РефератыМатематикаЛеЛекции переходящие в шпоры Алгебра и геометрия

Лекции переходящие в шпоры Алгебра и геометрия

1.Матрицы. Терминология и обозначения.


Матрицей размера (mxn) называется набор m×n чисел – элементов м-цы Ai,j, записанных в виде прямоугольной таблицы:



Набор аi1, ai2, ain – наз iтой строкой м-цы. Набор a1j, a2j, amj – jтым столбцом.


М-ца размером 1хп – называется строкой, вектором; м-ца размером mx1 – столбцом. Если размерность пхп – матрица называется квадратной. Набор элементов а11, а22, апп образует главную диагональ м-цы. Набор а1п, а1,п-1, ап1 – побочную диагональ. М-ца все эл-ты, которой = 0 наз. нулевой. Квадратная м-ца, элементы главной диагонали которой равны 1, а все остальные – 0, называется единичной, обозн.: Е


Матрицы: А(I,j) и B(I,J) называется равными, если равны их размеры и их элеме6нты в одинаковых позициях совпадают.


2.Действия с матрицами


1) Сложение


Суммой м-ц А(I,j) и B(I,J) наз. м-ца С(I,J) элементы кот, выч по формуле:


Сij=Aij+Bij (I=1…m, j = 1…n)


C=A+B (размер всех м-ц: mxn)


2) умножение м-цы на число


Произведение м-цы А = (Aij) размера mxn на число С называется матрица: B=(Bij) размера mxn, элементы кот, выч. по формуле:


Вij=С×Aij (I=1…m, j = 1…n)


В=С×А


вычитание:


С=А+(-)В = А-В


3) умножение м-ц


А=(Aik), B=(Bkj) – квадратные м-цы порядка n. Произведением А на В называют м-цу С= (Сij) элементы, кот выч. по формуле:


Сij = Ai1×B1j+… Ain×BnJ


С=АВ. Можно записать так:



Порядок сомножителей в матрице существенен: АВ не равно ВА


Св-ва умножения м-цы:


(АВ)С=А(ВС)


А(В+С)=АВ+АВ, (А+В)С=АС+ВС


Произведение двух прямоугольных матриц существует, если их внутренние размеры (число столбцов первой, и число строк второй) равны.


3.Порядки суммирования. Транспонирование м-цы


Сумму Н всех элементов квадратной м-цы А можно вычислить 2 мя способами:


1. Находя сумму элементов каждого столбца и складывая полученные суммы:



2. Находя сумму элементов каждой строки и складывая эти суммы:



отсюда вытекает, что



порядок суммирования в двойной сумме можно менять.


Матрица



называется транспонированной по отношению к м-це А=



Обозначается АТ
. При транспонировании строки переходят в столбцы, а столбцы в строки и если А размером mxn, то АТ
будет размером nxm


Св-ва операции транспонирования.


1 (АТ


2 (А+В)Т
=АТ
+ВТ


3 (СА)Т
=САТ
(С-число)


4 (АВ)Т
=АТ
×ВТ


4.Элементарные преобразования матрицы.


1 Переставление двух строк


2 Умножение строки на не равное 0 число В


3 Прибавление к строке матрицы другой ее строки, умноженной на число С.


Также производят элементарные преобразования столбцов.


5.Матрицы элементарных преобразований.


С элементарными преобразованиями тесно связаны квадратные матрицы элементарных преобразований. Они бывают следующих типов:


1 м-цы получающиеся из единичных путем перестановки двух любых строк например м-ца:


получена перестановкой 2 и 4 строки


2 тип. м-цы получающиеся из единичной заменой диагонального элемента на произвольное не нулевое число:



отличается от единичной элементом В во второй строке


3 тип отличающиеся лишь одним недиагональным не нулевым элементом:


Основное св-во матриц элементарных преобразований Элементарное преобразование произвольной матрицы равносильно умножению этой м-цы на матрицу элементарных преобразований


Элементарные преобразования строк м-цы А


1 умножение м-цы А на м-цу 1 типа слева переставляет строки с номерами I,j


2 Умножение м-цы А на м-цу второго типа слева равносильно умножению j строки м-цы А на число В


3 прибавление к jстороке м-цы А ее iтой строки, умноженной на число С равносильно умножению м-цы А на м-цу 3 типа слева


Элементарные преобразования столбцов м-цы А


1 умножение м-цы А на м-цу 1 типа справа переставляет столбцы с номерами I,j


2 Умножение м-цы А на м-цу второго типа справа равносильно умножению j столбца м-цы А на число В.


3 прибавление к j столбцу м-цы А ее I того столбца, умноженного на число С равносильно умножению м-цы А на м-цу 3 типа справа.


6.Определители


С каждой квадратной матрицей связано некое число наз. определителем.


Определителем м-цы второго порядка:



наз число: а11×а22-а12×а21


Определитель м-цы третьего порядка:


=


=


также можно восп правилами треугольника:


Предположив, что определитель м-цы порядка меньше n уже известен, определитель м-цы порядка n будет равен:


D= a11×M11-a21×M21+…+(-1)n+1
×an1×Mn1


где Мi1 – определитель м-цы порядка n-1, это число называется дополнительным минором. Подобная м-ца получается из А путем вычеркивания 1 столбца и j строки. Это называется разложением определителя по 1 ому столбцу.



число: Аij=(-1)I
+1
×Mij называется алгебраическим дополнением эл-та аij в определителе [А] с учетом алгебр. доп ф-лу нахождения определителя можно записать так:



Определитель – сумма попарных произведений эл-тов произвольного столбца на их алгебраический дополнитель.


Свойства определителя

1 При транспонировании матрицы определитель не изменяется: [AT
]=[А]


отсюда вытекает, что строка и столбец равноправны с точки зрения свойств определителя.


2 Линейность


Если в определителе DI является линейной комбинацией 2-х строк:



тогда D=fD’+lD’’


где:


отличаются от D только I-тыми строками.


3 Антисимметричность если определитель В* получен из опр В перестановкой строк, то В* = -В


4 Определитель матрицы с двумя одинаковыми строками равен 0


5 Умножение строки определителя на число равносильно умножению самого определителя на это число


6 определитель с 0 строкой = 0


7 определитель, одна из строк которого = произв другой строки на число не равное 0 = 0. (Число выносится за определитель далее по св-ву 4)


8 Если к строке определителя прибавить другую его строку, умноженную на какое либо число, то полученный определитель будет равен исходному.


9 Сумма произведения эл-тов строки определителя на алгебр. дополнение соответствующих элементов другой строки опр = 0


8. Обратная матрица


Квадратная матрица наз. невырожденной, если ее определитель не равен 0.


М-ца В, полученная из невырожд м-цы А по правилу:


В позицию ij м-цы В помещается число = алгебраическому дополнению м-цы Aji, эл-та аji в м-це А.


М-ца В наз. союзной или присоединенной к м-це А и обладает следующими св-вами:


АВ=ВА=[А]I (I-единичная матрица)


Матрица А-1
=1/[А]В называется обратной м-це А. Отсюда вытекает равенство:


АА-1
=I, А-1
А=I


М-цу А-1 можно рассматривать как решение 2х матричных уравнений АХ=I, ХА=I, где - неизвестная матрица.


Произвольную невырожденную м-цу элементарными преобразованиями строк можно привести к единичной матрице


1 Привести к треугольному виду


2 Диагональ матрицы преобр 2 вида приводится к равенству единицам


3 Преобразованиями 3 го типа, прибавляя к п-1 строке последнюю умноженную на –а1п, -а2п…-ап-1п, приводится к матрице у которой все эл-ты п-ного столбца, кроме последнего равны 0 и т. д.


2 метод построения обратной м-цы путем составления расширенной матрицы (метод Жордана)


1 составляется расширенная матрица, приписывая к матрице А единичную матрицу I того же порядка т. е. получаем м-цу (А|I) элементарными преобр строк м-ца А приводится к треугольному виду, а потом к единичному, полученаая на месте I м-цы м-цы С – является обратной исходной матрице А


15. Понятия связанного и свободного векторов.


Рассмотрим т А и т. В, по соединяющему их отрезку можно перемещать в двух направлениях: если считать А началом, а т. В – концем, то получим направленный отрезок АВ, а если т. В- начало, а т. А – конец, то направленный отрезок ВА. Направленный отрезок часто наз. связанными или закрепленными векторами. В случае, когда начальная и конечная точка совпадают, т. е. А=В, связанный вектор наз. нулевым..


Связанные векторы АВ и СД равны, если середины отрезков АД и ВС совпадают обоз: АВ=СД, отметим, что в случае, когда т. А,В,С,Д не лежат на одной прямой это равносильно тому, что четырехугольник АВСД – параллелограмм. Поэтому равные связанные в-ры имеют равные длины.


Св-ва связанных в-ров:


1 Каждый связанный в-р равен самому себе АВ=АВ


2 Если АВ=СД, то и СД = АВ


3 Если АВ=СД и СД=EF, то AB=EF


От каждой точки можно отложить связанный в-р равный исходному.


Свободные в-ры – те, начальную точку которых можно выбирать произвольно. или, что тоже самое, которые можно произвольно переносить параллельно самим себе. Свободный в-р однозначно определяется заданием связанного в-ра АВ.


Обоз свободные в-ры малыми латинскими буквами и стрелкой сверху. Нуль-вектор обоз 0 со стрелкой.


Если задан в-р а и т. А, сущ ровно 1 т. В, для которых АВ=а. Операция построения связанного в-ра АВ, для которой выполнено это равенство называется откладывание свободного в-ра а от т. А. Связанные в-ры, полученные в результате операции откладывания равны между собой. И имеют одинаковую длину. Длина свободного в-ра а обоз |f|, длина нуль-в-ра=0, Если а=в, то и длины их равны., обратное неверно!!!.


16. Линейные операции над в-рами


1 сложение в-ров


Пусть даны в-ры: а и в


от т. О отложим в-р ОА=а, от полученной т. А отложим в-р АВ=в. Полученный в результате в-р ОВ называется суммой векторов а и в и обозн: а+в. Сложение в-ров коммутативно: а+в=в+а. Существует два правила построения суммы: правило треугольник и правило параллелограмма.


Сложение в-ров ассоциативно, т. е. для любых в-ров а, в, с вып рав-во:


(а+в)+с=а+(в+с),


2 Умножение в-ра на число


Свободные в-ра а и в наз коллинеарными, если определяющие их связанные в-ры лежат на параллельных или совпадающих прямых. Если отложить коллинеарные в-ры а и в от общей т. О: ОА=а, ОВ=в, то т. О, А, В будут лежать на одной прямой. Возможны 2 случая: т. А и В располагаются по одну сторону от т. О или по разные стороны. В первом случае в-ры а и в наз одинаково направленными, во втором – противоположно направленными. если в-ры имеют равные длины и одинаково направлены, то они равны.


Произведением в-ра а на число С наз в-р в, такой, что


1 длина его |b|=|C|×|a|


2в-ры а и в одинаково (противоположно) направлены, если С>0 (C<0). – М.: Обозн в=С×а. При С=0 положим, что Са=0.


Св-ва умножения


1 (С+Д)×а=С×а+Д×а


2 С×(Д×а)=(С×Д)×а


3 С×(а+в)=С×а+С×в (Си Д любые дейст. числа, а и в – в-ры)


В-р, длина которого = 1 называется единичным в-ром или ортом и обоз а0, его длина |a0|=1


Если а ¹ 0, то а0 = 1/|a|, есть единичный в-р (орт) направления в-ра а.


Противоположный в-р (-а) –а || а, противоположно направлен в-ру а


а+(-а)=0; -а= (-1)×а


3 вычитание в-ров


разностью в-ров а и в наз в-р с, такой, что в+с =а


а- уменьшаемый, в- вычитаемый, с- разность.


1 разность в-ров а и в явл диагональю параллелограмма, построенного на в-рах а и в, направленная в сторону уменьшаемого в-ра.


Пусть а и в ненулевые в-ры. отложим их от т. О, а=ОА, в=ОВ. Углом между в-рами а и в наз. наименьший угол между в-рами ОА и ОВ


Если угол между а и в = П/2 эти в-ры наз ортогональными.


17. Координаты и компоненты в-ра


Обозначаем в прямоугольной декартовой системе координат положительные направления осей OX,OY,OZ единичными в-рами : i, j, k, попарно ортогональными и равными единице.


Найдутся числа x,y,z, для которых:


а = xi+yj+zk (2) Эта ф-ла наз. разложением в-ра по орто-базису


Эти в-ры называются ортонормированным базисом. Для каждого в-ра а разложение по орто-базису единственно, т. е. коэффициенты x,y,z в разложении в-ра а по векторам i,j,k определены однозначно. Эти коэффициенты наз координатами в-ра а, они совпадают с координатами z,y,x т. А


a={x,y,z} это означает, что в-р однозначно задается упорядоченной тройкой своих коэффициентов


В-ры xi, yj, zk, сумма которых = а, называются компонентами в-ры а. Два в-ра а и в равны тогда и только тогда, когда равны все их компоненты.


Радиус-вектором в т. М(x,y,z) называется вектор r=xi+yj+zk, идущий из начала коорд т. О в т. М


Линейные операции над в-рами в координатах.


Имеем 2 в-ра а={x1,y1,z1} b={x2,y2,z2}, таких, что а=x1i+y1j+z1k, b=x2i+y2j+xz2k


сумма будет:


a+b=(x1+x2)I+(y1+y2)j+(z1+z2)k


a+b={x1+x2, y1+y2, z1+z2}


при сложении в-ров их координаты попарно складываются. Для вычитания так же.


С×а={Cx1,Cy1,Cz1}


при умножении на число, все его координаты умножаются на это число.


В-ры а и в коллинеарны тогла и только тогда, когда их координаты пропорциональны.


18. Проекция в-ра на ось


Прямая l, с заданным на ней направлением называется осью.


Величиной направленного отрезка Ав на оси l наз. число, обозначаемое: (АВ) и равное длине отрезка АВ, взятом со знаком +, если напр АВ совп с напр. прямой и со знаком – если не совп.


Проекцией в-ра АВ на ось l наз величина, направленного отрезка СД, построенного опусканием перпендикуляров из в-ра АВ на ось l, обозн: Prl
AB=(СД)


Свойства проекции:


1 Проекция в-ра АВ на какую-либо ось l = произведению длины в-ра на косинус угла между осью и этим в-ром.


Prl
AB=|AB|×cosa


2 Проекция на ось l в-ра С×а =С×Prl
а, С- произв. число.


3 Проекция суммы в-ров на какую либо ось = сумме проекции в-ров на эту же ось


19. Скалярное пр-е в-ра


20. Векторное пр-е в-ра


21. Смешанное пр-е в-ров


22. Деление отрезка в данном отношении


т М ¹ В делит отрезок [АВ] в отношении l, если АМ
= l×АВ
. Т. М расположена на Ав при этом, если


1 М внутренняя точка АВ, то l >0 (случайц внутреннего деления)


2 М=А, l = 0


3 М лежит вне Ав, l <0 (случай внешнего деления)


Других вариантов расположения т. М быть не может, и ни водном из вариантов l¹ -1


Если А(r1
), B(r2
), M(r
) – точки пространства и М – делит АВ
в отн l, тогда:


это соотношение в координатной форме имеет вид: для А(x1,y1,z1), B(x2,y2,z2) и M(x,y,z)



Если М – середина АВ, то l =1Коорд x,y,z середины отрезка АВ выглядят так:



Если т А В принадлежат плоскости ОХУ, то аппликата т А и В и М = 0 и задачу решают первые 2 ф-лы ,а если А и В М лежат на плоскости ОХ, тор первой ф-лой.


23. Нормальное уравнение прямой. Общее уравнение прямой


Если взять на плоскости фиксированную точку О и какую-либо прямую L, то положение этой прямой относительно плоскости будет определено если задать расстояние от нее до т. О, т. е. длину р отрезка ОТ, перпендикуляра из т. О на эту прямую; и единичный вектор n0=1 – перпендикулярный прямой L и направленный из начальной т. О к этой прямой.


Когда текущая т. М движется по прямой L, радиус вектор-r меняется так, что проекция на направление n0 будет постоянной и равной р:


это соотношение выполняется для каждой точки прямой L и нарушается когда т. М лежит вне ее.


Заметив, что: это можно записать так:


(2) полученное ур-е наз. нормальным (нормированным) уравнением прямой в векторной форме. Радиус в-р r – произвольной точки прямой наз. текущим радиус в-ром прямой.


Выбрав на плоскости Декартову систему координат и поместив ее начало в т. О, в-ры r, n0 можно записать так:


n0={cosj, sinj}; r={x,y}


уравнение (2) примет вид:


(3) это нормальное уравнение прямой в координатной форме, относительно прямых х и у; оно явл ур-ем 1 степени, тем самым в Декартовой прямоугольной системе всякое положение прямой определяется ур-ем 1 степени относительно переменных х и у верно и обратное.


Уравнение Ax+By+C=0 (4) называется общим уравнением прямой А2
+В2
¹ 0


если домножить его на постоянный множитель m, положа:


m×А= cosj, m×В= sinj, m×С = -р, где:



называется нормирующим множителем.


И уравнение получается нормальным .Общее уравнение (4) определяет прямую как множество точек М плоскости декартовы координаты которых удовлетворяют этому уравнению.


Нормальный в-р прямой - всякий ненулевой (не обязательно- единичный) в-р перпендикулярный этой прямой. Вектор n = {A,B} будет нормальным вектором прямой, заданной ур-ем (4), таким оборазом коэффициенты А и В при текущих координатах х и у являются координатами нормального в-ра этой прямой. Все отсальный нормальные в-ры прямой можно получить умножая в-р n на произвольное ¹ 0 число.


24. Уравнение прямой на плоскости , про

ходящей через заданную точку перпендикулярно заданному направлению.


Для того, чтобы найти ур-е прЯмой L, проходящей через т. М0, заданную радиус-вектором r0={x0,y0}, перпендикулярную вектору n={A,B}, проведем радиус-вектор r={x,y} в произвольной т. М этой прямой


в-р М0М = r-r0 лежит на прямой L, а значит перпендикулярен в-ру n, поэтому их скалярное пр-е = 0


(r-r0)×n = 0 (8) равенство справедливо для всех т. М принадлежащих прямой и нарушается, если точка на прямой не лежит. Ур-е (8) явл в-рным уравнением исходной прямой выражая это произв, через коорд в-ров получим ур-е прямой в коорд форме:


A(x-x0)+B(y-y0)=0 (9)


25. Исследование уравнения прямой неполные ур-я прямой..


Если хотя бы один из коэффициентов А, В, С ур-я Ах+Ву+С=0 равен 0, ур-е наз. неполным. По виду уравнения прямой можно судить о ее положении на плоксоти ОХУ. Возможны случаи:


1 С=0 L: Ax+By=0 т. О(0,0) удовлетворяет этому уравнению значит прямая проходит через начало координат


2 А=0 L: Ву+С=0 - нормальный в-р n={0,B} перпендикулярен оси ОХ отсюда следует, что прямая параллельна ось ОХ


3 В = 0 L: Ay+C=0 0 - номральный в-р n={А,0} перпендикулярен оси ОY отсюда следует, что прямая параллельна ось ОУ


4 А=0, С=0 L: By=0Ûy=0ÛL=OX


5 B=0, C=0 L: Ax=0Ûx=0ÛL=OY


6 A¹ 0, В ¹ 0, С ¹ 0 L; - не проходит через начало координат и пересекает обе оси.


26. Уравнение прямой с угловым коэффициентом


Если общее уравнение прямой, при В ¹ 0 переписать в виде:


и приравняв:


и получим ур-е с угловым коэффициентом


у=кх+b (10), где число к = tga, a - величина угла наклона прямой к оси ОХ, угол, отсчитываемый в направлении противоположном движению часовой стрелки от положительного направления оси ОХ до данной прямой.


В случае L||ОХ, или L=OX, a=0


В случае L||ОY, или L=OY, a=П/2 и угловой коэффициент не существует.


27. Ур-е прямой, проход через данную т., с данным угловым коэфф. Ур-е прямой проход через две данные точки.


Если прямая задана т М0(х0, у0) и угловым коэффициентом к, тогда на основании ур-я (10) можно получить ур-е искомой прямой:


у-у0=к(х-х0) (11)


Ур-е прямой проходящей через две заданных точки


Зададим прямую точками М1(х1,у1) и М2(х2,у2), х1 ¹ х2. М1 и М2 принадлежат прямой, откуда следует:


у-у1=к(х-х1) для М1и у-у2=к(х-х2) для М2


откуда:


(12) Эта ф-ла позволяет вычисли ть угловой коэффициент, зная коорд двух точек.


Если у1 ¹ у2, то подставляя к из ф-лы (12) в равенство: у-у1=к(х-х1), получаем:


(13) Искомое уравнении прямой, проход через две заданных точки.


28. Расстояние от точки до прямой на плоскости


Расстоянием от т. М* до прямой L наз. длину отрезка М*N – перпендикуляра L^
опущенного из т. М* на эту прямую.


Если М*(х*, у*) – заданная точка,


а - нормальное ур-к прямой L, то расстояние от М* до L выч. по ф-ле:


d=d(M*,L)=|x*cosj+y*sinj-p| (14)


d=d(M*,L)=|rx
×n0 -p|


обозначим через d(M*,L)= rx
×n0 –p= x*cosj+y*sinj-p т. е.: d(M*,L)= |d|


по знаку d можно судить о расположении точек О и М*, относительно прямой L:


Если О и М* расположены по разные стороны относительно прямой, то d > 0 , если по одну сторону – то d<0. Величина d называется отклонением т. М* от прямой L.


Если прямая задана общим уравнением, то расстояние вычисляется по ф-ле:



29. Уравнение прямой в отрезках


Рассматривая общее ур-е прямой, при А,В,С ¹ 0, переписав его в виде:


и положив


а = - С/A в = - С/В получим ур-е прямой в отрезках:


(16)


Для нахождения т. М1 пересечения прямой (16) с осью ОХ достаточно решить систему уравнений:



для пересечения с осью ОУ получаем:



Параметры а и в в(16) определяют величину отрезков Ом1 и ОМ2, отсекаемых прямой от осей координат.


30. каноническое уравнение прямой


Ненулевой в-р коллинеарный прямой называется ее направляющим в-ром.


Из аксиом следует, что через заданную точку проходит только одна прямая с заданным направляющим в-ром.


Прямая L, с направл. в-ром S проходящая через т. М0(х0, у0). проходит через т. М(х,у) тогда и только тогда, когда в-ры М0М и S 0 коллинеарны т. е. М0М=tS, t'R) (17) Это ур-е наз векторным уравнением прямой.


Если М0(х0, у0), М(х,у) – текущие точки прямой L; S={m,n} – направляющий вектор прямой , тогда в-р М0М = {x-x0, y-y0}


Записав условия коллинеарности из (17) в векторной форме получим: x-x0=tm, y-y0=tn или:


(18) Ур-е наз. каноническим ур-ем прямой на плоскости.


Обозначает лишь пропорциональность и в случае, когда m = 0 или n = 0 равносильно ур-ям: х-х0=0 или у-у0=0 соответственно.


31. Параметрическое уравнение прямой на плоскости.


Представляет собой другую форму записи ур-я (17)


пусть r=ОМ, а r0=OM0 – радиус в-ры точек М и М0 относительно начала координат, тогда М0М = r-r0 и ур-е (17) зап. в виде: r=r0+tS, t'R


или в координатной форме, в системе ОХУ:


(20), t'R


ур-я (19) и (20) наз параметрическими уравнениями прямой на плоскости в векторной и координатной формах.


32. Угол между двумя прямыми на плоскости.


Условия параллельности и перпендикулярности двух прямых на плоскости


а) прямые L1 L2 заданы общими уравнениями


L1:=А1х+В1у+С1=0, А12
+В12
>0


L2:=А2х+В2у+С2=0, А22
+В22
>0


j(угол между ними)= углу между их нормальными в-рами n1 ={A1,B1} и n2={A2,B2}


оттуда вытекает, что



L1|| L2 Û n1 || n2Û n1 = ln2


A1=lA2, B1=lB2



L1 ^ L2 Û n1 ^ n2Û n1×n2 =0 Û


Û A1×A2+B1×B2=0


б) прямые заданы каноническим уравнением


угол между ними равен углу между их направляющими векторами:


S1={m1,n1} S2{m2,n2} поэтому:


L1|| L2 Û S1 || S2



L1 ^ L2 Û S1 ^ S2 Û S1×S2=0 Û


m1×m2+n1×n2=0


в) прямые заданы ур-ем с угловым коэффициентом


L1:= у=к1х+в1


L2:= у=к2х+в2


за угол между прямыми принимаемся наименьший угол на который нужно повернуть прямую L1 против часовой стрелки до совмещения с прямой L2 вокруг т. пересечения прямых.


Через a1 и a2 обоз углы наклона прямых L1 и L2 к оси ОХ


Угол между прямыми j= a2- a1



tga1=k1, tga2=k2



L1|| L2 Ûa1 = a2 (j=0) Û k1=k2


L1 ^L2 Ûj=П/2


k2= -1/k1


33. Нормальное уравнение плоскости. Общее уравнение плоскости.


Зафиксировав неку т. О в пространстве положение плоскости П будет определено, если задать следующие величины: расстояние до нее от начальной т. О, т. е. длину р отрезка ОТ, перпендикуляра, опущенного из т. О на плоскость П и единичный в-р n0, |n0|=1, перпендикулярный плоскости П и направленный из начальной т. О к этой плоскости.


Когда текущая т. М движется по плоскости ее радиус в-р r меняется так, что


prn0
OM
=p (1)


это соотношение вып для каждой т. принадлежащей плоскости, а для не принадлежащей – нарушается.


(1) являет уравнением этой Плоскости П


prn0
OM
=r×n0 или r×n0-p=0 (2)


ур-е (2) – нормальное уравнение плоскости в векторной форме. Радиус-вектор r произвольной т. плоскости наз. ее текущим радиус вектором.


Введем в пространстве прямоугольную Декартову систему координат, поместив ее начало в т. О, тогда в-ры r и n0 можно записать так: n0={cosa, cosb, cosd);


r={x,y,z}


Ур-е (2) примет вид:


x×cosa +y×cosb+z×cosd-p=0 (3) – нормальное уравнение плоскости в координатной форме


Особенности ур-я (3)


1 Сумма квадратов коэффициентов при текущих координатах = 1:


cos2
a+cos2
b+cos2
d=1


2 свободный член (-р) £0


Относительно переменных x,y,z – ур-е (3) явл. ур-ем 1 степени.


Всякое ур-е 1 степени определяет плоскость


Ур-е:


Ax+By+Cz+D=0 (4) – уравнение плоскости общего вида.


Всякий ненулевой, перпендикулярный плоскости вектор наз. нормальным вектором этой плоскости. В-р n={A,B,C} нормальный в-р плоскости, заданной ур-ем (4), таким образом коэффициенты при координатах в ур-е (4) являются координатами нормального в-ра этой плоскости. Все другие нормальные вектора получают из в-ра n умножая его на любое ¹ 0 число.


34. Ур-е плоскости проходящей через заданную точку перпендикулярно заданному направлению


Уравнение плоскости, проходящей через т. М0, заданной r0={x0,y0,x0}, перпендикулярной в-ру n={A,B,C}строится так:


Проведем радиус в-р r={x,y,z} в произвольную т. М этой плоскости. В-р М0М=r-r0 лежит в плоскости П и значит перпендикулярен в-ру n., поэтому их скалярное пр-е = 0


(r-r0)×n=0 (1) Рав-во (1) справедливо для всех т. М плоскости П и нарушается если М не принадлежит этой плоскости, тем самым – (1) – векторное уравнение искомой плоскости, в координатной форме это выражается так:


A(x-x0)+B(y-y0)+C(z-z0)+D=0


35. Исследование ур-я плоскости. неполное ур-е плоскости


По виду общего ур-я можно судить о том как лежит плоскость относительно системы координат OXYZ. Если хотя бы один из коэффициентов общего ур-я = 0, то оно наз. неполным.


Возможны случаи:


1 D=0 П: Ax+By+Сz=0 т. О(0,0) удовлетворяет этому уравнению значит прямая проходит через начало координат


2 А=0 П: Ву+ Сz +D=0 - нормальный в-р n={0,B,C} перпендикулярен оси ОХ отсюда следует, что плоскость параллельна оси ОХ


3 В = 0 П: Aх + Cz +D=0 - нормальный в-р n={А,0,С} перпендикулярен оси ОY отсюда следует, что плоскость параллельна оси ОУ


4 С=0 П: Ax+By+D=0, n={А,B,0} перпендикулярен OZÛП ||OZ плоскость параллельна оси OZ


5 А=0, C=0 П: By+D=0Ûy= - D/BÛ тогда из 2 П||ОХ, из 4 П||OZ значит П||OXZ


6 А=0, В=0 П: Cz+D=0Ûz= - D/CÛ П||ОХ, П||OY значит П||OXY


7 C=0, В=0 П: Ax+D=0Ûx= - D/AÛ П||ОZ, П||OY значит П||OYZ


8 A=0, В=0, D=0 П: Cz=0 Ûz=0Û П||ОXY, OÎ П значит П= OXY


9 A=0, C=0, D=0 П: By=0 Ûy=0Û П||ОXZ, OÎ П значит П= OXZ


10 B=0, C=0, D=0 П: Ax=0 Ûx=0Û П||ОXY, OÎ П значит П= OXY


11 A¹ 0, В ¹ 0, С ¹ 0 П; - не параллельна ни одной из осей и пересекает их.


36. Уравнение плоскости проходящей через три данный точки


Даны М1(x1,y1,z1), М2(x2,y2,z2), М3(x3,y3,z3) не лежащие на одной прямой. Пусть М(x,y,z) – точка искомой плоскости.


r1={x1,y1,z1}, r2={x2,y2,z2}, r3={x3,y3,z3} и r={x,y,z} – радиус векторы данных точек.


В силу компланарности в-ров М1М=r-r1, M1M2=r2-r1, M1M3=r3-r1 их смешанное произведение = 0, т. е. радиус в-р т. М удовлетворяет условию:


(r-r1)(r2-r1)(r3-r1)=0 (10)


а ее координаты линейному уравнению:


(11)


ур-е (10) векторное, а ур-е (11) – координатные уравнения искомой плоскости.


37. Уравнение плоскости в отрезках.


Представив общее ур-е плоскости при A,B,C,D¹ 0 в виде:



и положив a= - D/A, b = -D/B, c = -D/C, получим уравнение плоскости в отрезках:



Найдем координаты точек М1, М2, М3 пересечения П с осями OX, OY, OZ


для М1 имеем



x=a, значит М1(а,0,0)


аналогично получаем:


М2(0,в,0): М3(0,0,с)


Значения а,в,с определяют величину отрезков, отсекаемых П на осях координат.


38. Расстояние от точки до плоскости


Пусть М*(x*,y*,z*) – заданная точка,


xcosa+ycosb+cosg-р=0 – заданное уравнение плоскости


расстояние от т. М* до плоскости П выч. по ф-ле:


d=d(M*, П) = |x*cosa+y*cosb+z* cosg| (13)


обозначим через d(M*, П)=r*×n0-p= x*cosa+y*cosb+z* cosg-p. Если т М* и т. О –начало координат лежат по разные стороны от П, то d>0, а если по одну сторону, то d<0, d - отклонение т. М* от плоскости П.


Если П задана общим уравнением, то расстояние от т. М* до П =



39. Угол между двумя плоскостями, условия параллельности и перпендикулярности двух плоскостей.


П1 и П2 две заданные плоскости


П1: A1x+B1y+C1Z+D1=0


П2: A2x+B2y+C2Z+D2=0


A12
+B12
+C12
>0, A22
+B22
+C22
>0


углом между двумя плоскостями будем называть любой из двух смежных двугранных углов образованных этими плоскостями. (в случае параллельности угол между ними равен 0 или П) один из этих двугранных углов = <j между нормальными в-рами: n1={A1,B1,C1} и n2={A2,B2,C2} этих плоскостей.


Отсюда вытекает:



П1 || П2 Û n1 || n2 Û n1=ln2 Û A1=lА2, B1=lB2, C1=lC2


условие параллельности плоскостей


П1 ^ П2 Ûn1^n2 Ûn1×n2=0 ÛA1A2+B1B2 + C1C2=0 условие перпендикулярности плоскостей.


40. параметрические уравнения прямой в пространстве.


Положение прямой в пространстве будет однозначно определено, если задать т. М0 на прямой (при помощи радиус-в-ра r0, относит некоторого фиксированного О) и направляющего в-ра S (S¹ 0), которому прямая параллельна.


Перемещение т. М прямой, соотв ее радиус в-ру ОМ=r ОМ=ОМ0+М0М (1)


М0М||S, M0M=t×S


r=r0+t×S (2)


Введем в пространство прямоугольную декартову систему координат, поместив начало координат в т. О.


т. М0 имеет коорд. (x0,y0,z0); т. M (x,y,z), напр. в-р S={m,n,k}, тогда ур-е записанное в коорд форме:


(3)


Ур-я (2) и (3) наз. параметрическими уравнениями прямой в пространстве в векторной и координатной форме соответственно. Числа m,n,k наз. направляющими коэффициентами этой прямой.


41. Каноническое уравнение прямой в пространстве


Уравнение (2), озн. коллинеарность в-ров r-r0 и S может быть записана и в терминах пропорциональности в-ров.


r-r0={x-x0,y-y0,z-z0}; S={m,n,k}


(4)


Ур-е (4) наз. каноническим ур-ем прямой в пространстве, в нём x0,y0,z0 – коорд. Т. М., лежащей на прямой, а m,n,k – координаты направляющего в-ра прямой.


Система ур-й (4) определяет прямую, как линию пересечения двух плоскостей.


Также как и для канонического уравнения на плоскости ур-е (4) говорит лишь о пропорциональности координат в-ров: r-r0 и S. Если например m=0, то ур-е переходит в ур-е x-x0=0,


если m=0 и n=0, то у р-е будет:


x-x0=0, у-у0=0,


42. Уравнение прямой в пространстве, проходящей через две заданные точки


Еси на до найтить урювнение примой проход. через т. М1(x1,y1,z1) и M2(x2,y2,z2)


Для решения в каноническом виде:


Надо знать коорд одной из точек нах на прямой и направляющий в-р. За т. на прямой можно принять любую , например, М1(x1,y1,z1), за направляющий вектор прямой –


вектор М1М2 = {x2-x1,y2-y1,z2-z1}


Уравнение искомой прямой следует из ур-я (4):


(5)


43. Общее уравнение прямой в пространстве. переход к каноническим уравнениям


Всякие две непараллельные между собой и не совпадающие плоскости, определяют прямую, как линию их пересечения.


Пусть ур-я этих плоскостей в прямоугольной декартовой системе координат OXYZ:


П1: A1x+B1y+C1z+D1=0


П2:A2x+B2y+C2z+D2=0


рассматриваемые совместно:


(6)


Эти уравнения наз. общими уравнениями прямой L, являющийся линией пересечения этих плоскостей. От общий уравнений прямой можно перейти к каноническим, для этого надо знать какую-нибудь точку прямой и её направляющий вектор. точку прямой наёдем из (6), выбирая одну из координат произвольно и решая полученную систему относительно оставшихся 2 координат. Для отыскания направляющего в-ра S прямой, заметим, что этот в-р, направленный по линии пересечения данных плоскостей должен быть перпендикулярен нормальным в-рам n1={A1,B1,C1} и n2{A2,B2,C2} так как векторное произведение n1х n2 перпендикулярно каждому из векторов n1 n2, то в качестве напр. в-ра можно взять в-р S= n1х n2.


Найденные координаты подставляются в ур-е (4)


44. Угол между прямыми в пространстве. Условия параллельности и перпендикулярности двух прямых


<j между двумя прямыми L1, L2 = углу между направляющими в-рами:S1={m1,n1,k1} и S2={m2,n2,k2}, посему:


(8)


Возможные случаи:


1 L1 || L2 отсюда вытекает S1 || S2


(9)


2 L1 ^L2 отсюда вытекает S1 ^S2 = 0ÛÛm1×m2+n1×n2+ к1×к2=0


45. Угол между прямой и плоскостью. Условия параллельности и перпендикулярности прямой и плоскости.


Если дана прямая:



и плоскость:


П: Ax+By+Cz+D=0


<j между прямой и плоскостью называют наименьший из углов, образованных прямой с её проекцией на эту плоскость.


Угол буде равен:


a=углу между нормальным в-ром Плоскости П n и направляющим в-ром прямой S.



возможны случаи:


1 L || П отсюда вытекает S^nÛS×n = 0


Am+Bn+Ck=0 –уравнение параллельности прямой и плоскости.


2 L1 ^L2 отсюда вытекает n || S


- уравнение перпендикулярности прямой и плоскости.

Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Лекции переходящие в шпоры Алгебра и геометрия

Слов:4833
Символов:37442
Размер:73.13 Кб.