1 = c3,1 - (u3 + v1) = - 10.


S3,2 = c3,2 - (u3 + v2) = - 4.


S4,1 = c4,1 - (u4 + v1) = - 14.


S4,2 = c4,2 - (u4 + v2) = - 6.


S4,3 = c4,3 - (u4 + v3) = - 4.
























B1


B2


B3


B4


A1


12


8


15


A2


7


A3


-10


-4


A4


-14


-6


-4



Если имеется несколько клеток с одним и тем же наименьшим значением оценки, то из них выбирается клетка, имеющая наименьший тариф. Наиболее потенциальной является клетка (4,1).


Для нее оценка равна - 14.


Строим для нее цикл, помечая клетки цикла знаками "плюс" и "минус".













































Поставщик


Потребитель


Запасы груза


B1


B2


B3


B4


A1






1


21






7






3






6



21


A2







-


7


4







1


19








+


1


3






4



26


A3





3






3








-


7


21








+


3


4



25


A4






+


1






3






5








-


5


24



24


Потребность


25


19


24


28



Делаем сдвиг по циклу на 4, прибавляя эту величину к грузу в клетках со знаком "плюс" и отнимая ее от груза в клетках со знаком "минус".


В результате перемещения по циклу получим новый план:













































Поставщик


Потребитель


Запасы груза


B1


B2


B3


B4


A1






1


21






7






3






6



21


A2





7







1


19







1


7






4



26


A3





3






3







7


17







3


8



25


A4






1


4






3






5







5


20



24


Потребность


25


19


24


28



Стоимость перевозок Z = 294


Значение целевой функции изменилось на 56 единиц по сравнению с предыдущим этапом.


Этап 2


Полагая потенциал U1=0, определяем остальные потенциалы из соотношения Ui+Vj=Ci,j(i=1. . m, j=1. . n), просматривая все занятые клетки.


Потенциалы Ui, Vj:


U1=0 V1=C1,1-U1= 1 U4=C1,4-V1= 0 V4=C4,4-U4= 5 U3=C4,3-V4= - 2 V3=C3,3-U3= 9 U2=C3,2-V3= - 8 V2=C2,2-U2= 9 Определяем значения оценок Si,j=Ci,j-(Ui+Vj) для всех свободных клеток


S1,2 = c1,2 - (u1 + v2) = - 2.


S1,3 = c1,3 - (u1 + v3) = - 6.


S1,4 = c1,4 - (u1 + v4) = 1.


S2,1 = c2,1 - (u2 + v1) = 14.


S2,4 = c2,4 - (u2 + v4) = 7.


S3,1 = c3,1 - (u3 + v1) = 4.


S3,2 = c3,2 - (u3 + v2) = - 4.


S4,2 = c4,2 - (u4 + v2) = - 6.


S4,3 = c4,3 - (u4 + v3) = - 4.
























B1


B2


B3


B4


A1


-2


-6


1


A2


14


7


A3


4


-4


A4


-6


-4














































Поставщик


Потребитель


Запасы груза


B1


B2


B3


B4


A1







-


1


21






7







+


3






6



21


A2





7







1


19







1


7






4



26


A3





3






3







-


<
/td>

7


17








+


3


8



25


A4







+


1


4






3






5








-


5


20



24


Потребность


25


19


24


28



Если имеется несколько клеток с одним и тем же наименьшим значением оценки, то из них выбирается клетка, имеющая наименьший тариф. Наиболее потенциальной является клетка (1,3). Для нее оценка равна - 6.


Строим для нее цикл, помечая клетки цикла знаками "плюс" и "минус".


Делаем сдвиг по циклу на величину перевозок в 17 единиц, прибавляя эту величину к грузу в клетках со знаком "плюс" и отнимая ее от груза в клетках со знаком "минус".


В результате перемещения по циклу получим новый план:













































Поставщик


Потребитель


Запасы груза


B1


B2


B3


B4


A1






1


4






7







3


17






6



21


A2





7







1


19







1


7






4



26


A3





3






3






7







3


25



25


A4






1


21






3






5







5


3



24


Потребность


25


19


24


28



Стоимость перевозок Z= 192


Значение целевой функции изменилось на 102 единиц по сравнению с предыдущим этапом.


Этап 3


Полагая потенциал U1=0, определяем остальные потенциалы из соотношения Ui+Vj=Ci,j(i=1. . m, j=1. . n), просматривая все занятые клетки.


Потенциалы Ui, Vj:


U1=0 V1=C1,1-U1= 1 V3=C1,3-U1= 3 U4=C1,4-V1= 0 U2=C3,2-V3= - 2 V2=C2,2-U2= 3 V4=C4,4-U4= 5 U3=C4,3-V4= - 2 Определяем значения оценок Si,j=Ci,j-(Ui+Vj) для всех свободных клеток


S1,2 = c1,2 - (u1 + v2) = 4.


S1,4 = c1,4 - (u1 + v4) = 1.


S2,1 = c2,1 - (u2 + v1) = 8.


S2,4 = c2,4 - (u2 + v4) = 1.


S3,1 = c3,1 - (u3 + v1) = 4.


S3,2 = c3,2 - (u3 + v2) = 2.


S3,3 = c3,3 - (u3 + v3) = 6.


S4,2 = c4,2 - (u4 + v2) = 0.


S4,3 = c4,3 - (u4 + v3) = 2.
























B1


B2


B3


B4


A1


4


1


A2


8


1


A3


4


2


6


A4


0


2



Так как все оценки Si,j>=0, то полученный план является оптимальным.


Транспортная задача решена.













































Поставщик


Потребитель


Запасы груза


B1


B2


B3


B4


A1






1


4






7







3


17






6



21


A2





7







1


19







1


7






4



26


A3





3






3






7







3


25



25


A4






1


21






3






5







5


3



24


Потребность


25


19


24


28



Стоимость перевозок F= 192


Метод минимального элемента


1111 33333 4 55 6 777












































Пункт


назначения


Пункт


отправления


1


2


3


4


Запасы


1


1


21


7


-


3


-


6


-


21


2


7


-


1


19


1


7


4


-


26


3


3


-


3


-


7


-


3


25


25


4


1


4


3


-


5


17


5


3


24


Потребности


25


19


24


28


S = 96



Z = 1×22+1×19+1×7+3×25+1×4+5×17+5×3=226, в методе северо-западного угла стоимость перевозки была выше и составляла 350.


Распределительный метод

Распределительный метод представляет собой набор следующих действий: вначале строится исходный опорный план перевозок по одному из вышеизложенных правил, а затем последовательно производится его улучшение до получения оптимального. Для этого для каждой свободной клетки строят замкнутый цикл. Если в матрице перевозок содержится опорный план, то для каждой свободной клетки можно образовать и притом только один замкнутый цикл, содержащий эту свободную клетку и некоторую часть занятыx клеток.


Тарифы в клетках, находящихся в нечетных вершинах цикла, берем со знаком плюс, а в четных - со знаком минус. По каждому циклу подсчитываем алгебраическую сумму S ij тарифов.


Если замкнутый цикл имеет вид: (i, j) - >(k, j) - >(k, l) - >(t, l) - >... ->(u, v) - >(i, v), то S ij =C ij - C kj + C kl - C tl +... + C uv - C iv, где (i,j) - свободная клетка.


Если алгебраическая сумма S ij отрицательна, то путем изменения значений, стоящих в клетках замкнутого цикла, можно получить план с меньшим значением целевой функции. Критерием оптимальности при нахождении минимума функции служит неотрицательность алгебраических сумм S ij. Если указанное требование не соблюдено, план не оптимален и подлежит улучшению.


Вычисления при решении транспортной задачи распределительным методом ведутся по следующему алгоритму:


исходные данные задачи располагают в распределительной таблице;


строят исходный опорный план по правилу "северо-западного угла", или по правилу "минимального элемента", или методом Фогеля; при этом должны оказаться занятыми r=m+n-1 клеток. Однако, если опорный план является вырожденным, то это условие не соблюдается. Для сохранения числа занятых клеток r=m+n-1 неизменным проделывают следующие шаги: в таблице отыскивают клетку, имеющую минимальный тариф и не образующую цикла с занятыми клетками, помещают в нее базисный нуль и считают ее в дальнейшем занятой. Процесс поиска таких клеток продолжается до тех пор, пока число занятых клеток не станет равным m+n-1;


производят оценку первой свободной клетки путем построения замкнутого цикла и вычисления по этому циклу величины S ij. Если S ij <0, то переходят к следующему пункту алгоритма;


перемещают по циклу количество груза, равное наименьшему из чисел, размещенных в четных клетках цикла (в клетках со знаком минус). Далее возвращаются к пункту с. Если S ij >=0, то оценивают следующую свободную клетку, и т.д., пока не обнаружат клетку с отрицательной оценкой. Среди всех клеток с oценкой меньше нуля нужно найти клетку с наибольшим нарушением оптимальности, т.е. клетку с наименьшей оценкой. Если, наконец, оценки всех свободных клеток окажутся неотрицательными, то оптимальное решение найдено.












































Пункт


назначения


Пункт


отправления


1


2


3


4


Запасы


1


1


21


7


-


3


-


6


-


21


2


7


-


1


19


1


7


4


-


26


3


3


-


3


-


7


-


3


25


25


4


1


4


3


-


5


17


5


3


24


Потребности


25


19


24


28


S = 96



(1,2) = c1,2-c1,1+c4,1-c4,3+c2,3-c2,2 = 2 (1,3) = c1,3-c1,1+c4,1-c4,3 = - 2 (1,4) = c1,4-c1,1+c4,1-c4,4 = 1 (2,1) = c2,1-c2,3+c4,3-c4,1 = 10 (2,4) = c2,4-c2,3+c4,3-c4,4 = 3 (3,1) = c3,1-c3,4+c4,4-c4,1 = 4 (3,2) = c3,2-c3,4+c4,4-c4,3+c2,3-c2,2 = 0 (3,3) = c3,3-c3,4+c4,4-c4,3 = 4 (4,2) = c4,2-c4,3+c2,3-c2,2 = - 2


наименьшая перевозка 17, делаем сдвиг












































Пункт


назначения


Пункт


отправления


1


2


3


4


Запасы


1


1


4


7


-


3


17


6


-


21


2


7


-


1


19


1


7


4


-


26


3


3


-


3


-


7


-


3


25


25


4


1


21


3


-


5


-


5


3


24


Потребности


25


19


24


28


S = 96



(1,2) = c1,2-c1,3+c2,3-c2,2 = 4 (1,4) = c1,4-c1,1+c4,1-c4,4 = 1 (2,1) = c2,1-c2,3+c1,3-c1,1 = 8 (2,4) = c2,4-c2,3+c1,3-c1,1+c4,1-c4,4 = 1 (3,1) = c3,1-c3,4+c4,4-c4,1 = 4 (3,2) = c3,2-c3,4+c4,4-c4,1+c1,1-c1,3+c2,3-c2,2 = 2 (3,3) = c3,3-c3,4+c4,4-c4,1+c1,1-c1,3 = 6 (4,2) = c4,2-c4,1+c1,1-c1,3+c2,3-c2,2 = 0 (4,3) = c4,3-c4,1+c1,1-c1,3 = 2


Оптимальный план получившийся распределительным методом, аналогичен оптимальному плану, получившемуся методом потенциалов

Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Решение задач методом северо-западного угла, рапределительного, минимального и максимального элемента по строке

Слов:4122
Символов:37439
Размер:73.12 Кб.