РефератыМаркетингСтСтатистические методы исследования

Статистические методы исследования

ФЕДЕРАЛЬНОЕ АНЕНСТВО ПО ОБРАЗОВАНИЮ


ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ


ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ


«ЮГОРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»


ИНСТИТУТ ДОПОЛНИТЕЛЬНОГО ОБРАЗОВАНИЯ


ПРОФЕССИОНАЛЬНАЯ ПЕРЕПОДГОТОВКА ПО ПРОГРАММЕ


«ГОСУДАРСТВЕННОЕ И МУНИЦИПАЛЬНОЕ УПРАВЛЕНИЕ»


РЕФЕРАТ


По дисциплине: «Статистика»


на тему:


«Статистические методы исследования»


Выполнила:


Ханты-Мансийск


2010


Содержание


Введение


1. Методы статистического исследования.


1.1. Метод статистического наблюдения


1.2. Сводка и группировка материалов статистического наблюдения


1.3. Абсолютные и относительные статистические величины


1.4. Вариационные ряды


1.5. Выборочный метод


1.6. Корреляционный и регрессионный анализ


1.7. Ряды динамики


1.8. Статистические индексы


Заключение


Список использованной литературы



Введение


Полная и достоверная статистическая информация является тем необходимым основанием, на котором базируется процесс управления экономикой. Вся информация, имеющая народнохозяйственную значимость, в конечном счете, обрабатывается и анализируется с помощью статистики.


Именно статистические данные позволяют определить объемы валового внутреннего продукта и национального дохода, выявить основные тенденции развития отраслей экономики, оценить уровень инфляции, проанализировать состояние финансовых и товарных рынков, исследовать уровень жизни населения и другие социально-экономические явления и процессы. Овладение статистической методологией - одно из условий познания конъюнктуры рынка, изучения тенденций и прогнозирования, принятия оптимальных решений на всех уровнях деятельности.


Статистическая наука - это отрасль знаний, изучающая явления общественной жизни с их количественной стороны в неразрывной связи с их качественным содержанием в конкретных условиях места и времени. Статистическая практика - это деятельность по сбору, накоплению, обработке и анализу цифровых данных, характеризующих все явления в жизни общества.


Говоря о статистике следует помнить, что цифры в статистике не абстрактные, а выражают глубокий экономический смысл. Каждый экономист должен уметь пользоваться статистическими цифрами, анализировать их, уметь использовать для обоснования своих выводов.


Статистические законы действуют в пределах времени и места, в которых они обнаружены.


Окружающий мир состоит из массовых явлений. Если отдельный факт зависит от законов случая, то масса явлений подчиняется закономерностям. Для обнаружения этих закономерностей используется закон больших чисел.


Для получения статистической информации органы государственной и ведомственной статистики, а также коммерческие структуры проводят различного рода статистические исследования. Процесс статистического исследования включает три основные стадии: сбор данных, их сводка и группировка, анализ и расчет обобщающих показателей.


От того, как собран первичный статистический материал, как он обработан и сгруппирован в значительной степени зависят результаты и качество всей последующей работы, а в конечном итоге при нарушениях могут привести к абсолютно ошибочным выводам.


Сложной, трудоемкой и ответственной является заключительная, аналитическая стадия исследования. На этой стадии рассчитываются средние показатели и показатели распределения, анализируется структура совокупности, исследуется динамика и взаимосвязь между изучаемыми явлениями и процессами.


На всех стадиях исследования статистика использует различные методы. Методы статистики - это особые примы и способы изучения массовых общественных явлений.


На первой стадии исследования применяются методы массового наблюдения, собирается первичный статистический материал. Основное условие - массовость, т.к. закономерности общественной жизни проявляются в достаточно большом массиве данных в силу действия закона больших чисел, т.е. в сводных статистических характеристиках случайности взаимопогашаются.


На второй стадии исследования, когда собранная информация подвергается статистической обработке, используется метод группировок. Применение метода группировок требует непременного условия - качественной однородности совокупности.


На третьей стадии исследования проводится анализ статистической информации с помощью таких методов как метод обобщающих показателей, табличный и графический методы, методы оценки вариации, балансовый метод, индексный метод.


Аналитическая работа должна содержать элементы предвидения, указывать на возможные последствия складывающихся ситуаций.


Руководство статистикой в стране осуществляет Государственный комитет Российской Федерации по статистике. Как федеральный орган исполнительной власти он осуществляет общее руководство статистикой в стране, предоставляет официальную статистическую информацию Президенту, Правительству, Федеральному Собранию, федеральным органам исполнительной власти, общественным и международным организациям, разрабатывает статистическую методологию, координирует статистическую деятельность федеральных и региональных организаций исполнительной власти, осуществляет анализ экономико-статистической информации, составляет национальные счета и делает балансовые расчеты.


Система органов статистики в РФ образована в соответствии с административно территориальным делением страны. В республиках, входящих в РФ, имеются Республиканские комитеты. В автономных округах, краях, областях, в Москве и Санкт-Петербурге действуют Государственные комитеты по статистике.


В районах (городах) - управления (отделы) государственной статистики. Кроме государственной существует еще ведомственная статистика (на предприятиях, ведомствах, министерствах). Она обеспечивает внутренние потребности в статистической информации.


Цель данной работы – рассмотреть статистические методы исследования.
1. Методы статистического исследования

Между наукой-статистикой и практикой существует тесная взаимосвязь: статистика использует данные практики, обобщает и разрабатывает методы проведения статистических исследований. В свою очередь в практической деятельности применяются теоретические положения статистической науки для решения конкретных управленческих задач. Знание статистики необходимо современному специалисту для принятия решений в условиях стохастики (когда анализируемые явления подвержены влиянию случайностей), для анализа элементов рыночной экономики, в сборе информации, в связи с увеличением числа хозяйственных единиц и их типов, аудите, финансовом менеджменте, прогнозировании.


Для изучения предмета статистики разработаны и применяются специфические приемы, совокупность которых образует методологию статистики (методы массовых наблюдений, группировок, обобщающих показателей, динамических рядов, индексный метод и др.). Применение в статистике конкретных методов предопределяется поставленными задачами и зависит от характера исходной информации. При этом статистика опирается на такие диалектические категории, как количество и качество, необходимость и случайность, причинность, закономерность, единичное и массовое, индивидуальное и общее. Статистические методы используются комплексно (системно). Это обусловлено сложностью процесса экономико-статистического исследования, состоящего из трех основных стадий: • первая - сбор первичной статистической информации; • вторая - статистическая сводка и обработка первичной информации; • третья - обобщение и интерпретация статистической информации.


Общей методологией изучения статистических совокупностей является использование основных принципов которыми руководствуются в любой науке. К этим принципам, как к своего рода началам относятся следующие:


1. объективность изучаемых явлений и процессов;


2. выявление взаимосвязи и системности в которых проявляется содержание изучаемых факторов;


3. целеполагание, т.е. достижение поставленных целей со стороны исследователя, изучающего соответствующие статистические данные.


Это выражается в получении сведений о тенденциях, закономерностях и возможных последствиях развития изучаемых процессов. Знание закономерностей развития социально-экономических процессов, интересующих общество, имеет важное практическое значение.


К числу особенностей статистического анализа данных следует отнести метод массового наблюдения, научной обоснованности качественного содержания группировок и его результатов, вычисление и анализ обобщенных и обобщающих показателей изучаемых объектов.


Что касается конкретных методов экономической, промышленной или статистики культуры, населения, национального богатства и т.п., то здесь могут быть свои специфические методы сбора, группировки и анализа соответствующих совокупностей (суммы фактов).


В экономической статистике, например, широко применяется балансовый метод как наиболее распространенный метод взаимной увязки отдельных показателей в единой системе экономических связей в общественном производстве. К методам применяемым в экономической статистике также относятся составление группировок, исчисление относительных показателей (процентное соотношение), сравнения, исчисление различных видов средних величин, индексов и т.п.


Метод связующих звеньев состоит в том, что два объемных, т.е. количественных показателя сопоставляются на основе существующего между ними отношения. Например, производительность труда в натуральных показателях и отработанного времени, или объем перевозок в тоннах и средней дальности перевозок в км.


При анализе динамики развития народного хозяйства основным методом выявления этой динамики (движения) является индексный метод, методы анализа временных рядов.


При статистическом анализе основных экономических закономерностей развития народного хозяйства важным методом статистики является вычисление тесноты связей между показателями с помощью корреляционного и дисперсионного анализа и др.


Кроме названных методов широкое распространение получили математико-статистические методы исследования которые расширяются по мере движения масштабов применения ЭВМ и создания автоматизированных систем.


Этапы статистического исследования:


1. Статистическое наблюдение – массовый научно организованный сбор первичной информации об отдельных единицах изучаемого явления.


2. Группировка и сводка материала – обобщение данных наблюдения для получения абсолютных величин (учетно-оценочных показателей) явления.


3. Обработка статистических данных и анализ результатов для получения обоснованных выводов о состоянии изучаемого явления и закономерностях его развития.


Все этапы статистического исследования тесно связаны друг с другом и одинаково важны. Недостатки и ошибки, возникающие на каждой стадии, сказываются на все исследовании в целом. Поэтому правильное использование специальных методов статистической науки на каждом этапе позволяет получить достоверную информацию в результате статистического исследования.


Методы статистического исследования:


1. Статистическое наблюдение


2. Сводка и группировка данных


3. Расчет обобщающих показателей (абсолютные, относительные и средние величины)


4. Статистические распределения (вариационные ряды)


5. Выборочный метод


6. Корреляционно-регрессионный анализ


7. Ряды динамики


8. Индексы


Задача статистики – исчисление статистических показателей и их анализ, благодаря чему управляющие органы получают всестороннюю характеристику управляемого объекта, будь то вся национальная экономика или отдельные ее отрасли, предприятия и их подразделения. Управлять социально-экономическими системами нельзя, не располагая оперативной, достоверной и полной статистической информацией.


1.1. Метод статистического наблюдения


Статистическое наблюдение
- это планомерный, научно-организованный и, как правило, систематический сбор данных о явлениях общественной жизни. Оно осуществляется путем регистрации заранее намеченных существенных признаков с целью получения в дальнейшем обобщающих характеристик этих явлений.


Например, при проведении переписи населения о каждом жителе страны записываются сведения о его поле, возрасте, семейном положении, образовании и др., а затем статистические органы определяют на основе этих сведений численность населения страны, его возрастную структуру, размещение по территории страны, семейный состав и другие показатели.


К статистическому наблюдению предъявляются следующие требования: полнота охвата изучаемой совокупности, достоверность и точность данных, их однообразие и сопоставимость.


Формы, виды и способы статистического наблюдения

Статистическое наблюдение осуществляется в двух формах: отчетность и специально организованное статистическое наблюдение.


Отчетностью
называют такую организационную форму статистического наблюдения, при которой сведения поступают в статистические органы от предприятий, учреждений и организаций в виде обязательных отчетов об их деятельности.


В отчетах содержатся основные учетно-статистические данные о деятельности предприятий, учреждений и организаций всех форм собственности.


Отчетность может быть общегосударственной и внутриведомственной.


Общегосударственная - поступает в вышестоящие органы и в органы государственной статистики. Она необходима для целей обобщения, контроля, анализа и прогнозирования.


Внутриведомственная - используется в Министерствах и ведомствах для оперативных нужд.


Отчетность утверждается Госкомстатом РФ. Отчетность составляется на основании первичного учета. Особенность отчетности в том, что она обязательна, документально обоснована и юридически подтверждена подписью руководителя.


Специально-организованное статистическое наблюдение
- наблюдение, организуемое с какой-нибудь особой целью для получения сведений, которых нет в отчетности, или для проверки и уточнения данных отчетности. Это перепись населения, скота, оборудования, всевозможные единовременные учеты. Как, например, бюджетные обследования домашних хозяйств, опросы общественного мнения и т.п.


Виды статистического наблюдения
можно сгруппировать по двум признакам: по характеру регистрации фактов и по охвату единиц совокупности.


По характеру регистрации
фактов статистическое наблюдение может быть: текущим
или систематическим и прерывным
.


Текущее наблюдение - это непрерывный учет, например, производства продукции, отпуск материала со склада и т.д., т.е. регистрация осуществляется по мере совершения факта.


Прерывное наблюдение может быть периодическим, т.е. повторяющимся через определенные промежутки времени. Например, перепись скота на 1 января или регистрация цен на рынке на 22 число каждого месяца. Единовременное наблюдение организуется по мере надобности, т.е. без соблюдения периодичности или вообще единожды. Например, изучение общественного мнения.


По охвату единиц совокупности
наблюдение может быть сплошным и несплошным.


При сплошном
наблюдении обследованию подвергаются все единицы совокупности. Например, перепись населения.


При несплошном
наблюдении обследуется часть единиц совокупности. Несплошное наблюдение можно подразделить на подвиды: выборочное, монографическое, метод основного массива.


Выборочное наблюдение
- это наблюдение, основанное на принципе случайного отбора. При правильной его организации и проведении выборочное наблюдение дает достаточно достоверные данные об изучаемой совокупности. В некоторых случаях им можно заменить сплошной учет, т.к. результаты выборочного наблюдения с вполне определенной вероятностью можно распространить на всю совокупность. Например, контроль качества продукции, изучение продуктивности скота и т.д. В условиях рыночной экономики сфера применения выборочного наблюдения расширяется.


Монографическое наблюдение
- это детальное, глубокое изучение и описание характерных в каком-то отношении единиц совокупности. Оно проводится с целью выявления имеющихся и намечающихся тенденций в развитии явления (выявление недостатков, изучения передового опыта, новых форм организации и т.д.)


Метод основного массива
заключается в том, что обследованию подвергается наиболее крупные единицы, которые вместе взятые имеют преобладающий удельный вес в совокупности по основному для данного исследования признаку (признакам). Так при изучении работы рынков в городах обследованию подвергаются рынки крупных городов, где проживает 50% всего населения, а оборот рынков составляет 60% от общего оборота.


По источнику сведений
различают непосредственное наблюдение, документальное и опрос.


Непосредственным
называют такое наблюдение, при котором сами регистраторы путем замера, взвешивания или подсчета устанавливают факт и производят запись его в формуляре (бланке) наблюдения.


Документальное
- предполагает запись ответов на основании соответствующих документов.


Опрос
- это наблюдение, при котором ответы на вопросы записываются со слов опрашиваемого. Например, перепись населения.


В статистике сведения об изучаемом явлении могут быть собраны различными способами: отчетным, экспедиционным, самоисчислением, анкетным, корреспондентским.


Сущность отчетного
способа заключается в предоставлении отчетов в строго обязательном порядке.


Экспедиционный
способ заключается в том, что специально привлеченные и обученные работники записывают сведения в формуляр наблюдения (перепись населения).


При самоисчислении
(саморегистрации) формуляры заполняют сами опрашиваемые. Этот способ применяется, например, при изучении маятниковой миграции (передвижения населения от места жительства до места работы и обратно).


Анкетный
способ - это сбор статистических данных с помощью специальных вопросников (анкет), рассылаемых определенному кругу лиц или публикуемых в периодической печати. Этот способ применяется очень широко, особенно в различных социологических обследованиях. Однако он имеет большую долю субъективизма.


Сущность корреспондентского
способа заключается в том, что статистические органы договариваются с определенными лицами (добровольными корреспондентами), которые берут на себя обязательство вести наблюдение за какими-либо явлениями в установленные сроки и сообщать результаты в статистические органы. Так, например, проводятся экспертные оценки по конкретным вопросам социально-экономического развития страны.


1.2. Сводка и группировка материалов статистического наблюдения
Сущность и задачи сводки и группировки

Сводка
- это операция по отработке конкретных единичных фактов, образующих совокупность и собранных в результате наблюдения. В результате сводки множество индивидуальных показателей относящихся к каждой единице объекта наблюдения, превращаются в систему статистических таблиц и итогов, проявляются типические черты и закономерности изучаемого явления в целом.


По глубине и точности обработки различают сводку простую и сложную.


Простая сводка
- это операция по подсчету общих итогов, т.е. по совокупности единиц наблюдения.


Сложная сводка
- это комплекс операций, включающих группировку единиц наблюдения, подсчет итогов по каждой группе и по объекту в целом, оформление результатов в виде статистических таблиц.


Проведение сводки включает следующие этапы:


- выбор группировочного признака;


- определение порядка формирования группы;


- разработка системы показателей для характеристики групп и объекта в целом;


- разработка макетов таблиц для представления результатов сводки.


По форме обработки сводка бывает:


- централизованная (весь первичный материал поступает в одну вышестоящую организацию, например, Госкомстат РФ, и там полностью обрабатывается);


- децентрализованная (обработка собранного материала идет по восходящей линии, т.е. материал подвергается сводке и группировке на каждой ступени).


На практике обычно сочетают обе формы организации сводки. Так, например, при переписи предварительные итоги получают в порядке децентрализованной сводки, а сводные окончательные - в результате централизованной разработки бланков переписи.


По технике выполнения сводка бывает механизированной и ручной.


Группировкой
называется расчленение изучаемой совокупности на однородные группы по определенным существенным признакам.


На основе метода группировок решаются центральные задачи исследования, обеспечивается правильное применение других методов статистического и статистико-математического анализа.


Работа по составлению группировок сложная и трудная. Приемы группировок разнообразны, что обусловлено разнообразием группировочных признаков и различными задачами исследования. К основным задачам, решаемым с помощью группировок относятся:


- выделение социально -экономических типов;


- изучение структуры совокупности, структурных сдвигов в ней;


- выявление связи между явлениями и взаимозависимости.


Виды группировок

В зависимости от задач, решаемых с помощью группировок, выделяют 3 типа группировок: типологические, структурные и аналитические.


Типологическая группировка
решает задачу выявления социально-экономических типов. При построении группировки этого вида основное внимание должно быть уделено идентификации типов и выбору группировочного признака. Исходят при этом из сущности изучаемого явления. (таблица 2.3).


Структурная группировка
решает задачу изучения состава отдельных типических групп по какому-то признаку. Например, распределение постоянного населения по возрастным группам.


Аналитическая группировка
позволяет выявить взаимосвязи между явлениями и их признаками, т.е. выявить влияние одних признаков (факторных) на другие (результативные). Взаимосвязь проявляется в том, что с возрастанием факторного признака возрастает или убывает значение результативного признака. В основе аналитической группировки всегда лежит факторный
признак, а каждая группа характеризуется средними
величинами результативного признака.


Например, зависимость объема розничного товарооборота от величины торговой площади магазина. Здесь факторный (группировочный) признак - торговая площадь, а результативный - средний на 1 магазин объем товарооборота.


По сложности группировка бывает простой и сложной (комбинированной).


В простой
группировке в основании один признак, а в сложной
- два и более в сочетании (в комбинации). В этом случае сначала группы образуются по одному (основному) признаку, а затем каждая из них делится на подгруппы по второму признаку и т.д.


1.3. Абсолютные и относительные статистические величины
Абсолютные статистические величины

Исходной, первичной формой выражения статистических показателей являются абсолютные величины. Абсолютные величины
характеризуют размер явлений в мерах массы, площади, объема, протяженности, времени и т.д.


Индивидуальные абсолютные показатели получаются, как правило, непосредственно в процессе наблюдения в результате замера, взвешивания, подсчета, оценки. В некоторых случаях абсолютные индивидуальные показатели представляют собой разность.


Сводные, итоговые объемные абсолютные показатели получают в результате сводки и группировки.


Абсолютные статистические показатели всегда являются числами именованными, т.е. имеют единицы измерения
. Существует 3 типа единиц измерения абсолютных величин: натуральные, трудовые и стоимостные.


Натуральные единицы
измерения - выражают величину явления в физических мерах, т.е. мерах веса, объема, протяженности, времени, счета, т.е. в килограммах, кубических метрах, километрах, часах, штуках и т.д.


Разновидностью натуральных единиц являются условно-натуральные единицы измерения
, которые используются для сведения воедино нескольких разновидностей одной и той же потребительной стоимости. Одну из них принимают за эталон, а другие пересчитываются с помощью специальных коэффициентов в единицы меры этого эталона. Так, например, мыло с разным содержанием жирных кислот пересчитывают на 40% содержание жирных кислот.


В отдельных случаях для характеристики какого-либо явления одной единицы измерения недостаточно, и используется произведение двух единиц измерения.


Примером может служить грузооборот в тонно-километрах, производство электроэнергии в киловатт-часах и др.


В условиях рыночной экономики наибольшее значение имеют стоимостные (денежные) единицы измерения
(рубль, доллар, марка и т.д.). Они позволяют получить денежную оценку любых социально-экономических явлений (объем продукции, товарооборота, национального дохода и т.п.). Однако, следует помнить, что в условиях высоких темпов инфляции показатели в денежной оценке становятся несопоставимыми. Это следует учитывать при анализе стоимостных показателей в динамике. Для достижения сопоставимости показатели необходимо

пересчитывать в сопоставимые цены.


Трудовые единицы измерения
(человеко-часы, человеко-дни) используются для определения затрат труда на производстве продукции, на выполнение какой-нибудь работы и т.п.


Относительные статистические величины, их сущность и формы выражения

Относительными величинами
в статистике называются величины, выражающие количественное соотношение между явлениями общественной жизни. Они получаются в результате деления одной величины на другую.


Величина с которой производится сравнение (знаменатель) называется основанием, базой сравнения; а та, которая сравнивается (числитель) - называется, сравниваемой, отчетной или текущей величиной.


Относительная величина показывает, во сколько раз сравниваемая величина больше или меньше базисной, или какую долю первая составляет от второй; а в отдельных случаях - сколько единиц одной величины приходится на единицу (или на 100, на 1000 и т.д.) другой (базисной) величины.


В результате сопоставления одноименных абсолютных величин получаются отвлеченные неименованные относительные величины, показывающие во сколько раз данная величина больше или меньше базисной. В этом случае базисная величина принимается за единицу (в результате получается коэффициент
).


Кроме коэффициента широко распространенной формой выражения относительных величин являются проценты
(%). В этом случае базисная величина принимается за 100 единиц.


Относительные величины могут выражаться в промилле (‰), в продецимилле (0
/000
). В этих случаях база сравнения принимается соответственно за 1 000 и за 10 000. В отдельных случаях база сравнения может быть принята и за 100 000.


Относительные величины могут быть числами именованными. Ее наименование представляет собой сочетание наименований сравниваемого и базисного показателей. Например, плотность населения чел/кв. км (сколько человек приходится на 1 квадратный километр).


Виды относительных величин

Виды относительных величин подразделяются в зависимости от их содержания. Это относительные величины: планового задания, выполнения плана, динамики, структуры, координации, интенсивности и уровня экономического развития, сравнения.


Относительная величина планового задания
представляет собой отношение величины показателя, устанавливаемой на планируемый период к величине его, достигнутой к планируемому периоду.


Относительной величиной выполнения плана
называется величина, выражающая соотношение между фактическим и плановым уровнем показателя.


Относительная величина динамики
представляет собой отношение уровня показателя за данный период к уровню этого же показателя в прошлом.


Три вышеперечисленные относительные величины связаны между собой, а именно: относительная величина динамики равна произведению относительных величин планового задания и выполнения плана.


Относительная величина структуры
представляет собой отношение размеров части к целому. Она характеризует структуру, состав той или иной совокупности.


Эти же величины в процентах называют удельным весом.


Относительной величиной координации
называют соотношение частей целого между собой. В результате получают, во сколько раз данная часть больше базисной. Или сколько процентов от нее составляет или сколько единиц данной структурной части приходится на 1 единицу (100 или 1000 и т.д. единиц) базисной структурной части.


Относительная величина интенсивности
характеризует развитие изучаемого явления или процесса в другой среде. Это отношение двух взаимосвязанных явлений, но разных. Оно может быть выражено и в процентах, и в промилле, и продецемилле, и именованной. Разновидностью относительной величины интенсивности является показатель уровня экономического развития
, характеризующий производство продукции на душу населения.


Относительная величина сравнения
представляет собой соотношение одноименных абсолютных показателей по разным объектам (предприятиям, районам, областям, странам и т.д.). Он может быть выражен как в коэффициентах, так и в процентах.


Средние величины
их сущность и виды

Статистика, как известно, изучает массовые социально-экономические явления. Каждое из этих явлений может иметь различное количественное выражение одного и того же признака. Например, заработная плата одной и той же профессии рабочих или цены на рынке на один и тот же товар и т.д.


Для изучения какой-либо совокупности по варьирующим (количественно изменяющимся) признакам статистика использует средние величины.


Средняя величина
- это обобщающая количественная характеристика совокупности однотипных явлений по одному
варьирующему признаку.


Важнейшее свойство средней величины заключается в том, что она представляет значение определенного признака во всей совокупности одним числом, несмотря на количественные различия его у отдельных единиц совокупности, и выражает то общее, что присуще всем единицам изучаемой совокупности. Таким образом, через характеристику единицы совокупности она характеризует всю совокупность в целом.


Средние величины связаны с законом больших чисел. Суть этой связи заключается в том, что при осреднении случайные отклонения индивидуальных величин в силу действия закона больших чисел взаимопогашаются и в средней выявляется основная тенденция развития, необходимость, закономерность однако, для этого среднюю необходимо вычислять на основе обобщения массы фактов.


Средние величины позволяют сравнивать показатели, относящиеся к совокупностям с различной численностью единиц.


Важнейшим условием научного использования средних величин в статистическом анализе общественных явлений является однородность
совокупности, для которой исчисляется средняя. Одинаковая по форме и технике вычисления средняя в одних условиях (для неоднородной совокупности) фиктивная, а в других (для однородной совокупности) соответствует действительности. Качественная однородность совокупности определяется на основе всестороннего теоретического анализа сущности явления. Так, например, при исчислении средней урожайности требуется, чтобы исходные данные относились к одной и той же культуре (средняя урожайность пшеницы) или группе культур (средняя урожайность зерновых). Нельзя вычислять среднюю для разнородных культур.


Математические приемы, используемые в различных разделах статистики, непосредственно связаны с вычислением средних величин.


Средние в общественных явлениях обладают относительным постоянством, т.е. в течение какого-то определенного промежутка времени однотипные явления характеризуются примерно одинаковыми средними.


Средине величины очень тесно связаны с методом группировок, т.к. для характеристики явлений необходимо исчислять не только общие (для всего явления) средние, но и групповые (для типических групп этого явления по изучаемому признаку).


Виды средних величин

От того, в каком виде представлены исходные данные для расчета средней величины, зависит по какой формуле она будет определятся. Рассмотрим наиболее часто применяемые в статистике виды средних величин:


- среднюю арифметическую;


- среднюю гармоническую;


- среднюю геометрическую;


- среднюю квадратическую.


1.4. Вариационные ряды

Сущность и причины вариации


Информация о средних уровнях исследуемых показателей обычно бывает недостаточной для глубокого анализа изучаемого процесса или явления.


Необходимо учитывать и разброс или вариацию значений отдельных единиц, которая является важной характеристикой изучаемой совокупности. Каждое индивидуальное значение признака складывается под совместным воздействием многих факторов. Социально-экономические явления, как правило, обладают большой вариацией. Причины этой вариации содержатся в сущности явления.


Показатели вариации определяют как группируются значения признака вокруг средней величины. Они используются для характеристики упорядоченных статистических совокупностей: группировок, классификаций, рядов распределения. В наибольшей степени вариации подвержены курсы акций, объёмы спроса и предложения, процентные ставки в разные периоды и в разных местах.


Абсолютные и относительные показатели вариации

По смыслу определения вариация измеряется степенью колеблемости вариантов признака от уровня их средней величины, т.е. как разность х-х. На использовании отклонений от средней построено большинство показателей применяемых в статистике для измерения вариаций значений признака в совокупности.


Самым простейшим абсолютным показателем вариации является размах вариации
R=xmax-xmin . Размах вариации выражается в тех же единицах измерения, что и Х. Он зависит только от двух крайних значений признака и, поэтому, недостаточно характеризует колеблемость признака.


Абсолютные показатели вариации зависят от единиц измерения признака и затрудняют сравнение двух или нескольких различных вариационных рядов.


Относительные показатели вариации
вычисляются как отношение различных абсолютных показателей вариации к средней арифметической. Наиболее распространённым из них является коэффициент вариации.


Коэффициент вариации характеризует колеблемость признака внутри средней. Самые лучшие значения его до 10%, неплохие до 50%, плохие свыше 50%. Если коэффициент вариации не превышает 33%, то совокупность по рассматриваемому признаку можно считать однородной.


1.5. Выборочный метод


Сущность выборочного метода заключается в том, чтобы по свойствам части (выборки) судить о численных характеристиках целого (генеральной совокупности), по отдельным группам вариантов их общей совокупности, которая иногда мыслится как совокупность неограниченно большого объема. Основу выборочного метода составляет та внутренняя связь, которая существует в популяциях между единичным и общим, частью и целым.


Выборочный метод имеет очевидные преимущества перед сплошным изучением генеральной совокупности, так как сокращает объем работы (за счет уменьшения числа наблюдении) позволяет экономить силы и средства, получать информацию о таких совокупностях, полное обследование которых практически невозможно или нецелесообразно.


Опыт показал, что правильно произведенная выборка довольно хорошо представляет или репрезентирует (от лат. represento-представляю) структуру и состояние генеральной совокупности. Однако полного совпадения выборочных данных с данными обработки генеральной совокупности, как правило, не бывает. В этом и заключается недостаток выборочного метода, на фоне которого видны преимущества сплошного описания генеральной совокупности.


В виду неполного отображения выборкой статистических характеристик (параметров) генеральной совокупности перед исследователем возникает важная задача: во-первых, учитывать и соблюдать те условия, при которых выборка наилучшим образом репрезентирует генеральную совокупность, а во-вторых, в каждом конкретном случае устанавливать, с какой уверенностью можно перенести результаты выборочного наблюдения на всю генеральную совокупность, из которой выборка взята.


Репрезентативность выборки зависит от целого ряда условий и прежде всего от того, как она осуществляется, или планомерно (т. е. по заранее намеченной схеме), или путем непланомерного отбора вариант из генеральной совокупности. В любом случае выборка должна быть типичной и вполне объективной. Эти требования должны выполняться неукоснительно как наиболее существенные условия репрезентативности выборки. Прежде чем обрабатывать выборочный материал, его нужно тщательно проверить и освободить выборку от всего лишнего, что нарушает условия репрезентативности. В то же время при образовании выборки нельзя поступать по произволу, включать в ее состав только те варианты, которые кажутся типичными, а все остальные браковать. Доброкачественная выборка должна быть объективной, т. е. производиться без предвзятых побуждений, при исключении субъективных влияний на ее состав. Выполнению этого условия репрезентативности отвечает принцип рендомизации (от англ. rendom-случай), или случайного отбора вариант из генеральной совокупности.


Этот принцип положен в основу теории выборочного метода и должен соблюдаться во всех случаях образования репрезентативной выборочной совокупности, не исключая и случаев планомерного или преднамеренного отбора.


Существуют различные способы отбора. В зависимости от способа отбора различают выборки следующих типов:


- случайная выборка с возвратом;


- случайная выборка без возврата;


- механическая;


- типическая;


- серийная.


Рассмотрим образование случайных выборок с возвратом и без возврата. Если выборка производится из массы изделий (например, из ящика), то после тщательного перемешивания следует брать объекты случайно, т. е. так, что бы они все имели одинаковую вероятность попасть в выборку. Часто для образования случайной выборки элементы генеральной совокупности предварительно номеруются, а каждый номер записывается на отдельной карточке. В результате получается пачка карточек, число которых совпадает с объемом генеральной совокупности. После тщательного перемешивания из этой пачки берут по одной карточке. Объект, имеющий одинаковый номер с карточкой считается попавшим в выборку. При этом возможны два принципиально различных способа образования выборочной совокупности.


Первый способ - вынутая карточка после фиксации ее номера возвращается в пачку, после чего карточки снова тщательно перемешиваются. Повторяя такие выборки по одной карточке, можно образовать выборочную совокупность любого объема. Выборочная совокупность, образованная по такой схеме, получила название случайной выборки с возвратом.


Второй способ - каждая вынутая карточка после ее записи обратно не возвращается. Повторяя по такой схеме выборки по одной карточке, можно получить выборочную совокупность любого заданного объема. Выборочную совокупность, образованную по данной схеме называют случайной выборкой без возврата. Случайная выборка без возврата образуется в том случае, если из тщательно перемешанной пачки сразу берут нужное число карточек.


Однако при большом объеме генеральной совокупности описанный выше способ образования случайной выборки с возвратом и без возврата оказывается очень трудоемким. В этом случае пользуются таблицами случайных чисел, в которых числа расположены в случайном порядке. Доля того, что бы отобрать, например, 50 объектов из пронумерованной генеральной совокупности, открывают любую страницу таблицы случайных чисел и выписывают подряд 50 случайных чисел; в выборку попадают те объекты, номера которых совпадают с выписанными случайными числами, если случайное число таблицы окажется больше объема генеральной совокупности, то такое число пропускают.


Заметим, что различие между случайными выборками с возвратом и без возврата стирается, если они составляют незначительную часть большой генеральной совокупности.


При механическом способе образования выборочной совокупности, подлежащие обследованию элементы генеральной совокупности отбираются через определенный интервал. Так, например, если выборка должна составлять 50% генеральной совокупности, то отбирается каждый второй элемент генеральной совокупности. Если выборка десяти процентная, то отбирается каждый десятый ее элемент и т. д.


Следует отметить, что иногда механический отбор может не обеспечить репрезентативной выборки. Например, если отбирается каждый двенадцатый обтачиваемый валик, причем сразу же после отбора производят замену резца, то отобранными окажутся все валики, обточенные затупленными резцами. В таком случае необходимо устранить совпадение ритма отбора с ритмом замены резца, для чего следует отбирать хотя бы каждый десятый валик из двенадцати обточенных.


При большом количестве выпускаемой однородной продукции, когда в ее изготовлении принимают участие различные станки, и даже цеха, для образования репрезентативной выборки пользуются типическим способом отбора. В этом случае, генеральную совокупность предварительно разбивают на непересекающиеся группы. Затем из каждой группы, по схеме случайной выборки с возвратом или без возврата отбирают определенной число элементов. Они и образуют выборочную совокупность, которая называется типической.


Пусть, например, выборочным путем исследуется продукция цеха, в котором имеются 10 станков, производящих одну и ту же продукцию. Пользуясь схемой случайной выборки с возвратом или без возврата, отбирают изделия, сначала из продукции, сделанной на первом, затем на втором и т. д. станках. Такой способ отбора позволяет образовать типическую выборку.


Иногда на практике бывает целесообразно пользоваться серийным способом отбора, идея которого заключается в том, что генеральную совокупность разбивают на некоторое количество непересекающихся серий и по схеме случайной выборки с возвратом или без возврата контролируют все элементы лишь отобранных серий. Например, если изделия изготовляются большой группой станков-автоматов, то сплошному обследованию подвергают продукцию только нескольких станков. Серийным отбором пользуются в случае, если обследуемый признак колеблется в различных сериях незначительно.


О том, какому способу отбора следует отдать предпочтение в той или иной ситуации, следует судить, исходя из требований поставленной задачи и условий производства. Заметим, что на практике при составлении выборки часто используют одновременно несколько способов отбора в комплексе.


1.6. Корреляционный и регрессионный анализ


Регрессионный и корреляционный анализы — это эффективные методы, которые разрешают анализировать значительные объемы информации с целью исследования вероятной взаимосвязи двух или больше переменных.


Задачи корреляционного анализа
сводятся к измерению тесноты известной связи между варьирующими признаками, определению неизвестных причинных связей (причинный характер которых должен быть выяснен с помощью теоретического анализа) и оценки факторов, оказывающих наибольшее влияние на результативный признак.


Задачами регрессионного анализа
являются выбор типа модели (формы связи), установление степени влияния независимых переменных на зависимую и определение расчётных значений зависимой переменной (функции регрессии).


Решение всех названных задач приводит к необходимости комплексного использования этих методов.


1.7. Ряды динамики


Понятие о рядах динамики и виды рядов динамики

Рядом динамики
называется ряд последовательно расположенных во времени статистических показателей, которые в своем изменении отражают ход развития изучаемого явления.


Ряд динамики состоит из двух элементов: момента или периода времени
, которым относятся данные и статистических показателей (уровней)
. Оба элемента вместе образуют члены ряда
. Уровни ряда обычно обозначают через "y", а период времени - через "t".


По длительности времени, к которым относятся уровни ряда, ряды динамики делятся на моментные и интервальные.


В моментных рядах
каждый уровень характеризует явления на момент времени
. Например: число вкладов населения в учреждениях сберегательного банка РФ, на конец года.


В интервальных рядах
динамики каждый уровень ряда характеризует явление за период времени
. Например: производство часов в РФ по годам.


В интервальных рядах динамики уровни ряда можно суммировать и получить общую величину за ряд следующих друг за другом периодов. В моментных рядах эта сумма не имеет смысла.


В зависимости от способа выражения уровней ряда различают ряды динамики абсолютных величин, относительных величин и средних величин.


Ряды динамики могут быть с равным и неравным интервалами. Понятие интервала в моментных и интервальных рядах различные. Интервал моментного ряда - это период времени от одной даты до другой даты, на которые приведены данные. Если это данные о числе вкладов на конец года, то интервал равен от конца одного года, до конца другого года. Интервал интервального ряда - это период времени за который обобщены данные. Если это производство часов по годам, то интервал равен одному году.


Интервал ряда может быть равным и неравным как в моментных, так и в интервальных рядах динамики.


С помощью рядов динамики определяют скорость и интенсивность развития явлений, выявляют основную тенденцию их развития, выделяют сезонные колебания, сравнивают развитие во времени отдельных показателей разных стран, выявляют связи между развивающимися во времени явлениями.


1.8. Статистические индексы
Понятие об индексах

Слово "index" латинское и означает "показатель", "указатель". В статистике под индексом понимается обобщающий количественный показатель, выражающий соотношение двух совокупностей, состоящих из элементов, непосредственно не поддающихся суммированию. Например, объем продукции предприятия в натуральном выражении суммировать нельзя (кроме однородной), а для обобщающей характеристики объема это необходимо. Нельзя суммировать цены на отдельные виды продукции и т.д. Для обобщающей характеристики таких совокупностей в динамике, в пространстве и по сравнению с планом применяются индексы. Кроме сводной характеристики явлений индексы позволяют дать оценку роли отдельных факторов в изменении сложного явления. Индексы используются и для выявления структурных сдвигов в народном хозяйстве.


Индексы рассчитываются как для сложного явления (общие или сводные), так и для отдельных его элементов (индивидуальные индексы).


В индексах, характеризующих изменение явления во времени различают базисный и отчетный (текущий) периоды. Базисный
период - это период времени к которому относится величина, принятая за базу сравнения. Обозначается он подстрочным знаком "0". Отчетный
период - это период времени, к которому относится величина, подвергающаяся сравнению. Обозначается он подстрочным знаком "1".


Индивидуальные
индексы - это обычная относительная величина.


Сводный индекс
- характеризует изменение всей сложной совокупности в целом, т.е. состоящей из несуммируемых элементов. Следовательно, чтобы рассчитать такой индекс надо преодолеть несуммарность элементов совокупности.


Это достигается введением дополнительного показателя (соизмерителя). Сводный индекс состоит из двух элементов: индексируемой величины и веса.


Индексируемая величина
- это показатель, для которого рассчитывается индекс. Вес (соизмеритель) - это дополнительный показатель вводимый для целей соизмерения индексируемой величины. В сводном индексе в числителе и знаменателе всегда сложная совокупность, выраженная суммой произведений индексируемой величины и веса.


В зависимости от объекта исследования как общие, так и индивидуальные индексы подразделяются на индексы объемных (количественных) показателей
(физического объема продукции, посевной площади, численности рабочих и др.) и индексы качественных показателей
(цены, себестоимости, урожайности, производительности труда, заработной платы и др.).


В зависимости от базы сравнения индивидуальные и общие индексы могут быть цепными
и базисными
.


В зависимости от методологии расчета общие индексы имеют две формы: агрегатную
и форму среднего
индекса.


Заключение


Рассмотрев основные методы статистического исследования, становится отчетливо видно, что такая наука, как статистика оказывает незаменимую помощь в решении государственных, экономических, социологических вопросов и во многом способствует развитию данных наук и сфер деятельности. Учитывая тот факт, что влияние статистики распространяется на управленческую и экономическую деятельность предприятий и фирм, можно заключить, что эта наука очень важна для функционирования, роста и успешности предприятий. Применение статистических данных и проведение статистического наблюдения, с последующим анализом полученной информации, - неотъемлемая часть деятельности любого предприятия.


Правильно проведённый сбор, анализ данных и статистические расчёты позволяют обеспечить заинтересованные структуры и общественность информацией о развитии экономики, о направлении её развития, показать эффективность использования ресурсов, учесть занятость населения и его трудоспособность, определить темпы роста цен и влияние торговли на сам рынок или отдельно взятую сферу.


Список использованной литературы


1. Глинский В.В., Ионин В.Г. Статистический анализ. Учебное пособие.- М.: ФИЛИНЪ, 1998 г.-264 с.


2. Елисеева И.И., Юзбашев М.М. Общая теория статистики. Учебник.-


М.: Финансы и статистика, 1995 г.-368 с.


3. Ефимова М.Р., Петрова Е.В., Румянцев В.Н. Общая теория статистики. Учебник.-М.: ИНФРА-М, 1996 г.-416 с.


4. Костина Л.В. Методика построения статистических графиков. Методическое пособие.- Казань, ТИСБИ, 2000 г.-49 с.


5. Курс социально-экономической статистики: Учебник/под ред. проф. М.Г. Назарова.-М.: Финстатинформ, ЮНИТИ-ДИАНА, 2000 г.-771 с.


6. Общая теория статистики: статистическая методология в изучении коммерческой деятельности: Учебник/под ред. А.А. Спирина, О.Э.Башеной-М.: Финансы и статистика, 1994 г.-296 с.


7. Статистика: курс лекций/ Харченко Л.П., Долженкова В.Г., Ионин В.Г. и др.- Новосибирск,: НГАЭиУ, М.: ИНФРА-М, 1997 г.-310 с.


8. Статистический словарь/ гл.ред. М.А. Королёв.-М.: Финансы и статистика, 1989 г.-623 с.


9. Теория статистики: Учебник/под ред. проф. Шмойловой Р.А.- М.: Финансы и статистика, 1996 г.-464 с.

Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Статистические методы исследования

Слов:5966
Символов:53352
Размер:104.20 Кб.