Событие называется случайным, если в результате испытания (опыта) оно может произойти, а может и не произойти.
Примеры.
Испытание – бросание монеты, случайное событие – выпадение герба.
Испытание – участие в игре “Русское лото”, случайное событие - выигрыш.
Испытание – прыжок с парашютом, случайное событие – удачное приземление.
Испытание – рождение ребенка, случайное событие – пол ребенка – мужской.
Испытание – наблюдение за погодой в течение дня, случайное событие – в течение дня был дождь.
Как видим наступление случайного события в результате испытания, вообще говоря, нельзя предсказать заранее в принципе. Этот факт – непредсказуемость наступления – можно в некоторых случаях считать главным отличительным свойством случайного события. Тем не менее, имеется возможность некоторые случайные события подвергнуть анализу методами математики.
Пусть некоторое испытание произведено раз и в результате этого связанное с ним случайное событие (обозначим его через А) произошло раз. Тогда относительной частотой случайного события А, назовем отношение к . Другими словами . Для многих случайных событий относительная частота обладает свойством устойчивости, то есть в различных длинных серия испытаний относительные частоты одного и того же случайного события мало отличаются друг от друга. Случайные события, относительные частоты которых, обладают свойством устойчивости, называются регулярными.
Устойчивость относительной частоты была обнаружена и многократно подтверждена экспериментально естествоиспытателями в 17-19 веках. Наиболее впечатляющим является результат К. Пирсона, который бросал монету 12000 раз, затем осуществил еще одну серию бросаний – 24000 раз. В этих сериях он подсчитывал количество выпадений герба и получил значения относительной частоты для него 0,5016 и 0,5005, отличающиеся друг от друга на 0,0011.
Для случайных событий обладающих свойством устойчивости, относительную частоту наступления события естественно считать степенью возможности наступления случайного события.
Пример. Баскетболист А из некоторого положения попал в кольцо 4 раза при 11 бросках. Баскетболист В из этого же положения – 6 раз при 18 бросках. Какому из игроков доверить выполнение штрафного удара из этого положения?
Решение. Найдем относительные частоты попадания в кольцо этими игроками:, . Так как , то выполнение штрафного лучше доверить игроку А. Если относительная частота больше, то больше и уверенность в успехе.
При использовании относительной частоты в качестве меры возможности наступления случайного события возникают две трудности. Первая – в разных сериях испытаний получаются разные значения частоты, непонятно какое из полученных значений “более истинно”. Вторая – относительную частоту можно найти только после испытаний, причем желательна достаточно длинная серия, так как свойство устойчивости проявляется тем отчетливее, чем длиннее серия. Все это вместе взятое заставляет искать способы однозначного определения меры возможности наступления случайного события, причем до испытания, до опыта.
Вначале определим вероятность регулярного случайного события как число, около которого колеблется относительная частота в длинных сериях испытаний. Затем введем понятие равновозможности, равновероятности двух событий. Смысл этого понятия ясен интуитивно, цель введения - мы хотим определить математически понятие вероятности сводя его к более простому не определяемому понятию равновероятности. Наличие равновероятности некоторых событий являющихся исходами некоторого испытания устанавливается из “общих соображений”, не доказывается математически и не
Если, событие А инициируется одним из элементарных исходов, а самих исходов по прежнему , то вероятность события А обозначаемая как , определяется как отношение к . Иначе: . (Формула классической вероятности)
Пример. Обозначим – выпадение 1, …, 6 очков при бросании игральной кости. . Пусть А – выпадение четного числа очков, тогда и .
Здесь уместно привести комментарий характерный для физики: относительные частоты регулярных случайных событий, полученные в длинных серия испытаний, хорошо согласуются со значениями найденными по формуле классической вероятности.
Примеры решения задач.
А) Студент, готовясь к экзамену, успел подготовить 18 билетов из 25. Какова вероятность вынуть на экзамене “хороший” билет?
Решение.
Б) Какова вероятность, что при бросании двух игральных кубиков сумма выпавших очков меньше пяти?
Решение. Всего два кубика могут выпасть 36 способами: (1;1), (1;2), …(1;6), (2;1), (2;2), …, (2;6), (3;1), …, (6;6). Все эти исходы считаем равновозможными, не наступающими одновременно, значит . Обозначим через А событие: при бросании двух игральных костей, сумма выпавших очков меньше пяти. Событие А определяется исходами (1;1), (1;2), (2;1), (1;3), (3;1), (2;2), то есть . По формуле классической вероятности получаем .
В) Лифт в пятиэтажном доме отправляется с тремя пассажирами с первого этажа. Найти вероятность того, что на каждом этаже выйдет не более одного пассажира.
Решение. При решении предполагаем, что всевозможные способы распределения пассажиров по этажам равновероятны. Очевидно, каждый пассажир имеет четыре возможности для выхода из лифта (на 2, 3, 4, 5 этажах). Тогда для двух пассажиров имеется возможностей, то есть различных вариантов выхода из лифта, так как каждая возможность выхода первого пассажира может сочетаться с каждой возможностью второго. Для трех пассажиров 4*4*4=64 вариантов выхода. Итак, , это число всех возможных равновероятных (по допущению) способов выхода пассажиров из лифта, один и только один из которых будет реализован в результате испытания. Число вариантов определяющих интересующее нас событие, то есть равно 4*3*2 исходов, . Так как на каждом этаже должно выйти не более одного пассажира, то у первого выходящего имеется 4 варианта выхода (на любом, кроме первого, этаже), у второго – только 3 варианта, так как один вариант использовал первый пассажир, у третьего – только 2 способа. Окончательно: вероятность события А равна .
Зарождение теории вероятностей и формирование первых понятий этой ветви математики произошло в середине 17 века, когда Паскаль, Ферма, Бернулли попытались осуществить анализ задач связанных с азартными играми новыми методами. Скоро стало ясно, что возникающая теория найдет широкий круг применения для решения многих задач возникающих в различных сферах деятельности человека.
Список литературы
В.Е. Гмурман Теория вероятностей и математическая статистика. М., ВШ, 1977.
Л.В. Тарасов Мир, построенный на вероятности. М., Пр., 1984.