РефератыКоммуникации и связьРаРасчет и моделирование цифрового фильтра

Расчет и моделирование цифрового фильтра

Министерство образования РФ


Санкт-Петербургский Государственный Морской Технический Университет


Кафедра 50


Курсовая работа


Расчет и моделирование цифрового фильтра.


Выполнил: Резунов А.Б. гр. 3580


Проверил: Сетин А.И.


Санкт-Петербург 2009


Содержание


Введение


Общие сведения по КИХ-фильтрам


Расчет цифрового фильтра


Модель цифрового фильтра и описание блоков модели


Моделирование работы цифрового фильтра в MatLab


Введение


С физической точки зрения цифровая фильтрация – это выделение в определенном частотном диапазоне с помощью цифровых методов полезного сигнала на фоне мешающих помех (рис. 1).



Рис. 1 Фильтрация помех с помощью цифрового ПФ.


По своим частотным свойствам фильтры делятся на:


– фильтры нижних частот (ФНЧ) – Low pass – рис.2а;


– фильтры верхних частот (ФВЧ) – High pass – рис.2б;


– полосовые фильтры (ПФ) – Band pass – рис.2в;


– режекторные фильтры (РФ) – Band stop – рис.2г.



Рис. 2 Идеальные частотные характеристики фильтров.


На рис. 2 приняты следующие обозначения:


ПП – полоса пропускания – частотная область, внутри которой сигналы проходят через фильтр практически без затухания;


ПЗ – полоса задерживания – выбирается разработчиком такой, чтобы обеспечить затухание сигнала не хуже заданного;


Переходная полоса – частотная область между ПП и ПЗ (характеризуется скоростью спада, обычно выражается в дБ/декаду);


fп - частота среза полосы пропускания – точка на уровне 3дБ;


fз - частота среза полосы задерживания – определяется уровнем пульсаций ЧХ в ПЗ;


fнп , fвп – нижняя и верхняя частоты среза полосы пропускания;


fнз , fвз – нижняя и верхняя частоты среза полосы задерживания.


Частота среза в этом случае является условной границей между частотой среза полосы пропускания и частотой среза полосы задерживания.


АЧХ реальных фильтров (рис. 3, на примере ФНЧ) имеют пульсации в полосе пропускания δп и задерживания δз (нестабильность ЧХ в ПП и ПЗ). Часто в литературе они имеют другое название:


Rз – максимальное подавление в полосе задерживания, дБ;


Rп – минимальное подавление в полосе пропускания, дБ.


Пульсации ЧХ в ПП вносят определенные искажения в сигнал, поэтому они более значимы при определении параметров цифровых фильтров.



Рис. 3 Реальная АЧХ цифрового фильтра (на примере ФНЧ).


Математически работа цифрового фильтра во временной области описывается разностным уравнением:


, (1)


где и - - тые отсчеты входного и выходного сигналов фильтра, взятые через интервал ; и – постоянные коэффициенты цифрового фильтра.


Цифровые фильтры принято делить на два класса:


− нерекурсивные фильтры;


− рекурсивные фильтры.


Нерекурсивные фильтры называют еще фильтрами с конечной импульсной характеристикой (КИХ-фильтры), а рекурсивные фильтры - фильтрами с бесконечной импульсной характеристикой (БИХ-фильтры). В иностранной литературе их называют:


− FIR (Finite Impulse Response) – фильтр с конечной импульсной характеристикой;


− IIR (Infinite Impulse Response) – фильтр с бесконечной импульсной характеристикой.


Если в выражении (1) положить коэффициенты , то фильтр, реализующий этот алгоритм, называется нерекурсивным. Его работа описывается уравнением:


, (2)


вычисляющим свертку двух последовательностей: коэффициентов и дискретных отсчетов входного сигнала .


Если хотя бы один коэффициент , то фильтр, реализованный согласно выражения (1), называется рекурсивным. Очевидно, что БИХ-фильтр представляет собой устройство с обратной связью, а КИХ-фильтр - без обратной связи.


Общие сведения по КИХ-фильтрам


Нерекурсивные фильтры работают в соответствии с выражением (2). Раскроем сумму:


(3)


КИХ-фильтр производит взвешенное суммирование (с коэффициентами ) предшествующих отсчетов входного сигнала. Величину называют порядком фильтра, – шаг дискретизации. Структурная схема КИХ-фильтра представлена на рис. 4.



Рис. 4 Структурная схема КИХ-фильтра.


В этом фильтре дискретные выборки из сигнала , задержанные на интервалы , взвешиваются с коэффициентами и суммируются с образованием отклика . Фильтр, представленный на рис. 4 называют еще трансверсальным фильтром. Основными элементами фильтра являются:


− линия задержки с отводами;


− умножителей;


− многовходовый параллельный сумматор.


КИХ-фильтры всегда устойчивы. Форма частотной характеристики КИХ-фильтров слабо чувствительна к точности коэффициентов. Главным преимуществом КИХ-фильтра является линейность его ФЧХ.


Z - преобразование (3):


. (4)


Тогда передаточная характеристика КИХ-фильтра:


. (5)


Если в (2.9) произвести замену , то ЧХ КИХ- фильтра будет иметь вид:


. (6)


Из выражения (6) следует, что

при заданном (фиксированном) шаге дискретизации можно реализовать самые разнообразные формы ЧХ цифрового фильтра, подбирая (рассчитывая) должным образом весовые коэффициенты .


Расчет цифрового фильтра


Расчет цифрового фильтра будем проводить в пакете программ MatLab с помощью инструмента FilterDesign & AnalysisTool.


После расчета цифрового фильтра в инструменте FilterDesign & AnalysisTool получились значения для порядка фильтра, графики АЧХ и ФЧХ.


Порядок фильтра .


Графики АЧХ в линейном и логарифмическом масштабах показаны на рис. 5 и рис 6 соответственно.



Рис. 5 График АЧХ в линейном масштабе.



Рис. 6 График АЧХ в логарифмическом масштабе.


Графики АЧХ в логарифмическом масштабе и ФЧХ, где фаза измеряется в радианах, показаны на рис. 7.



Рис. 7 Графики АЧХ и ФЧХ.


Модель цифрового фильтра и описание блоков модели


Модель цифрового фильтра представлена на рис. 8.



Рис. 8 Модель цифрового фильтра.


Модель цифрового фильтра состоит из:


1. 86 линий задержки , каждая из которых задерживает сигнал со своего входа на величину равную ;


2. 87 усилителей сигналов , которые производят умножение сигналов со своих входов на определенные коэффициенты;


3. 86 сумматоров, которые суммируют выходные сигналы с усилителей;


4. входа фильтра , на который подается фильтруемый входной сигнал;


5. выхода фильтра , на который подается уже отфильтрованный входной сигнал.


Так как усилители производят умножение сигналов на коэффициенты, то можем записать их значения, которые получились при расчете фильтра в инструменте FilterDesign & AnalysisTool:























































































































Моделирование работы цифрового фильтра в
MatLab


Для того, чтобы проверить правильность работы модели цифрового фильтра, проводят моделирование работы фильтра с подачей на него сигналов. В нашем случае на цифровой фильтр будет подана сумма 3х сигналов, 2а из которых будут находиться вне полосы пропускания цифрового фильтра. Схема моделирования работы цифрового фильтра показана на рис. 9.



Рис. 9 Схема для моделирования работы ЦФ.


Схема состоит из:


- 3х генераторов синусоидальных колебаний с частотами и амплитудами:


Sine Wave – и ,Sine Wave1 – и, Sine Wave2 – и;


- сумматора 3х сигналов идущих с генераторов;


- дискретизатора Zero-OrderHold, преобразующий непрерывный сигнал, поступающий с сумматора, в дискретный, шаг дискретизации


, при ;


- квантователь Quantizer, преобразующий дискретный сигнал в цифровой, шаг квантования


;


- 3х осциллографов: Scope1 (показывает непрерывный сигнал с вых. сумматора), Scope2 (показывает цифровой сигнал перед фильтрацией), Scope3 (показывает цифровой сигнал после фильтрации);


- 2х спектроскопов: SpectrumScope1 (показывает спектр цифрового сигнала перед фильтрацией), SpectrumScope2 (показывает спектр цифрового сигнала после фильтрации).


Показания 3х осциллографов и 2х спектроскопов после поведения моделирования показаны на рис. 10, рис. 11, рис. 12, рис. 13 и рис. 14.



Рис. 10 Показание осциллографа Scope1.



Рис. 11 Показание осциллографа Scope2.



Рис. 12 Показание осциллографа Scope3.



Рис. 13 Показание спектроскопа SpectrumScope1.



Рис. 14 Показание спектроскопа SpectrumScope2.

Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Расчет и моделирование цифрового фильтра

Слов:1207
Символов:11487
Размер:22.44 Кб.