Генетика – наука сравнительно молодая. Лишь на рубеже 18-19 веков были сделаны попытки оценить наследственность людей. Мопертюи в 1750 году впервые предположил, что различные патологии могут передаваться по наследству. Затем в 19 веке были выявлены некоторые закономерности. Но официальной датой рождения генетики принято считать весну 1900 года, когда независимо друг от друга голландский ученый Г. де Фриз немецкий Корренс и австрийский ученый Чермак "переоткрыли" законы Менделеева, что и дало толчок к развитию генетических исследований. Уже в 1901-1903 годах Г. де Фризом была создана мутационная теория, постулаты которой справедливы и сегодня: мутации возникают внезапно, устойчивы, могут быть прямыми и обратными и, наконец, могут возникать повторно.
Генотипическая изменчивость
Генетика изучает процессы преемственности жизни на молекулярном, клеточным, организменном и популяционном уровне. Генетика человека говорит о законах наследственности и изменчивости у человека в норме и при патологиях. Так что же такое изменчивость? Генотипическая изменчивость – изменения, произошедшие в структуре генотипа и передаваемые по наследству. К этому типу изменчивости относят комбинативную и мутационную изменчивости, которые ведут к увеличению внутривидового разнообразие в природе. Предполагалось, что именно изменчивости таких типов мутаций и сыграли немаловажную роль в мировой эволюции.
Комбинативная изменчивость.
Комбинативная изменчивость возникла с появлением полового размножения, она связана с различными вариантами перекомбинации родительских задатков и является источником бесконечного разнообразия сочетаемых признаков. Так, дети, рожденные в разное время у одной родительской пары, похожи, но всегда отличаются рядом признаков. Кобинативная изменчивость обуславливается вероятностным участием гамет в оплодотворении, имеющих различные перекомбинации хромосом родителей. При этом минимальное число возможных сортов гамет у мужчин и женщин огромно, оно равно 223
(без учета кроссинговера). Поэтому вероятность рождения на земле двух одинаковых людей ничтожно мала.
Большой вклад в комбинативную изменчивость вносит как раз кроссинговер, приводящий к образованию новых групп сцепления благодаря рекомбинации аллелей. При этом возможное число генотипов (g) равно:
g=[r(r+1)] n
r – число аллелей
-------- n – число генов
2
Этот закон окончательно был сформулирован в 1908 английским математиком Харди и немецким врачом-биологм Венбергом. И теперь этот закон носит имя закон Харди-Венберга.
Мутационная изменчивость.
Мутационная изменчивость связана с процессом образования мутаций. Мутации – это внезапные скачкообразные стойкие изменения в структуре генотипа. Организмы у которых произошла мутация называются мутунтами. Мутационная теория была создана, как говорилось выше, Гуго де Фризом в 1901-1903 гг. На основных ее положениях строица современная генетика: мутации, дискретные изменения наследственности, в природе спонтанны, мутации передаются по наследству, встречаются достаточно редко и могут быть различных типов. В зависимости от того какой признак положен в основу, на сегоднешний день существует несколько систем классификации мутаций.
Классификация мутаций
1. По способу возникновения. Различают спонтанные и индуцированные мутации Спонтанные происходят в природе крайне редко с частотой 1-100 на миллион экземпляров данного гена. В настоящие время очевидно, что спонтанный мутационный процесс зависит как от внутренних, так и от внешних факторов, которые называют мутационным давлением среды.
Индуцированные мутации возникают при воздействии на человека мутагенами –факторами, вызывающими мутации. Мутагены же бывают трех видов:
· Физические ( радиация, электро – магнитное излучение, давление, температура и т.д.)
· Химические (цитостатики, спирты,фенолы и т.д.)
· Биологические ( бактерии и вирусы )
2. По отношению к зачатковому пути. Существуют соматические и генеративные мутации. Генеративные мутации возникают в репродуктивных тканях и поэтому не всегда выявляются. Для того, чтобы выявилась генеративная мутация, необходимо, чтобы мутантная гамета учавствовала в оплодотворении.
3. По адаптивному занчению. Выделяют положительные, отрицательные и нейтральные мутации. Эта классификация связана с оценкой жизнеспособности образовавшегося мутанта.
4. По изменению генотипа. Мутации бывают генные, хромосомные и геномные геномные.
5. По локализации в клетке. Мутации делятся на ядерные и цитоплазматические. Плазматические мутации возникают в результате мутаций в плазмогенах, находящихяс в митохондриях. Полагают, что именно они приводят к мужскому бесплодию. Причем такие мутации в основном наследуются по женской линии.
Генные мутации
Генные ( точковые ) мутации затрагивают, как правило, один или несколько нуклеотидов, при этом один нуклеотид может превратиться в другой, может выпасть(делеция), продублироваться, а группа нуклеотидов может развернутся на 180 градусов. Например, широко известен ген человека, ответственный за серповидно – клеточную анемию, который может привести к летальному исходу. Соответствующий нормальный ген кодирует одну из полипептидныз цепей гемоглобина. У мутантного гена нарушен всего один нуклеотид (ГАА на ГУА). В результате в цепи гемоглобина одна аминокислота заменена на другую( вместо глутамина – валин). Казалось бы ничтожное изменение, но оно влечет за собой роковые последствия: эритроцит деформируется, приобретая серповидно – клеточную форму, и уже не способен транспортировать кислород, что и приводит к гибели организма. Генные мутации приводят к изменению аминокислотной последовательности белка. Наиболее вероятное мутация генов происходит при спаривание тесно связанных организмов, которые унаследовали мутантный ген у общего предка. По этой причине вероятность возникновения мутации повышается у детей, чьи родители являются родственниками. Генные мутации приводят к таким заболеваниям, как амавротическая идиотия, альбинизм, дальтонизм и др.
Интересно, что значимость нуклеотидных мутаций внутри кодона неравнозначна: замена первого и второго нуклеотида всегда приводит к изменению аминокислоты, третий же обычно не приводит к замене белка. К примеру, "Молчащая мутация"- изменение нуклеотидной последовательности, которая приводит к образованию схожего кодона, в результате аминокилотная последовательность белка не меняется.
Хромосомные мутации
Хромосомные мутации приводят к изменению числа, размеров и организации хромосом, поэтому их иногда называют хромосомными перестройками. Хромосомные перестройки делятся на внутри- и межхромосомные. К внутрехромосмным относятся:
· Дубликация – один из участков хромосомы представлен более одного раза.
· Делеция – утрачивается внутренний участок хромосомы.
· Инверсия –повороты участка хромосомы на 180 градусов.
Межхромосомные перестройки (их еще называют транслокации) делятся на:
· Реципрокные – обмен участками негомологичных хромосом.
· Нереципрокные – изменение положения участка хромосомы.
· Дицентрические – слияние фрагментов негомологичных хромосом.
· Центрические – слияние центромер негомологичных хромосом.
Хромосомные мутации проявляются у 1% новорожденных. Однако интересно, исследования показали, что нестабильность соматических клеток здоровых доноров не исключение, а норма. В связи с этим была высказана гипотеза о том, что нестабильность соматических клеток следует рассматривать не только как патологическое состояние, но и как адаптивную реакцию организма на измененные условия внутренней среды. Хромосомные мутации могут обладать фенотипическими явлениями. Наиболее распостраненный пример - синдром "Кошачьего крика" (плачь ребенка напоминает мяукание кошки). Обычно носители такой делеции погибают в младенчестве. Хромосомные мутации часто приводят к паталогическим нарушениям в организме, но в то же время хромосомные перестройки сыграли одну из ведущих ролей в эволюции. Так, у человека 23 пары хромосом,
Геномные мутации
Главная отличительная черта геномных мутаций связана с нарушением числа хромосом в кариотипе. Эти мутации так же подразделяются на два вида: полиплоидные анеуплоидные.
Полиплоидные мутации ведут к изменению хромосом в кариотипе, которое кратно гаплоидному набору хромосом. Этот синдром впервые был лишь обнаружен в 60-ых годах. Вообще полиплодия характерна в основном для человека, а среди животных встречается крайне редко. При полиплоидии число хромосом в клетке насчитывается по 69 (триплодие) , а иногда и по 92 (тетраплодие) хромосомы. Такое изменение ведет практически к 100 % смерти зародыша. Триплодие имеет не только многочисленные пороки, но и приводит к потере жизнеспособности. Тетраплодие встречается еще реже, но так же зачастую приводит к летальному исходу.
Анеуплоидные же мутации приводят к изменению числа хромосом в кариотипе, некратное гаплоидному набору. В результате такой мутации возникают осыби с аномальным чилом хромосом. Как и триплодия, анеуплодия часто приводит к смерти еще на ранних этапах развития зародыша. Причиной же таких последствий является утрата целой группы сцепления генов в кариотипе.
В цело же, механизм возникновения геномных мутаций связан с патологией нарушения нормального расхождения хромосом в мейозе, в результате чего образуются аномальные гаметы, что и ведет к мутации. Изменения в организме связаны с присутствием генетически разнородных клеток. Такой процесс называется мозаицизм.
Геномные мутации одни из самых страшных. Они ведут к таким заболеваниям, как синдром Дауна (трисомия, возникает с частотой 1 больной на 600 новорожденных), синдром Клайнфельтера и др.
Спонтанные мутации
Мутации, помимо качественных свойств, характеризует и способ возникновения. Спонтанные (случайные) – мутации, возникающие при нормальных условиях жизни. Спонтанный процесс зависит от внешних и внутренних факторов ( биологические, химические, физические ). Спонтанные мутации возникают у человека в соматических и генеративных тканях. Метод определения спонтанных мутаций основан на том, что у детей появляется доминантный признак, хотя у его родителей он отсутствует. Проведенное в Дании исследование показали, что примерно одна из 24000 гамет несет в себе доминантную мутацию. Ученый же Холдейн рассчитал среднюю вероятность появления спонтанных мутаций, которая оказалась равна 5*10-5
за поколение. Другой ученый Курт Браун предложил прямой метод оценки таких мутаций, а именно: число мутаций разделить на удвоенное количество обследованных индивидов.
Индуцированные мутации.
Индуцированный мутагенез – это искусственное получение мутаций с помощью мутагенов различной природы. Впервые способность ионизирующих излучений вызывать мутации была обнаружена Г.А. Надсоном и Г.С. Филлиповым. Затем, проводя обширные исследования, была установлена радиобиологическая зависимость мутаций. В 1927 году американским ученым Джозефом Мюллером было доказано, что частота мутаций увеличивается с увеличением дозы воздействия. В конце сороковых годов открыли существование мощных химических мутагенов, которые вызывали серьезные повреждения ДНК человека для целого ряда вирусов. Одним из примеров воздействия мутагенов на человека может служить эндомитоз – удвоение хромосом с последующим делением центромер, но без расхождения хромосом.
Заключение
Мутационный процесс является главным источником изменений, приводящим к различным патологиям. Задачи науки на ближайшие время определяются как уменьшения генетического груза путем предотвращения или снижения вероятности мутаций и устранения возникших в ДНК изменений с помощью генной инженерии. Генная инженерия - новое направление в молекулярной биологии, появившееся в последние время, котоое может в будущем обратить мутации на пользу человеку, в частности, эффективно бороться с вирусами. Уже сейчас существуют вещества называемые антимутагены, которые приводят к ослаблению темпов мутирования. Успехи современной генетики находят применение в диагностики, профилактике и лечении ряда наследственных патологий . Так, в 1997 году в США была получена рекомбинативная ДНК. С помощью генной инженерии уже сконструированы искусственные гены инсулина, интерферона и других веществ.
Таблица. Приблизительная частота мутаций различных генов у человека.
Характер наследования |
Заболевание |
Частота мутаций |
Число мутаций на 10 в 6 гамет |
Аутосомно– доминантный |
Туберкулезный склероз |
8*10-4
|
800 |
Талассемия |
4*10-4
|
400 |
|
Ретинобластома |
2.3*10-5
|
23 |
|
Аниридия |
5*10-6
|
--- |
|
Аутосомно- рецессивный |
Альбинизм |
2.8*10-5
|
28 |
Цветовая слепота |
2.8*10-5
|
28 |
|
Ихтиоз |
1.1*10-5
|
11 |
|
Рецессивный |
Гемофилия |
3.2*10-5
|
32 |
Словарь терминов
· Альбинизм – дипегминтация кожи, волос, глаз. Отсутствие окраски, не меняющиеся с возрастом.
· Аллель – одно из возможных состояний гена, каждое из которых характеризуется уникальной последовательностью нуклеотидов.
· Анеуплодия – явление при котором клетки имеют несбалансированный набор хромосом.
· Доминантные аллели – аллели проявляющиеся всегда.
· Гамета – половая клетка, содержащая гаплоидный набор хромосом.
· Генетический груз - все нарушения генетической информации человека, вызывающие отрицательные реакции.
· Геном – совокупность генов в гаплоидной клетке.
· Генотип – совокупность ядерных генов организма.
· Деменция – одна из форм слабоумия.
· Мутаген – фактор, вызывающий мутацию.
· Негомологичные хромосомы – хромосомы, содержащие несходные гены.
· Рецессивный ген – ген, проявление которого подавляется другими аллелями данного гена.
· Фенотип – совокупность внешних признаков организма на данном этапе онтогенеза, формирующихся в результате взаимодействия генотипа с внешней средой.
· Экзоны – фрагменты прерывистого гена эукариот, несущие в себе иформацию о последовательности аминокислот в полипептиде.
Литература
· Основы генетики человека Н.Н.приходченко, Т.П.Шкурат. "Феникс" 1997г.
· Айала Ф., Кайгер Дж. Современная генетика 3 тома. М., "Мир",1988г.
· Гилберт С. Биология развития 3 томам., "Мир", 1993г.
· Головачев Г.Д. Наследственность человека., Т., "Наука", 1983г.
· Дубинин Н.П. Новое в современной генетики М, "Наука", 1989г.
· Грин Н., Стаут У., Тейлор Д., Биология 3 тома, М, "Мир", 1990г.
РЕФЕРАТ
по биологии
на тему
"Генотипическая изменчивость"
_______________________________________________________
Москва 1998 г.