Показатели вариации.
1. Понятие вариации и роль ее изучения в статистических исследованиях.
2. Измерители вариации.
3. Прямой способ расчета показателей вариации.
4. Свойства дисперсии и среднего квадратического отклонения.
5. Упрощенный способ расчета дисперсии и средне квадратического отклонения.
6. Относительные показатели вариации.
7. Стандартизация данных.
8. Моменты распределения.
9. Показатели асимметрии и эксцесса.
10. Средняя арифметическая и дисперсия альтернативного признака.
1. Понятие вариации и роль ее изучения в статистических исследованиях.
Вариация
– это колеблемость значений признака у отдельных единиц совокупности.
Наличию вариации обязана своим появлением статистика. Большинство статистических закономерностей проявляется через вариацию. Изучая вариацию значений признака в сочетании с его частотными характеристиками, мы обнаруживаем закономерности распределения (например: население по возрасту, студентов по уровню оценок).
Рассматривая вариацию одного признака параллельно с изменением другого, мы обнаруживаем взаимосвязи между этими признаками или их отсутствие (например: зависимость между торговой площадью и товарооборотом).
Вариации в статистике проявляются двояко, либо через изменения значений признака у отдельных единиц совокупности, либо через наличие или отсутствие изучаемого признака у отдельных единиц совокупности.
Изучение вариации в статистике имеет как самостоятельную цель, так и является промежуточным этапом более сложных статистических исследований.
2. Измерители вариации.
Простейшим показателем вариации является размах колебаний
: .
Достоинство этого показателя простота расчета, возможность использования для оценки вариации однородных совокупностей. Недостаток – неприемлемость для неоднородных совокупностей с редкими выбросами крайних значений признака.
Частично недостатки этого показателя устраняет межквартельный размах
: . Однако, он характеризует вариацию только половины совокупности.
Для учета колеблемости всех значений признака применяют показатели среднего линейного отклонения, дисперсии и средне квадратического отклонения.
Средне линейное отклонение
– среднее значение отклонений всех вариантов ряда от средней арифметической (иногда от моды или медианы):
- для несгруппированных данных;
- для сгруппированных данных.
Аналогичным по смыслу среднему линейному отклонению является показатель дисперсии и рассчитываемый на его основе показатель средне квадратического отклонения.
Дисперсия
– рассеивание, данный показатель характеризует рассеивание значений признака относительно его средней величины.
- для несгруппированных данных;
- для сгруппированных данных.
Дисперсия
– средне квадратическое отклонение всех вариантов ряда от средней арифметической. Если извлечь квадратный корень из дисперсии, получим средне квадратическое отклонение
.
- для несгруппированных данных;
- для сгруппированных данных.
Несмотря на логическое сходство, дисперсия является более чувствительной к вариации и, следовательно, чаще применяемый показатель.
3. Прямой способ расчета показателей вариации.
Расчет показателей вариации
заработной платы работников завода.
Группы со среднемесячной з/п, руб. |
Число раб-в, |
|
|
|
|
|
|
До 1500 |
30 |
750 |
22500 |
1909,09 |
57272,7 |
3644628 |
109338843 |
1501-3000 |
75 |
2250 |
168750 |
409,09 |
30681,8 |
167355 |
12551653 |
3001-4500 |
45 |
3750 |
168750 |
1090,91 |
49090,9 |
1190083 |
53553719 |
Свыше 4501 |
15 |
5250 |
78750 |
2590,91 |
38863,6 |
6712810 |
100692149 |
Итого |
165 |
438750 |
175909 |
276136364 |
Заработная плата каждого из работников в среднем отклоняется от средне заработной платы на 1066,12 руб.
Средне квадратическое отклонение заметно больше, чем аналогичный ему по смыслу среднее линейное отклонение.
4. Свойства дисперсии и среднего квадратического отклонения.
Так же как и средняя дисперсия обладает рядом свойств, имеющих важное значение для понимания сущности этого показателя, методологии его расчета и практического использования для разработки более совершенных статистических методов.
Свойства дисперсии и средне квадратическое отклонение:
1) Если все варианты ряда уменьшить или увеличить на постоянное число, то величина дисперсии и средне квадратического отклонения не изменится. ;
2) Если все варианты ряда умножить или разделить на постоянное число, дисперсия соответственно увеличится или уменьшится в квадрат этого числа раз, а средне квадратическое отклонение в это число раз. ;
3) Если частоты ряда уменьшить или увеличить в постоянное число раз, то дисперсия и средне квадратическое отклонение от этого не изменится;
4) Дисперсия равна среднему квадрату вариантов ряда минус квадрат средней арифметической. ;
5) Общая дисперсия равна средней арифметической из частных дисперсий (внутригрупповых дисперсий) плюс дисперсии частных средних (межгрупповые дисперсии). Это свойство называется правилом сложения дисперсий
, которое широко применяется в выборочном методе, методе измерений взаимосвязей явлений, а так же дисперсионном анализе.
- общая дисперсия;
- частная дисперсия;
- средняя из частных дисперсий, - численность соответствующей группы;
- межгрупповая дисперсия;
5. Упрощенный способ расчета дисперсии и средне квадратического отклонения.
Свойства дисперсии используются для упрощения методики ее расчета. В условиях развитой вычислительной техники данный способ имеет, прежде всего, иллюстративный характер и помогает понять сущность этого показателя.
Упрощенный способ расчета дисперсии и средне квадратического отклонения (метод расчета от условного нуля).
Среднемесячная з/п работников, руб., |
|
|
|
|
|
|
750 |
30 |
- 1 500 |
-1 |
2 |
-2 |
2 |
2 250 |
75 |
0 |
0 |
5 |
0 |
0 |
3 750 |
45 |
1 500 |
1 |
3 |
3 |
3 |
5 250 |
15 |
3 000 |
2 |
1 |
2 |
4 |
Итого |
11 |
3 |
9 |
А=2250; k=1500; с=15
6. Относительные показатели вариации.
Абсолютные измерители вариации (дисперсия, средне квадратическое отклонение) ограниченно пригодны для сравнительного анализа вариаций различных совокупностей.
Для цели сравнительного анализа применяют относительные показатели, коэффициенты вариации
. Наиболее распространенной формой коэффициентов вариации является , он показывает, какой процент от средней арифметической составляет среднее квадратическое отклонение.
Вместо средне квадратического в числителе коэффициента вариации иногда используют среднее линейное отклонение .
Если среднее линейное отклонение определялось относительно медианы или моды, то соответствующие показатели вариации будут выглядеть , .
Коэффициенты вариации определенные по различным основаниям не одинаковы, поэтому, сопоставляя вариации разных совокупностей, нужно использовать коэффициенты вариации, рассчитанные по одной и той же величине.
Коэффициент вариации является так же количественной мерой однородности совокупности. Принято считать, что если , то совокупность количественно однородна. Чем меньше, тем лучше.
7. Стандартизация данных.
Коэффициенты вариации являются сводными оценками вариаций различных совокупностей. Однако они не позволяют сопоставить между собой значения признака у отдельных или групп единиц разных совокупностей.
Для подобных сравнений прибегают к стандартизации вариантов разных совокупностей по формулам:
, где , - это стандартизированные значения вариантов ряда x и y соответственно. В процессе стандартизации мы переходим от измерения вариантов в натуральных или стоимостных единицах к их измерению величинами соответствующих средне квадратических отклонений.
Пример
: Стандартизация данных о доходах на одного члена семьи и среднедушевом потреблении мяса.
Доход на одного члена семьи, тыс. руб./год, |
Среднедушевое потребление мяса, |
|
|
|
|
|
|
60,7 |
12,3 |
-97,5 |
-25,6 |
9 506,25 |
655,36 |
-1,28 |
-1,31 |
84,2 |
19,1 |
-74 |
-18,8 |
5 476,00 |
353,44 |
-0,97 |
-0,96 |
112,4 |
23,1 |
-45,8 |
-14,8 |
2 097,64 |
219,04 |
-0,60 |
-0,76 |
144,5 |
35,6 |
-13,7 |
-2,3 |
187,69 |
5,29 |
-0,18 |
-0,12 |
180,1 |
49,5 |
21,9 |
11,6 |
479,61 |
134,56 |
0,29 |
0,59 |
240,9 |
57,3 |
82,7 |
19,4 |
6 839,29 |
376,36 |
1,09 |
0,99 |
284,6 |
68,4 |
126,4 |
30,5 |
15 976,96 |
930,25 |
1,66 |
1,56 |
1107,4
|
265,3
|
40 563,44
|
2 674,30
|
При стандартизации сгруппированных данных наряду с масштабированием вариантов ряда величинами соответствующих средне квадратических отклонений частоты этих рядов пересчитываются в частости.
Стандартизацию данных проводят, когда варианты сравниваемых рядов отличаются единицами измерения и порядком.
Стандартизация является важнейшим статистическим промежуточным этапом.
Стандартизация используется так же хорошо в теории выборочного метода.
8. Моменты распределения.
Моменты распределения
составляют алгоритмическую основу многих статистических методов. Различают:
- Произвольные (общий случай);
- Начальные;
- Центральные;
- Стандартные (частный случай).
Выделяют:
- Взвешенные;
- Невзвешенные.
Произвольным моментом
k
-го порядка
называется среднее значение k-ой степени отклонения всех вариантов ряда от произвольного постоянного числа.
- для несгруппированных данных;
- для сгруппированных данных.
При этом k принимает целочисленное значение от 1 до 4.
Если А=0
, то произвольный момент преобразуется в начальный момент
.
- для несгруппированных данных;
при k=1 M1
=
при k=2 M2
=
- для сгруппированных данных.
Если А=, произвольный момент преобразуется в центральный момент распределения
.
- для несгруппированных данных;
- для сгруппированных данных.
При k=1 M1
=0
При k=2 M2
=
Стандартные моменты
это начальные моменты из стандартных отклонений.
- для несгруппированных данных;
- для сгруппированных данных.
Стандартный момент k-го порядка это отношение центрального момента того же порядка к средне квадратическому отклонению в k-ой степени.
Так же как средняя арифметическая величина и дисперсия, центральные и стандартные моменты обладают рядом свойств, которые по сути ближе всего к свойствам дисперсии.
9. Показатели асимметрии и эксцесса.
При анализе распределений помимо графического изображения характер распределения можно выяснить, рассчитывая такие показатели, как асимметрия и эксцесс.
В качестве показателя асимметрии
используют стандартный момент 3-го порядка. Если распределение симметрично относительно средней то показатель асимметрии равен нулю.
Если показатель асимметрии больше 0, то есть преобладают положительные отклонения от среднего, то наблюдается правосторонняя асимметрия
, то есть преобладание в совокупности вариантов ряда превышающих среднюю.
Если же показатель асимметрии меньше 0, налицо левосторонняя асимметрия
, то есть превышение численности вариантов ряда меньше чем средняя.
Показатель эксцесса
характеризует степень колеблемости исходных данных, чем сильнее вариация, тем более пологой является кривая распределения и наоборот, чем однороднее совокупность, тем в большей степени варианты ряда сконцентрированы около средней и тем более островершинней будет кривая распределения.
В качестве эталона высоты распределения в статистике принимается кривая нормального распределения. Доказано, что стандартный момент 4-го порядка у этой кривой равен 3.
10. Средняя арифметическая и дисперсия альтернативного признака.
Альтернативный признак
– тот которым обладает или не обладает единица совокупности.
Наличие альтернативного признака обозначают 1, а отсутствие – 0. Если численность совокупности – N, а M – число единиц, обладающих изучаемым признаком, то - доля единиц, обладающих изучаемым признаком. Соответственно - доля единиц таким признаком не обладающих.
Предположим
|
|
1 |
p |
0 |
q |
1 |
p+q=1
Средняя арифметическая альтернативного признака равна p.
Дисперсия альтернативного признака .
Пример
: N=10, M=4
N-M=6
Максимальное значение дисперсии для неоднородных совокупностей .