В замкнутой системе выполняется закон сохранения момента импульса.
Вращающееся вокруг своей оси тело при отсутствии тормозящих вращение сил так и будет продолжать вращаться. Физики привычно объясняют этот феномен тем, что такое вращающееся тело обладает неким количеством движения, выражающимся в форме углового момента количества движения или, кратко, момента импульса или момента вращения. Момент импульса вращающегося тела прямо пропорционален скорости вращения тела, его массе и линейной протяженности. Чем выше любая из этих величин, тем выше момент импульса. Если теперь допустить, что тело вращается не вокруг собственного центра массы, а вокруг некоего центра вращения, удаленного от него, оно всё равно будет обладать вращательным моментом импульса. В математическом представлении момент импульса L тела, вращающегося с угловой скоростью ω, равен L = Iω, где величина I, называемая моментом инерции, является аналогом инерционной массы в законе сохранения линейного импульса, и зависит она как от массы тела, так и от его конфигурации — то есть, от распределения массы внутри тела. В целом, чем дальше от оси вращения удалена основная масса тела, тем выше момент инерции.
Сохраняющейся или консервативной принято называть величину, которая не изменяется в результате рассматриваемого взаимодействия. В рамках закона сохранения момента импульса консервативной величиной как раз и является угловой момент вращения массы — он не изменяется в отсутствие приложенного момента силы или крутящего момента — проекции вектора силы на плоскость вращения, перпендикулярно радиусу вращения, помноженной на рычаг (расстояние до оси вращения). Самый расхожий пример закона сохранения момента импульса — фигуристка, выполняющая фигуру вращения с ускорением. Спортсменка входит во вращение достаточно медленно, широко раскинув руки и ноги, а затем, по мере того, как она собирает массу своего тела всё ближе к оси вращения, прижимая конечности всё ближе к туловищу, скорость вращения многократно возрастает вследствие уменьшения момента инерции при сохранении момента вращения. Тут мы и убеждаемся наглядно, что чем меньше момент инерции I, тем выше угловая скорость ω и, как следствие, короче период вращения, обратно пропорциональный ей.
Следует отметить, однако, что не любая приложенная извне сила сказывается на моменте вращения. Предположим, вы поставили свой велосипед «на попа» (колесами вверх) и сильно раскрутили одно из его колес. Понятно, чт
И тут возникает важное дополнительное замечание. До сих пор мы говорили об изменении момента вращения в плане ускорения или замедления вращения, как такового, но при этом тело продолжало вращаться всё в той же плоскости, и ось вращения не изменяла своей ориентации в пространстве. Теперь предположим, что момент силы приложен в плоскости, которая отличается от плоскости, в которой вращается тело. Такое воздействие неизбежно приведет к изменению направления оси вращения. В отсутствие же внешних воздействий закон сохранения момента импульса подразумевает, что направление оси вращения остается неизменным. Этот принцип широко используется в так называемых гироскопических навигационных приборах. В их основе лежит массивное, быстро вращающееся колесо — гироскоп, — которое не изменяет своей ориентации в пространстве, благодаря чему прибор стабильно указывает заданное направление, вне зависимости от угла поворота субмарины, самолета или спутника, на котором он установлен. С технической точки зрения гироскоп представляет собой массивный диск на осевых подшипниках низкого трения, раскрученный с очень большой скоростью. Идеальный гироскоп — это диск бесконечной массы, вращающийся с бесконечной скоростью в идеальном вакууме. В таком случае закон сохранения момента импульса подскажет нам, что направление оси такого идеального гироскопа не отклонится от исходной ни на одну угловую секунду, и он вечно будет указывать нам на изначально заданную точку. Искусственные спутники Земли, как правило, оснащаются несколькими независимыми гироскопами, вращающимися в разных плоскостях, и бортовая электроника, сопоставляя данные нескольких гироскопических компасов и усредняя поправки на возможные отклонения их показаний, безошибочно определяет координаты и ориентацию спутника в околоземном пространстве.