Cодержание
1. Жизненный цикл клетки
2. Интенсивность метаболизма на различных этапах жизни клетки
Список используемой литературы
1. Жизненный цикл клетки
До сих пор много тайн клетки остаются неразгаданными. Загадочным во многом остается и запрограммированный генетически алгоритм ее жизни, названный жизненным циклом клетки (клеточным циклом). Жизненный цикл клетки (рисунок 1) начинается с момента ее образования после деления родительской клетки и заканчивается либо новым делением, либо превращением в специализированную клетку.
Рисунок 1. Жизненный цикл клетки:
1 – интерфаза; 2 – митоз; 3 – дифференцировка;
4 – функционирование специализированной клетки
Большинство клеток продолжает делиться. Им свойственен клеточный цикл, состоящий из периодически повторяющихся стадий: так называемой интерфазы (1) – этапа подготовки к делению и непосредственно процесса деления – митоза (2). К этапам дифференцировки (3) и функционирования специализированной клетки (4) мы вернемся чуть позже.
На стадии подготовки к делению происходит удвоение генетического материала (редупликация ДНК). Масса клетки во время интерфазы увеличивается до тех пор, пока она примерно вдвое не превысит начальную. Отметим, что сам процесс деления намного короче этапа подготовки к нему: митоз занимает примерно 1/10 часть клеточного цикла.
Цикличность (периодическое повторение) стадий интерфазы и митоза можно проиллюстрировать на примере фибробластов – одного из видов клеток соединительной ткани (рисунок 2). Так, нормальные фибробласты эмбриона человека размножаются приблизительно 50 раз. Каков генетически запрограммированный предел возможных делений клетки – это одна из неразгаданных тайн биологии.
Рисунок 2. Цикличность стадий интерфазы и митоза:
1 – интерфаза, стадия подготовки к митозу; 2 – митоз (деление клетки)
Жизненный цикл клеток базального слоя эпидермиса в обычных условиях составляет 28-60 дней. При повреждении кожи (конкретнее – при повреждении мембран и разрушении клеток эпидермиса под воздействием внешних факторов) выделяются особые биологически активные вещества. Они значительно ускоряют процессы деления (это явление называется регенерацией), именно поэтому ранки и ссадины так быстро заживают. Максимальной регенеративной способностью обладает эпителий роговицы: одновременно в стадии митоза находятся 5-6 тысяч клеток, продолжительность жизни каждой из которых 4-8 недель.
Хотя все клетки появляются путем деления предшествующей (материнской) клетки («всякая клетка от клетки»), не все они продолжают делиться. Клетки, достигшие некоторой стадии развития при дифференцировке, могут терять способность к делению.
Дифференцировка – возникновение различий в процессе развития первоначально одинаковых клеток, приводящее к их специализации. Процесс дифференцировки заключается в последовательном считывании и использовании наследственной информации, что обеспечивает синтез различных белков (в первую очередь ферментов), характерных для данного вида клеток. Другими словами, различия между клетками определяются набором белков, синтезируемых в клетках определенного вида.
Различия между клетками определяются набором синтезируемых в них белков.
При дифференцировке набор хромосом в клетке не меняется, изменяется лишь соотношение активных и неактивных генов, кодирующих различные белки.
Существуют два типа регуляции экспрессии (активации или блокирования) генов:
Кратковременная адаптивная активация (реже блокирование), зависящая, в частности, от концентрации вещества, включающегося в обмен веществ (исходного вещества или продукта метаболизма). Этот механизм выработался эволюционно как приспособительная реакция и особенно ярко проявляется у животных (например, быстрый синтез пигментов у хамелеона в зависимости от условий).
Длительное (в течение всей жизни клетки и/или многих генераций клеток!) блокирование или активация гена, возникающее в ходе клеточной дифференцировки. Например, в ДНК любой клетки желудка есть ген, отвечающий за синтез белков, из которых состоит ноготь. Но он необратимо блокирован гистонами и другими белками (этот участок ДНК плотно упакован), что никогда не позволит считывать с него информацию. Поэтому в желудке не растут ногти; а гены, ответственные за синтез гемоглобина, функционируют только у молодых форм эритроцитов, но не действуют в зрелых эритроцитах или других клетках.
На рисунке 2 цифрами 3 и 4 отмечены этапы дифференцировки и активного функционирования специализированной клетки.
Нервные клетки мозга, однажды возникнув, уже не делятся. В течение жизни число нейронов постепенно уменьшается. Поврежденные ткани мозга неспособны восстанавливаться путем регенерации. Однако изначально число нейронов в мозге настолько велико, что до конца жизни человека они способны поддерживать необходимые связи в нервной системе.
В качестве примера клеток, неспособных к делению, можно рассмотреть эритроциты. Как известно, эритроциты в процессе специализации теряют ядро, следовательно, не имеют в своем составе ДНК. Возникают эритроциты из так называемой стволовой клетки костного мозга. Клеткой-предшественницей (стволовой клеткой) называют клетки кроветворной ткани, которые на протяжении всей жизни человека сохраняют способность делиться и, тем самым, поставлять дочерние клетки, которые в дальнейшем будут специализироваться в одном направлении и замещать погибшие клетки. Срок жизни и активного функционирования эритроцитов невелик (около 4 месяцев), затем они разрушаются, в основном в селезенке.
Этапы жизни специализированной клетки, неспособной к делению (нейрона, эритроцита), условно можно изобразить на оси времени линией, разделенной на несколько отрезков (рисунок 3). Эти отрезки дают представление о временном соотношении периодов жизни такой клетки: рождения, созревания и активного функционирования, угасания (старения) и естественной гибели.
Рисунок 3. Этапы жизненного цикла специализированной клетки:
1 – рождение в процессе деления материнской клетки;
2 – созревание и дифференцировка;
3 – активное функционирование;
4 – угасание (старение);
5 – запрограммированная клеточная гибель
Время протекания каждого этапа и продолжительность жизненного цикла для однотипных клеток в нормальных условиях практически одинаковы. Продолжительность жизненного цикла однотипных клеток в нормальных условиях практически одинакова.
Например, эритроциты живут 90-125 дней, а тромбоциты – всего 4 суток. Это говорит о том, что клетки используют для отсчета времени своей жизни некий механизм, алгоритм, заложенный в них природой. И в каждый момент жизни клетка строго следует законам, продиктованным этим алгоритмом.
На всех этапах клеточного цикла варьируют значения некоторых параметров жизнедеятельности клетки, и, в частности, отмечается различная скорость и интенсивность протекания процессов метаболизма (рисунок 4). Это обусловлено, в первую очередь, непрерывно меняющейся активностью ферментов, благодаря которым протекают все реакции в клетке. Ферменты могут синтезироваться в клетке “по мере надобности”, активироваться, временно блокироваться или полностью разрушаться.
2. Интенсивность метаболизма на различных этапах жизни клетки
Рассмотрим подробнее наиболее характерные процессы, происходящие на каждом из этапов клеточного цикла.
Рисунок 4. Интенсивность метаболизма на различных этапах жизни клетки:
1 – рождение; 2 – созревание и дифференцировка;
3 – активное функционирование; 4 – угасание (старение);
5 – запрограммированная клеточная гибель
Рождение. Отправным моменто
Митоз часто называют «танцем хромосом». Каждая следующая фигура в этом танце не случайна, здесь нет ни одного лишнего или бессмысленного «па» – это еще один четкий, выверенный природой алгоритм. В. Дудинцев в романе «Белые одежды» так описывает процесс деления клетки: «Хромосомы шевелились, как клубок серых червей, потом вдруг выстроились в строгий вертикальный порядок. Вдруг удвоились – теперь это были пары. Тут же какая-то сила потащила эти пары врозь, хромосомы подчинились, обмякли, и что-то повлекло их к двум разным полюсам».
Деление клетки на две идентичные (митоз) характеризуется сменой нескольких морфологически и физиологически различающихся стадий (рисунок 5). На первой стадии митоза хроматин плотно упаковывается (этот процесс называется суперспирализацией хроматина) с образованием хромосом (1). Каждая хромосома состоит из двух идентичных половинок (хроматид) – будущих дочерних хромосом. Затем при сокращении так называемого веретена деления (2), представляющего собой комплекс микротрубочек и микрофибрилл, дочерние хромосомы расходятся, буквально подтягиваются нитями веретена деления к противоположным полюсам клетки. После окончательного расхождения дочерние хромосомы вновь раскручиваются, превращаясь в длинные и тонкие нити хроматина (3). Веретено деления исчезает, хроматин в дочерних клетках окружается ядерной оболочкой, и между дочерними клетками образуется поперечная перетяжка (4) из клеточных мембран.
Хромосомы, как мы уже говорили, представляют собой максимально плотно упакованные нити ДНК, с которых на этапе деления невозможно считывание информации. Соответственно, на этапе деления не происходит биосинтеза белка, интенсивность процессов метаболизма минимальна, транспорт веществ в клетку и из нее практически равен нулю. Все процессы в делящейся клетке направлены на выполнение главнейшей задачи – максимально точно, без искажения, передать генетическую информацию дочерним клеткам, – в ущерб второстепенным (на данном этапе!) функциям.
Созревание. В этот период происходит дифференцировка клеток и становление ключевых ферментных систем. Клетка готовится выполнять предназначенные природой функции, постепенно активизируя свой обмен веществ.
Рисунок 5. Последовательность стадий митоза (схема):
1 – хромосомы; 2 – веретено деления;
3 – хроматин; 4 – поперечная перетяжка
Активное функционирование. Интенсивность реакций метаболизма и сопряженного с ним энергетического обмена в это время максимальны
В период активного функционирования интенсивность обмена веществ в клетке максимальна.
Процессы в клетке направлены на обеспечение постоянства внутренней среды и выполнение специфических функций: нейрон воспринимает и передает нервный импульс, эритроцит переносит кислород и так далее.
Угасание (старение). Этот процесс запрограммирован генетически и, в первую очередь, проявляется уменьшением выработки и активности ферментов в клетке. При этом замедляются биохимические реакции, тормозится метаболизм и энергетический обмен. Период старения клетки характеризуется уменьшением выработки и активности ферментов.
Стареющие клетки, как правило, имеют неудвоенное количество ДНК, но сохраняют жизнеспособность и некоторую метаболическую активность в течение определенного времени.
Естественная гибель клетки (апоптоз). К сожалению, до сих пор процесс естественной гибели клеток до конца не изучен.
Известно, что в клетке из-за блокирования ферментов прекращается синтез белка, а нет белка – нет и жизни. Морфологически апоптоз характеризуется разрушением ядра и цитоплазмы. “Осколки” погибшей клетки поглощаются и перерабатываются специальными клетками иммунной системы – фагоцитами. Но ведь клетки могут погибнуть и под воздействием случайных факторов (механических, химических и любых других). Случайная гибель клеток (а также ткани, органа) в биологии называется некрозом. Важно то, что естественная клеточная гибель (апоптоз) в отличие от некроза не вызывает воспаления в окружающих тканях. Апоптоз не вызывает воспаления в окружающих тканях.
В организме запрограммированная клеточная гибель выполняет функцию, противоположную митозу, и, тем самым, регулирует общее число клеток в организме. Апоптоз играет важную роль в защите организма при вирусных инфекциях. В частности, иммунодефицит при ВИЧ-инфекции определяется нарушениями в контроле апоптоза.
Теперь, когда мы рассмотрели все этапы жизненного цикла клеток, коротко остановимся на процессах регуляции численности клеток в организме. Во время эмбриогенеза (первого этапа внутриутробного развития) число клеток постоянно возрастает, причем в геометрической прогрессии (рисунок 6).
Зигота, образовавшаяся после слияния яйцеклетки и сперматозоида, делится с образованием двух дочерних клеток. Затем, в результате последовательных делений, образуются четыре, восемь, шестнадцать клеток и так далее. Параллельно с увеличением численности на этапе эмбриогенеза происходит дифференцировка клеток – так образуются ткани.
Рисунок 6. Увеличение численности клеток на этапе эмбриогенеза
Во взрослом организме общая численность клеток стабильна, она остается практически неизменной на протяжении многих лет (рисунок 7).
Рисунок 7. Поддержание постоянства общей численности клеток во взрослом организме
Это происходит за счет уравновешивания процессов возникновения новых клеток (митоза) и гибели клеток, естественной (апоптоза) или случайной (некроза). При смещении равновесия, например, гибели большого количества клеток в результате травмы или другого негативного воздействия, включаются механизмы регенерации (увеличение интенсивности деления клеток для замещения погибших), о которых уже было сказано. Таким образом, общая численность клеток поддерживается практически на постоянном уровне.
Список используемой литературы
1. Анатомия и физиология человека: учебник для 9 кл. шк. с углубл. изучением биологии / М. Р. Сапин, З. Г. Брыксина – М.: Просвещение, 1998. 256 с., ил.
2. Билич Г., Катинас Г. С., Назарова Л. В. Цитология: Учебник. – 2-е изд., испр. и доп.. – СПб: Деан, 1999. – 112 с.
3. Большой толковый медицинский словарь (Oxford) / Пер. с англ.: в 2-х томах / Под ред. Г. Л. Билича. – М.: Вече АСТ, 1999. – Т. 1, 2.
4. Краткая медицинская энциклопедия / Гл. ред. Б. В. Петровский: в 3-х томах – 2-е изд. – М.: Советская энциклопедия, 1989. – Т. 1, 2, 3.
5. Робертис Э, Новинский В., Саэс Ф. Биология клетки: Учебник / Пер. с англ. А. В. Михеевой и др.; Под. ред. С. Я. Залкинда. – М.: Мир, 1973. – 488 с
6. Физиология человека: Учебник для студентов мед. вузов / Под ред. В. М. Смирнова. – М.: Медицина, 2001. – 608 с., ил.
7. Фрайфелдер Д. Физическая биохимия. Применение физико-химических методов в биологии и молекулярной биологии / Пер. с англ. Е. С. Громовой, С. В. Яроцкого; Под ред. З. А. Шабаровой. – М.: Мир, 1980. – 582 с., ил.
8. Эллиот В., Эллиот Д. Биохимия и молекулярная биология / Пер. с англ.; Под ред. А. И. Арчакова и др. – М.: Изд-во НИИ биомед. химии РАМН, 1999. – 372 с., ил.
9. Энциклопедический словарь медицинских терминов / Гл. ред. Б. В. Петровский: в 3-х томах. – М.: Советская энциклопедия, 1982, Т. 1, 2, 3.
10. Энциклопедия для детей. Происхождение и природа человека. Как работает тело. Искусство быть здоровым / Гл. ред. Володин В. А. – М.: Аванта+, 2001. – 464 с., ил. Т. 18. Ч. 1.