РефератыМатематикаПрПрограмма вступительных экзаменов по математике в 2004г. (МГУ)

Программа вступительных экзаменов по математике в 2004г. (МГУ)

Настоящая программа состоит из трех разделов.


В первом разделе перечислены основные математические понятия, которыми должен владеть поступающий как на письменном, так и на устном экзамене.


Второй раздел представляет собой перечень вопросов теоретической части устного экзамена. При подготовке к письменному экзамену целесообразно познакомиться с формулировками утверждений этого раздела.


В третьем разделе указано, какие навыки и умения требуются от поступающего на письменном и устном экзаменах.


Объем знаний и степень владения материалом, описанным в программе, соответствуют курсу математики средней школы. Поступающий может пользоваться всем арсеналом средств из этого курса, включая и начала анализа. Однако для решения экзаменационных задач достаточно уверенного владения лишь теми понятиями и их свойствами, которые перечислены в настоящей программе. Объекты и факты, не изучаемые в общеобразовательной школе, также могут использоваться поступающими, но при условии, что он способен их пояснять и доказывать.


В связи с обилием учебников и регулярным их переизданием отдельные утверждения второго раздела могут в некоторых учебниках называться иначе, чем в программе, или формулироваться в виде задач, или вовсе отсутствовать. Такие случаи не освобождают поступающего от необходимости знать эти утверждения.


I. Основные понятия


Натуральные числа. Делимость. Простые и составные числа. Наибольший общий делитель и наименьшее общее кратное.


Целые, рациональные и действительные числа. Проценты. Модуль числа, степень, корень, арифметический корень, логарифм. Синус, косинус, тангенс, котангенс числа (угла). Арксинус, арккосинус, арктангенс, арккотангенс числа.


Числовые и буквенные выражения. Равенства и тождества.


Функция, ее область определения и область значений. Возрастание, убывание, периодичность, четность, нечетность. Наибольшее и наименьшее значения функции. График функции.


Линейная, квадратичная, степенная, показательная, логарифмическая, тригонометрические функции.


Уравнение, неравенства, система. Решения (корни) уравнения, неравенства, системы. Равносильность.


Арифметическая и геометрическая прогрессии.


Прямая на плоскости. Луч, отрезок, ломаная, угол.


Треугольник. Медиана, биссектриса, высота.


Выпуклый многоугольник. Квадрат, прямоугольник, параллелограмм, ромб, трапеция. Правильный многоугольник. Диагональ.


Окружность и круг. Радиус, хорда, диаметр, касательная, секущая. Дуга окружности и круговой сектор. Центральный и вписанные углы.


Прямая и плоскость в пространстве. Двугранный угол.


Многогранник. Куб, параллелепипед, призма, пирамида.


Цилиндр, конус, шар, сфера.


Равенство и подобие фигур. Симметрия.


Параллельность и перпендикулярность прямых, плоскостей. Скрещивающиеся прямые. Угол между прямыми, плоскостями, прямой и плоскостью.


Касание. Вписанные и описанные фигуры на плоскости и в пространстве. Сечение фигуры плоскостью.


Величина угла. Длина отрезка, окружности и дуги окружности. Площадь многоугольника, круга и кругового сектора. Площадь поверхности и объем многогранника, цилиндра, конуса, шара.


Координатная прямая. Числовые промежутки. Декартовы координаты на плоскости и в пространстве. Векторы.


II. Содержание теоретической части устного экзамена


Алгебра


Признаки делимости на 2, 3, 5, 9, 10.


Свойства числовых неравенств.


Формулы сокращенного умножения.


Свойства линейной функции и ее график.


Формула корней квадратного уравнения. Теорема о разложении квадратного трехчлена на линейные множители. Теорема Виета.


Свойства квадратичной функции и ее график.


Неравенство, связывающее среднее арифметическое и среднее геометрическое двух чисел. Неравенство для суммы двух взаимно обратных чисел.


Формулы общего члена и суммы n первых членов арифметической прогрессии.


Формулы общего члена и суммы n первых членов геометрической прогрессии.


Свойства степеней с натуральными и целыми показателями. Свойства арифметических корней n-й степени. Свойства степеней с рациональными показателями.


Свойства степенной функции с целым показателем и ее график.


Свойства показательной функции и ее график.


Основное логарифмическое тождество. Логарифмы произведения, степени, частного. Формула перехода к новому основанию.


Свойства логарифмической функции и ее график. Основное тригонометрическое тождество. Соотношения между т

ригонометрическими функциями одного и того же аргумента. Формулы приведения, сложения, двойного и половинного аргумента, суммы и разности тригонометрических функций. Выражение тригонометрических функций через тангенс половинного аргумента. Преобразование произведения синусов и косинусов в сумму. Преобразование выражения asin(x) + bcos(x) спомощью вспомогательного аргумента.


Формулы решений простейших тригонометрических уравнений.


Свойства тригонометрических функций и их графики.


Геометрия


Теоремы о параллельных прямых на плоскости.


Свойства вертикальных и смежных углов.


Свойства равнобедренного треугольника.


Признаки равенства треугольников.


Теорема о сумме внутренних углов треугольника. Теорема о внешнем угле треугольника. Свойства средней линии треугольника.


Теорема Фалеса. Признаки подобия треугольников.


Признаки равенства и подобия прямоугольных треугольников. Пропорциональность отрезков в прямоугольном треугольнике. Теорема Пифагора.


Свойство серединного перпендикуляра к отрезку. Свойство биссектрисы угла.


Теоремы о пересечении медиан, пересечении биссектрис и пересечении высот треугольника.


Свойство отрезков, на которые биссектриса треугольника делит противоположную сторону.


Свойство касательной к окружности. Равенство касательных, проведенных из одной точки к окружности. Теоремы о вписанных углах. Теорема об угле, образованном касательной и хордой. Теоремы об угле между двумя пересекающимися хордами и об угле между двумя секущими, выходящими из одной точки. Равенство произведений отрезков двух пересекающихся хорд. Равенство квадрата касательной произведению секущей на ее внешнюю часть.


Свойство четырехугольника, вписанного в окружность. Свойство четырехугольника, описанного около окружности.


Теорема об окружности, вписанной в треугольник. Теорема об окружности, описанной около треугольника.


Теоремы синусов и косинусов для треугольника.


Теорема о сумме внутренних углов выпуклого многоугольника.


Признаки параллелограмма. Свойства параллелограмма.


Свойства средней линии трапеции.


Формула для вычисления расстояния между двумя точками на координатной плоскости. Уравнение окружности.


Теоремы о параллельных прямых в пространстве. Признак параллельности прямой и плоскости. Признак параллельности плоскостей.


Признак перпендикулярности прямой и плоскости. Теорема об общем перпендикуляре к двум скрещивающимся прямым. Признак перпендикулярности плоскостей. Теорема о трех перпендикулярах.


III. Требования к поступающему


На экзамене по математике поступающий должен уметь:


выполнять (без калькулятора) действия над числами и числовыми выражениями; преобразовывать буквенные выражения; производить операции над векторами (сложение, умножение на число, скалярное произведение); переводить одни единицы измерения величин в другие;


сравнивать числа и находить их приближенные значения (без калькулятора); доказывать тождества и неравенства для буквенных выражений;


решать уравнения, неравенства, системы (втом числе спараметрами) иисследовать их решения;


исследовать функции; строить графики функций и множества точек на координатной плоскости, заданные уравнениями и неравенствами;


изображать геометрические фигуры на чертеже; делать дополнительные построения; строить сечения; исследовать взаимное расположение фигур; применять признаки равенства, подобия фигур и их принадлежности к тому или иному виду;


пользоваться свойствами чисел, векторов, функций и их графиков, свойствами арифметической и геометрической прогрессий;


пользоваться свойствами геометрических фигур, их характерных точек, линий и частей, свойствами равенства, подобия и взаимного расположения фигур;


пользоваться соотношениями и формулами, содержащими модули, степени, корни, логарифмические, тригонометрические выражения, величины углов, длины, площади, объемы;


составлять уравнения, неравенства и находить значения величин, исходя из условия задачи;


излагать и оформлять решение логически правильно, полно и последовательно, с необходимыми пояснениями.


На устном экзамене поступающий должен дополнительно уметь:


давать определения, формулировать и доказывать утверждения (формулы, соотношения, теоремы, признаки, свойстваит.п.), указанные во втором разделе настоящей программы;


анализировать формулировки утверждений и их доказательства;


решать задачи на построение циркулем, линейкой; находить геометрические места точек.

Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Программа вступительных экзаменов по математике в 2004г. (МГУ)

Слов:1093
Символов:9918
Размер:19.37 Кб.