Ось вже більше двох століть проблема походження Сонячної системи хвилює видатних мислителів нашої планети. Цією проблемою займалася, починаючи від філософа Канта і математика Лапласа, плеяда астрономів і фізиків XIX і XX сторіч. Їй віддав дань наш чудовий співвітчизник, людина різносторонньо талановита, Отто Юлієвич Шмідт. Та все ж людство ще дуже далеко від її рішення. Які тільки таємниці не були вирвані у природи за ці минулі два сторіччя! За останні десятиріччя XX століття істотно яснішало питання про шляхи еволюції зірок. І хоча деталі дивного процесу народження зірки з газопилової туманності ще далеко не ясні, учені тепер чітко уявляють, що з нею відбувається протягом мільярдів років подальшої еволюції. На жаль, питання про походження і еволюцію планетної системи, що оточує наше Сонце, далеко не так ясне.
На перший погляд здається дивним і навіть парадоксальним, що астрономи змогли дізнатися про космічні об'єкти, вельми видалені і спостережувані з великими труднощами, набагато більше, ніж про планети і Сонце, які (по астрономічних масштабах, розуміє) знаходяться у нас "під боком". Проте в цьому немає нічого дивного. Річ у тому, що астрономи спостерігають величезну кількість зірок, що знаходяться на різних стадіях еволюції. Вивчаючи зірки в скупченнях, вони можуть чисто емпірично встановити, як залежить темп еволюції зірок від початкових умов, наприклад маси. Якби не було цього обширного емпіричного матеріалу, питання про еволюцію зірок було б предметом більш менш безплідних спекуляцій, як це і було приблизно до 1950 р.
В абсолютно іншому положенні знаходяться дослідники походження і еволюції нашої планетної системи. Адже ми поки не можемо безпосередньо спостерігати такі системи навіть біля найближчих зірок. Якби це вдалося, і ми мали реальне уявлення, як виглядають планетні системи на різних етапах своєї еволюції або хоча б як сильно відрізняються одні планетні системи від інших, ця хвилююча проблема була б, поза сумнівом, вирішена в порівняно короткі терміни. Але поки ми спостерігаємо планетну систему, так би мовити, в єдиному екземплярі. Більш того, необхідно ще довести, що біля інших зірок є планетні системи. Учені вже намагалися це зробити, але не реально, а користуючись спостережуваними характеристиками зірок (не планет!). Навіть про власну планетну систему астрономи знають далеко не все. Зовсім недавно прозвучала інформація, що знайдена (тільки-тільки!) десята планета нашої Сонячної системи.
Чи значить це, що ми ще рішуче нічого не можемо сказати про походження Сонячної системи, окрім тривіального твердження, що вона якось утворилася не пізніше, ніж 5 млрд. років тому, тому що такий приблизно вік Сонця? Така песимістична точка зору так само мало обгрунтована, як і зайвий оптимізм адептів тієї або іншої космогонической гіпотези. Можна сказати, що дещо про походження сім'ї планет, що звертаються навкруги Сонця, ми вже знаємо. В усякому разі, круг можливих гіпотез про походження Сонячної системи зараз значно звузився.
Переходячи до викладу (з потреби вельми короткому) різних космогонічних гіпотез, що змінювали одна іншу протягом останніх двох сторіч, ми почнемо з гіпотези, вперше виказаної великим німецьким філософом Кантом і через декілька десятиріч незалежно запропонованою чудовим французьким математиком Лапласом. З подальшого буде видно, що істотні передумови цієї класичної гіпотези витримали випробування часом, і зараз в самих модерністських космогонічних гіпотезах ми легко можемо знайти основні ідеї гіпотези Канта – Лапласа.
Точки зору Канта і Лапласа у ряді важливих питань різко відрізнялися. Кант, наприклад, виходив з еволюційного розвитку холодної пилової туманності, в ході якого спершу виникло центральне масивне тіло – майбутнє Сонце, а потім вже планети, тоді як Лаплас рахував первинну туманність газової і дуже гарячіше, що знаходиться в стані швидкого обертання. Стискаючись під дією сили всесвітнього тяжіння, туманність, унаслідок закону збереження моменту кількості руху, оберталася все швидше і швидше. Через великі відцентрові сили, що виникають при швидкому обертанні в екваторіальному поясі, від нього послідовно відділялися кільця. Надалі ці кільця конденсувалися, утворюючи планети.
Таким чином, згідно гіпотезі Лапласа, планети утворилися раніше Сонця. Проте, не дивлячись на таку різку відмінність між двома гіпотезами, загальною їх найважливішою особливістю є уявлення, що Сонячна система виникла в результаті закономірного розвитку туманності. Тому і прийнято називати цю концепцію "гіпотезою Канта – Лапласа".
Вже в середині XIX сторіччя було ясно, що ця гіпотеза стикається з фундаментальною трудністю. Річ у тому, що наша планетна система, що складається з дев'яти (за останніми даними з десяти) планет вельми різних розмірів і маси, володіє однією чудовою особливістю. Йдеться про незвичайний розподіл моменту кількості руху Сонячної системи між центральним тілом – Сонцем і планетами.
Момент кількості руху є одна з найважливіших характеристик всякої ізольованої від зовнішнього світу механічної системи. Саме як таку систему ми можемо розглядати Сонце і оточуючу його сім'ю планет. Момент кількості руху може бути визначений як "запас обертання" системи. Це обертання складається з орбітального руху планет і обертання навкруги своїх осей Сонця і планет.
Математично "орбітальний" момент кількості руху планети щодо центру мас системи (вельми близького до центру Сонця) визначається як твір маси планети на її швидкість і на відстань до центру обертання, тобто Сонця. У разі сферичного тіла, яке ми вважатимемо твердим, що обертається, момент кількості руху щодо осі, що проходить через його центр, рівний 0,4 MVR, де M – маса тіла, V – його екваторіальна швидкість, R – радіус. Хоча сумарна маса всіх планет складає всього лише 1/700 сонячної, враховуючи, з одного боку, великі відстані від Сонця до планет і з іншою – малу швидкість обертання Сонця (швидкість обертання Сонця на його екваторі складає всього лише 2 км/с, що в 15 разів менше швидкості Землі на орбіті), ми одержимо шляхом простих обчислень, що 98% всього моменту кількості руху Сонячної системи пов'язане з орбітальним рухом планет і лише 2% – з обертанням Сонця навкруги осі. Момент кількості руху, пов'язаний з обертанням планет навкруги своїх осей, виявляється нехтуючий малим через порівняно малі маси планет і їх радіусів.
Знайдемо, наприклад, момент кількості руху Юпітера I. Маса Юпітера рівна M = 2 x 1030 г (тобто 10-3 маси Сонця), відстань від Юпітера до Сонця R = 7,8 x 1013 см (або 5,2 астрономічних одиниць), а орбітальна швидкість V = 1,3 x 106 см/с (близько 13 км/с). Звідси I = MVR = 190 x 1048. Значення моментів дані в системі одиниць CGS. В цих одиницях момент кількості руху Сонця, що обертається, рівний всього лише 6 x 1048. Таким чином, всі планети земної групи – Меркурій, Венера, Земля і марс – мають сумарний момент в 380 разів менший, ніж Юпітер. Левова частка моменту кількості руху Сонячної системи зосереджена в орбітальному русі планет-гігантів Юпітера і Сатурна.
З погляду гіпотези Лапласа, це вчинено незрозуміло. Насправді, в епоху, коли від первинної, швидко обертається туманності відділялося кільце, шари туманності, з яких згодом сконденсувалося Сонце, мали (на одиницю маси) приблизно такий же момент, як речовина кільця, що відділилося, оскільки кутові швидкості кільця і частин, що залишилися, були майже однакові. Оскільки маса кільця була значно менше маси основної частини туманності (протосонця), то повний момент кількості руху у кільця повинен бути багато менше ніж у протосонця. В гіпотезі Лапласа відсутній якій би то не було механізм передачі моменту від протосонця до кільця. Тому протягом всієї подальшої еволюції момент кількості руху протосонця, а потім і Сонця повинен бути значно більше, ніж у кілець і планет, що утворилися з них. Але цей висновок знаходиться в разючій суперечності з фактичним розподілом моменту кількості руху між Сонцем і планетами.
Для гіпотези Лапласа ця трудність виявилася непереборною. На зміну нею стали висуватися інші гіпотези. Не будемо їх тут навіть перераховувати – зараз вони представляють тільки історичний інтерес. Зупинимося лише на гіпотезі Джінса, що набула повсюдне поширення в першій третині минулого сторіччя. Ця гіпотеза в усіх відношеннях є повною
Згідно гіпотезі Джінса, початкова матерія, з якої надалі утворилися планети, була викинута з Сонця (яке на той час було вже достатньо "старим" і схожим на нинішнє) при випадковому проходженні поблизу нього деякої зірки. Це проходження було настільки близьким, що практично його можна розглядати як зіткнення. При такому дуже близькому проходженні завдяки приливним силам, що діяли зірки, що із сторони налетіла на Сонці, з поверхневих шарів Сонця був викинутий струмінь газу. Цей струмінь залишиться у сфері тяжіння Сонця і після того, як зірка піде від Сонця. Надалі струмінь сконденсується і дасть початок планетам.
Що можна сказати зараз з приводу цієї гіпотези, що володіла розумом астрономів протягом трьох десятиріч? Перш за все, вона припускає, що утворення планетних систем, подібних нашою Сонячною, є процес виключно маловірогідний. Насправді, зіткнення зірок, а також їх близькі взаємні проходження в нашій Галактиці можуть відбуватися надзвичайно рідко. Пояснимо це конкретним розрахунком.
Відомо, що наше Сонце по відношенню до найближчих зірок рухається з швидкістю близько 20 км/с. Навіть найближча до нас зірка – Проксима Центавра знаходиться від нас на відстані 4,2 світлові роки. Щоб подолати цю відстань, Сонце, рухаючись з вказаною швидкістю, повинне витратити приблизно 100 тис. років. Вважатимемо (що в даному випадку правильне) рух Сонця прямолінійним. Тоді вірогідність близького проходження (скажімо, на відстані трьох радіусів зірки) буде, очевидно, рівна відношенню тілесного кута, під яким видний із Землі збільшений в 3 рази диск зірки, до 4П. Можна переконатися, що дане відношення складає близько 10-15. Це означає, що за 5 млрд. років свого життя Сонце мало один шанс з десятків мільярдів зіткнутися або дуже зближуватися з якою-небудь зіркою. Оскільки в Галактиці налічується всього близько 150 млрд. зірок, та повна кількість таких близьких проходжень у всій нашій зоряній системі повинна бути близько 10 за останні 5 млрд. років.
Звідси витікає, що, якби гіпотеза Джінса була правильною, число планетних систем, що утворилися в Галактиці за 10 млрд. років її еволюції, можна було перерахувати буквально по пальцях. Оскільки це, мабуть, не відповідає дійсності і число планетних систем в Галактиці достатньо велике, гіпотеза Джінса виявляється неспроможною.
Неспроможність цієї гіпотези слідує також і з інших міркувань. Перш за все, вона страждає тим же фатальним недоліком, що і гіпотеза Канта – Лапласа: гіпотеза Джінса не в змозі пояснити, чому переважна частина моменту кількості руху Сонячної системи зосереджена в орбітальному русі планет. Математичні розрахунки, виконані свого часу Н.Н. Парійським, показали, що при всіх випадках в рамках гіпотези Джінса утворюються планети з дуже маленькими орбітами. Ще раніше на цю класичну космогоническую трудність стосовно гіпотези Джінса вказав американець Рессел.
Нарешті, нізвідки не витікає, що викинутий з Сонця струмінь гарячого газу може сконденсуватися в планети. Навпаки, розрахунки ряду відомих астрофізиків, зокрема Лаймана Спітцера, показали, що речовина струменя розсіється в навколишньому просторі і конденсації не буде. Т.ч., космогонічна гіпотеза Джінса виявилася повністю неспроможною. Це стало очевидним вже в кінці тридцятих років минулого сторіччя.
Тим більше дивним представляється відродження ідеї Джінса на новій основі, яке відбулося в останні десятиріччя минулого століття. Якщо в первинному варіанті гіпотези Джінса планети утворилися з газового згустку, викинутого з Сонця приливними силами при близькому проходженні мимо нього зірки, то новітній варіант, Вулфсоном, що розвивається, припускає, що газовий струмінь, з якого утворилися планети, був викинутий з проходячого мимо Сонця космічного об'єкту. Як останнє приймається вже не зірка, а протозірка – рихлий об'єкт величезних розмірів (в 10 разів перевищуючий радіус нинішньої земної орбіти) і порівняльно невеликої маси ~ 0,25 M Сонця. Пропрацювала схема такого "зіткнення", заснована на точних розрахунках. В цьому випадку протозірка повинна знаходитися на гіперболічній орбіті навкруги Сонця. Все явище близького проходження протозірки займає близько 30 років. В результаті деформується поверхня протозірки під впливом приливних сил і утворюються різні орбіти із захоплених Сонцем окремих шматків протозвездного згустка. Розрахунки показують, що деякі орбіти так само видалені від Сонця, як орбіта Юпітера і навіть далі – до 30 астрономічних одиниць. Т.ч., новітня модифікація гіпотези Джінса знімає основну трудність, з якою зіткнувся її первинний варіант – пояснення аномально великого обертального моменту планет. В схемі Вулфсона це досягається припущенням про великі розміри об'єкту, що "стикається" з Сонцем, і його порівняльно невеликій масі. З розрахунків також видно, що первинні орбіти згустків були вельми ексцентричні. Оскільки явно не весь захоплений Сонцем газ зміг конденсуватися в планети, навкруги згустків, що рухаються, повинне було утворитися деяке газове середовище, яке гальмувало б їх рух. При цьому, як відомо, спочатку ексцентричні орбіти поступово ставатимуть круговими. На це буде потрібно порівняно мало часу – близько декількох мільйонів років. Кожний такий згусток досить швидко еволюціонуватиме в протопланету. Обертання протопланет може бути обумовлено дією приливних сил, витікаючих від Сонця. В рамках цієї моделі можна також зрозуміти походження супутників планет. Останні відділяються від протопланет при стисненні через їх несиметричну фігуру. Слід зазначити, що ця гіпотеза порівняно легко пояснює походження великих планет і їх супутників. Для пояснення планет земної групи необхідно привернути нові уявлення.
Гіпотеза Джінса в модифікації Вулфсона заслуговує уваги. Вона, по суті, зв'язує утворення планет з утворенням зірок. Останні утворюються з міжзоряного газопилового середовища групами в так званих зоряних асоціаціях. В таких групах, як показують нагляди, спершу утворюються порівняно масивні зірки, а потім всякі "зоряні дрібні гроші", які еволюціонують в карлики. Це добре узгоджується з гіпотезою Джінса – Вулфсона. Розрахунки показують, проте, що якщо цей механізм був би єдиною причиною утворення зоряних систем, то їх кількість в Галактиці була б вельми мало (одна планетна система, приблизно, на 100 тис. зірок), хоча і не так катастрофічно мало, як в первинній гіпотезі Джінса. По суті, це є єдиним уразливим пунктом сучасної модифікації гіпотези Джінса. Якщо з достовірністю буде доведено, що біля хоча б деяких найближчих до нас зірок є планетні системи, ця гіпотеза буде остаточно похована.
Вище вже було згадано, що видатний радянський вчений О.Ю. Шмидт в 1944 р. запропонував свою теорію походження Сонячної системи. Согласно О.Ю. Шмідту наша планетна система утворилася з речовини, захопленої з газопилової туманності, через яку ніколи проходило Сонце, вже тоді мало майже сучасний вигляд. При цьому ніяких труднощів з обертальним моментом планет не виникає, оскільки первинний момент речовини хмари може бути скільки завгодно великим. Починаючи з 1961 р. цю гіпотезу розвивав англійський космогонист Літтлтон, який вніс в неї істотні поліпшення. неважко бачити, що блок-схема "аккреціонної" гіпотези Шмідта – Літтлтона співпадає з блок-схемою "гіпотези захоплення" Джінса – Вулфсона. В обох випадках майже сучасне Сонце стикається з більш менш рихлим космічним об'єктом, захоплюючи частини його речовини. Слідує, втім, помітити, що для того, щоб Сонце захопило достатньо багато речовини, його швидкість по відношенню до туманності повинна бути дуже маленькою, близько ста метрів в секунду. Якщо врахувати, що швидкість внутрішніх рухів елементів хмари повинна бути не меншою, то, по суті, йдеться про "застрягле" в хмарі Сонце, яке, швидше за все, повинне мати загальне з хмарою походження. Тим самим утворення планет зв'язується з процесом звездообразования. Є гіпотези, в яких планети і Сонце утворилися з єдиної "сонячної" туманності. По суті, йдеться про подальший розвиток гіпотези Канта – Лапласа.