Министерство образования Российской Федерации
Новгородский государственный университет имени Ярослава Мудрого
Кафедра '' Радиофизика и Электроника ''
ПРОХОЖДЕНИЕ АМПЛИТУДНО-МОДУЛИРОВАННЫХ КОЛЕБАНИЙ ЧЕРЕЗ ОДИНОЧНЫЙ КОНТУР И СИСТЕМУ СВЯЗАННЫХ колебательных контуров
Лабораторная работа по дисциплине
''РТЦиС''
Отчет
Проверил
преподаватель
______ Н.Н.Борисов
“___”________2004г.
Цель работы: аналитическое и экспериментальное исследование прохождения амплитудно-модулированного (АМ) колебания через одиночный колебательный контур и систему связанных колебательных контуров.
Собрали схему рабочей установки для исследование прохождения амплитудно-модулированного (АМ) колебания через одиночный колебательный контур
Рисунок 1. Рабочая схема.
Установили резонансную частоту контура равной несущей частоте АМ колебания с помощью конденсатора С1.
При частоте модулирующего сигнала равной 1 кГц выставили коэффициент модуляции mвх=0.5 на входе контура. Измерили mвых на выходе контура для Ω=1; 2.5; 5; 10; 20 кГц. Результаты измерений занесли в таблицу 1.
Таблица 1. Результаты измерений.
Ω ,кГц | 1 | 2.5 | 5 | 10 | 20 |
mвх | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
mвых | 0,5002 | 0,495 | 0,489 | 0,47 | 0,417 |
Рисунок 2. Осциллограмма входного напряжения при Ω =1кГц
Рисунок 3. Осциллограмма выходного напряжения при Ω =1кГц
Рисунок 4. Осциллограмма входного напряжения при Ω =2.5кГц
Рисунок 5. Осциллограмма выходного напряжения при Ω =2.5кГц
Рисунок 6. Осциллограмма входного напряжения при Ω =5кГц
Рисунок 7. Осциллограмма выходного напряжения при Ω =5кГц
Рисунок 8. Осциллограмма входного напряжения при Ω =10кГц
Рисунок 9. Осциллограмма выходного напряжения при Ω =10кГц
Рисунок 10. Осциллограмма входного напряжения при Ω =20кГц
Рисунок 11. Осциллограмма выходного напряжения при Ω =20кГц
Рисунок 12. Зависимость mвых от модулирующей частоты.
Собрали схему рабочей установки для исследование прохождения амплитудно-модулированного (АМ) колебания через систему связанных колебательных контуров.( Рисунок 13.)
Повторили предыдущие действия для системы связанных контуров при А=0.5; 1; 2.
Рисунок 13. Рабочая схема.
Таблица 2. Результаты измерений
Ω ,кГц | 1 | 2.5 | 5 | 10 | 20 |
mвх | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
mвых(А=0.5) | 0,499 | 0,498 | 0,493 | 0,476 | 0,474 |
mвых(А=1) | 0,498 | 0,495 | 0,487 | 0,47 | 0,347 |
mвых(А=2) | 0,5 | 0,499 | 0,493 | 0,476 | 0,46 |
Рисунок 14. Зависимость mвых от модулирующей частоты. (А=0.5)
Рисунок 15. Зависимость mвых от модулирующей частоты. (А=1)
Рисунок 16. Зависимость mвых от модулирующей частоты. (А=2)
Вывод: Экспериментально исследовали прохождение амплитудно-модулированного (АМ) колебания через одиночный колебательный контур и систему связанных колебательных контуров.
Спектр АМ колебания состоит из трех линий (-Ω+W,W,W+ Ω) при увеличении модулирующей частоты ширина спектра увеличивается. Коэффициент модуляции mвых в
Перемодуляция АМ колебания возможна при коэффициенте модуляции большем единицы.
Прохождение радиоимпульса через одиночный и систему связанных колебательных контуров
Лабораторная работа по дисциплине
''РТЦиС''
Цель работы: аналитическое и экспериментальное исследование прохождения радиоимпульса с прямоугольной огибающей через одиночный колебательный контур и систему двух связанных колебательных контуров.
Составили и нарисовали электрическую схему, позволяющую исследовать прохождение радиоимпульса через одиночный последовательный контур.
Настроили несущую частоту радиоимпульса на резонансную частоту контура. Установили частоту видеоимпульса равной 1 кГц.
Рисунок1.осциллограмма огибающей радиоимпульса на выходе контура.
Рисунок2.осциллограмма огибающей радиоимпульса на входе контура.
Измерить время установления колебаний τ0,9=35mkC
Расстроили контур изменением ёмкости С1. Измерить период колебательного процесса установления стационарного значения огибающей Тогиб =55 mkC
Измерили также время установления τ0,5 =21 mkC
Рисунок3.осциллограмма огибающей при ёмкости С1=5нФ.
Сравнили частоту огибающей с величиной расстройки контура
Настроили контур на частоту 50 кГц, установили частоту несущего радиоимпульса 50 кГц.
Засинхронизировали осциллограф передним фронтом радиоимпульса и установили скорость развёртки осциллографа такой, что бы на экране можно было наблюдать колебания высокой частоты в пределах длительности переднего фронта.
Зарисовали осциллограммы входного и выходного сигналов.
Рисунок4.осциллограмма выходного сигнала.
Рисунок5.осциллограмма выходного сигнала.
Засинхронизировали осциллограф задним фронтом импульса так, что бы на экране осциллографа можно было наблюдать свободные колебания в контуре после окончания действия радиоимпульса. Зарисовали осциллограмму свободных клебаний. По ней определить τК. За интервал τК принять итервал времени, где огибающая процесса уменьшится в ℮ раз. Причём интервал τК необходимо определить в числе периодов несущей частоты где , n- может быть дробным.
τК =14mkCn=0,7
Определить время спада τ0.1 сп свободных колебаний на уровне 0.1 от начального значения, причём .
Рисунок6. Осциллограмму свободных колебаний.
Полученную величину τК сравните с расчётной .
Исследование прохождения радиоимпульса через систему связанных контуров.
Зарисовали осциллограмму переднего фронта импульса(рис.7), измерили время установления колебаний τ0.9=128мкс при А=1
Рисунок7. Осциллограмма переднего фронта импульса (А=1)
Зарисовали осциллограмму переднего фронта импульса(рис.8), измерили время установления колебаний τ0.9=213мкс при А=0.5.
Рисунок8. Осциллограмма переднего фронта импульса (А=0.5)
Зарисовали осциллограмму переднего фронта импульса(рис.9), измерили время установления колебаний τ0.9=35мкс при А=2.
Рисунок9. Осциллограмма переднего фронта импульса (А=2)
Зарисовали осциллограммы спада свободных колебаний в контуре (рис.10,11,12) и измерили время τ0.1 сп(А) для трёх значений А(А=0.5; 1; 2).
τ0.1 сп(0,5) = 377мкс
τ0.1 сп(1) = 293мкс
τ0.1 сп(2) = 276мкс
Рисунок10. Осциллограмма свободных колебаний (А =0,5).
Рисунок11. Осциллограмма свободных колебаний (А =1).
Рисунок12. Осциллограмма свободных колебаний (А =2).
Измерили период изменения огибающей во время переходного процесса и во время спада свободных колебаний при А=2.
во время переходного процесса Тогиб =77мкС
во время спада свободных колебаний Тогиб =76мкС
Вывод: аналитически и экспериментально исследовали прохождения радиоимпульса с прямоугольной огибающей через одиночный колебательный контур и систему двух связанных колебательных контуров.