РефератыКоммуникации и связьОсОсновы теории цепей

Основы теории цепей

Содержание


1. Способы представления и параметры


2. Элементы R
,
L
,
C
в цепи синусоидального тока


3.Алгебра комплексных чисел


4. Символический метод


5. Законы цепей в символической форме


Список литературы


1. Способы представления и параметры


Переменный ток (напряжение) – это ток (напряжение), изменяющийся во времени либо по величине, либо по направлению, либо и по величине и по направлению. Частным случаем переменного тока является периодический ток.


Минимальный промежуток времени, по истечении которого повторяются мгновенные значения в том же порядке, называется периодом T
[с] функции.


Синусоидальные токи и напряжения – это частный случай периодических токов и напряжений:



Величину обратную периоду называют частотой: [Гц].


Периодические токи и напряжения характеризуются:


- амплитудным значением (Im
,
Um
) – максимальным значением за период;


- средним значением (I
0 ,
,
I
СР
,
U
0
,
,
U
СР
)


;


- средневыпрямленным значением (I
ср. в.
,
U
ср. в.
)


;


- действующим значением (I
,
U
, Е,
J
).


Действующим значением периодического тока называется такая величина постоянного тока, которая за период оказывает такое же тепловое действие, что и периодический ток.


Пусть



тогда мгновенная мощность переменного тока:


.


Энергия, выделяющаяся за период в сопротивлении


.


Пусть по тому же сопротивлению R
протекает постоянный ток, тогда мгновенная мощность постоянна:


.


Приравнивая энергии и , получим величину постоянного тока, оказывающего такое же тепловое действие, что и периодический ток, т.е. действующее значение периодического тока:


.


Аналогично записывают формулу для действующего значения напряжения.


Активная мощность Р -
этосреднее значение мгновенной мощности за период:


.


Наиболее распространенным периодическим током является синусоидальный ток. Это связано с тем, что периодические сигналы , встречающиеся в электротехнике, можно представить в виде суммы синусоидальных функций кратных частот (ряд Фурье) и синусоидальный режим является наиболее экономичным режимом в цепях (минимальные потери).


В стандартной форме синусоидальные токи и напряжения записывают следующим образом:


и


- и - амплитудные значения,


- - называется фазой и показывает состояние, в котором находится изменяющаяся величина.


- - угловая частота,


- - начальная фаза, т.е. фаза в момент начала отсчета времени. На графике начальную фазу определяют от момента перехода синусоиды с отрицательных значений к положительным до начала координат.



Два колебания одинаковой частоты совпадают по фазе, если у них одинаковые начальные фазы; сдвинуты по фазе, если у них разные начальные фазы. Синусоида с большей начальной фазой опережает синусоиду с меньшей начальной фазой. Если сдвиг фаз равен говорят, что синусоиды в противофазе. Если сдвиг фаз , то синусоиды в квадратуре.


Для синусоидальных колебаний имеем:







Интеграл от второго слагаемого =0 (см. вывод среднего значения).


В цепях синусоидального тока и напряжения мощность в каждый момент времени различна. Поэтому из равенства теплового действия выводят понятие активной мощности Р.


2. Элементы
R

,

L

,

C

в цепи синусоидального тока


Пусть через каждый элемент протекает синусоидальный ток .



Тогда, согласно компонентным уравнениям и с учетом синусоидальности тока получаем:


;


;



Напряжения на элементах в цепи синусоидального тока так же синусоидальны и имеют ту же частоту, но другие амплитуды и начальные фазы. Учитывая стандартную запись напряжения , получаем














R
L
C

Напряжение на сопротивлении совпадает с током по фазе, напряжение на емкости отстает от тока на 900
, напряжение на индуктивности опережает ток на 900
.


Определим мгновенную и активную мощности на каждом элементе:



;


;


.


для R



для L



для C



Таким образом, мгновенная мощность во всех элементах изменяется с двойной частотой тока. Однако мгновенная мощность в сопротивлении R
содержит еще постоянную составляющую, поэтому активная мощность получается больше нуля. Индуктивность и емкость активной мощности не потребляют: половину периода мощность поступает от внешней цепи, а во вторую половину периода эти элементы отдают мощность во внешнюю цепь. В те моменты времени, когда индуктивность потребляет активную мощность, емкость генерирует её и наоборот.


Так как сопротивление R
потре

бляет активную мощность, то его называют активным сопротивлением. Индуктивность и емкость активной мощности не потребляют, поэтому их называют реактивными сопротивлениями и обозначают соответственно [Oм] и [Oм].



Для расчета режима в цепи синусоидального тока можно записать систему уравнений по законам Кирхгофа, используя полученные соотношения между напряжением и током на элементах. Это будет система тригонометрических уравнений. Уравнения будут содержать синусоиды различной амплитуды и начальной фазы и необходимо проводить много тригонометрических преобразований, что не всегда удобно. Поэтому разработан специальный метод анализа режимов цепей синусоидального тока – метод комплексных величин или символический метод.


3.
Алгебра комплексных чисел


Комплексным числом называют пару чисел, изображающих вектор на комплексной плоскости. Будем изображать комплексное число заглавной буквой с чертой внизу (). Вводится мнимая единица:



Комплексное число может быть представлено в разных формах:


– показательная форма: - это вектор на комплексной плоскости, где - длина (модуль) вектора, - аргумент или фаза. Фазу всегда отсчитывают против часовой стрелки от положительного направления вещественной оси;


– алгебраическая форма: – это точка на комплексной плоскости, где - координаты по вещественной и мнимой осям, причем:



, ,


, если ,


=


, если <.


Переход от одной формы записи комплексного числа к другой:


.


Складывать комплексные числа предпочтительно в алгебраической форме либо геометрически по правилу параллелограмма:


Вычитать комплексные числа удобно в алгебраической форме либо геометрически по правилу параллелограмма (вектор разности направлен из конца вычитаемого в конец уменьшаемого):


Умножать и делить комплексные числа удобнее в показательной форме:


; .


Комплексные числа, не зависящие от времени, обозначают заглавными буквами с чертой внизу: , а комплексно сопряженные им числа обозначают еще и звездочкой сверху: это числа, у которых та же вещественная часть, а мнимая с обратным знаком.


Комплексные числа, которые являются функциями времени, обозначают заглавными буквами с точкой сверху: , а комплексно сопряженные им числа обозначают заглавными буквами со звездочкой сверху : это числа, у которых тот же модуль, но фаза с обратным знаком.


Так как , то умножить комплексное число на j
это значит, не изменяя его модуля, увеличить фазу на 900
или повернуть соответствующий вектор на 900
против часовой стрелки. Разделить на j
-
наоборот:


.


4. Символический метод


Пусть есть комплексное число с линейно изменяющимся во времени аргументом: . На комплексной плоскости это число представляет неизменный по длине вектор, вращающийся против часовой стрелки с постоянной скоростью w
.



Любую синусоидальную функцию времени можно представить в виде проекции на вещественную или мнимую ось соответствующего вращающегося вектора.



Проекция вектора на мнимую ось дает синусоидально изменяющуюся функцию времени:



Вводят специальное обозначение (символы):


- комплекс амплитудного значения тока или


- комплекс амплитудного значения напряжения. Они содержат информацию об амплитуде и начальной фазе синусоидального колебания.


Комплекс амплитудного значения деленный на, дает комплекс действующего значения:


и .


Комплекс амплитудного или комплекс действующего значения позволяют перейти к мгновенному значению, например:


;


.


5. Законы цепей в символической форме


1. Первый закон Кирхгофа


Алгебраическая сумма мгновенных значений токов ветвей, сходящихся в одном узле, равна нулю..


Подставим вместо каждого мгновенного значения тока его представление в виде комплекса амплитудного значения, тогда .


Так как в любой момент времени нулю равна сумма проекций вращающихся векторов, следовательно, нулю должна равняться сумма самих вращающихся векторов, т.е. получим . Так как , то сократим на нее и получим .


Алгебраическая сумма комплексов амплитудных значений токов ветвей, сходящихся в одном узле, равна нулю.


Поделив на , получим первый закон Кирхгофа для комплексов действующих значений.



2. Второй закон Кирхгофа


После аналогичных преобразований получим:


или .


Алгебраическая сумма комплексов амплитудных (действующих) значений напряжений на всех элементах контура, кроме ЭДС равна алгебраической сумме комплексов амплитудных (действующих) значений ЭДС этого же контура.


Однако для самих амплитудных и действующих значений законы Кирхгофа не выполняются.


Список литературы


1. Основы теории цепей. Учебник для вузов./ Г.В. Зевеке, П.А. Ионкин, А.В. Нетушил, С.В. Страхов.-5-е изд. перераб.-М.: Энергоатомиздат, 1989. 528 с.


2. Теория электрических цепей: Методические указания к лабораторным работам / Рязан. гос. радиотехн. акад.; Сост.: С.М. Милюков, В.П. Рынин; Под ред. В.П. Рынина. Рязань, 2002. 16 с.,2004. 20 с. (№3282, №3624)


3. Основы теории цепей: Методические указания к курсовой работе / Рязан. гос. радиотехн. акад.; Сост.: В.Н. Зуб, С.М. Милюков. Рязань, 2005. 16 с.


4. Теоретические основы электротехники. / Г.И. Атабеков, С.Д. Купалян, А.В. Тимофеев, С.С. Хухриков.-М.: Энергия, 1979. 424 с.


5. М.Р. Шебес. Теория линейных электрических цепей в упражнениях и задачах. М.: Высшая школа, 1990. 528 с.

Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Основы теории цепей

Слов:1426
Символов:12444
Размер:24.30 Кб.