Предел.
Число А наз-ся пределом последоват-ти Xn
если для любого числа Е>0, сколь угодно малого, $ N0
, такое что при всех n>N0
будет выполн-ся нер-во |Xn
-A|<E. limn
®
¥
Xn
=A. –E<Xn-A<E => A-E<Xn<A+E.
Число А явл-ся пределом
послед-ти Xn, если для любой Е-окрестности (.)А сущ-ет конкретное число N0
, для кот. любые точки >N0
попадают в Е-окрестность (.)А.
Св-ва послед-ти, имеющей предел:
1.если послед-ть имеет предел, то он единственный.
Док-во:предп, что пределы различны: lim Xn=a, lim Xn=b (n®¥), тогда |a-b|=|a-Xn+Xn-b|. Из lim Xn=a (n®¥) => " E/2 $ N1
"n>N1
|a-Xn|<E/2 Из lim Xn=b (n®¥) => " E/2 $ N2
"n>N2
|Xn-и|<E/2 N0
=max(N1
;N2
), n>N0
. |a-b|=|a-Xn+Xn-b|£|a-Xn|+|Xn-b|<E/2+E/2=E => |a-b|=0 => a=b.
2.теорема о сжатой переменной.
n>N1
Xn³Zn³Yn $ limXn = lim Yn = a (n®¥) => $ lim Zn=a (n®¥)
Док-во:1.
из того, что $ lim Xn=a (n®¥) => n>N2
|Xn-a|<E, a-E<Xn<a+E. 2.
Из $ lim Yn=a (n®¥) => n>N3
, a-E<Yn<a+E. 3.
N0
=max(N1
,N2
,N3
). При всех n>N0
Xn³Zn³Yn. a+E>Xn³Zn³Yn>a-E => lim Zn=a (n®¥)
Функция y=f(x) наз-ся ограниченной
в данной обл-ти изменения аргумента Х, если сущ-ет положит число М такое, что для всех значений Х, принадлежащих рассматриваемой обл-ти, будет выполн-ся нер-во |f(x)|£M. Если же такого числа М не сущ-ет, то f(x) наз-ся неограниченной
в данной обл-ти.
Бесконечно малая величина.
Величина Xn наз-ся бесконечно малой
при n®¥, если lim Xn = 0 (n®¥). "E>0, N0
, n>N0
, |Xn|<E.
Свойства б.м. величин
:
1.Сумма б.м. величин есть величина б.м.
Док-во:из Xn – б.м. => " E/2 $N1
, n>N1
|Xn|<E/2
из Yn–б.м.=>" E/2 $N2
, n>N2
|Yn|<E/2, N0
=max(N1
,N2
), N>N0
,|Xn±Yn|£|Xn|+|Yn|<E/2+E/2=E=>lim(Xn±Yn)=0 (n®¥). Теорема справедлива для любого конечного числа б.м. слагаемых.
2.Произведение ограниченной величины на б.м. величину есть величина б.м.
Док-во:Xn – огр. величина => $ K, |Xn| £ K,
Yn – б.м. => " E/K $N0
n>N0
|Yn|<E/K.
|Xn*Yn|=|Xn||Yn|<K*E/K=E
3.Достаточный признак существования предела переменной величины:
если переменная величина Xn имеет конечный предел А, то эту переменную величину можно представить в виде суммы этого числа А и б.м. величины. $ lim Xn=a (n®¥) => Xn=a+Yn, Yn – б.м.
Док-во:Из lim Xn=a (n®¥) => "E $N0
n>N0
|Xn-a|<E
Xn-a=Yn – б.м. => Xn=a+Yn. Справедливо и обратное: если переменную величину можно представить в виде суммы Xn=a+Yn (Yn – б.м.), то lim Xn=a (n®¥).
Бесконечно большая величина
Xn – бесконечно большая
n®¥, если "M>0 $N0
, n>N0
, |Xn|>M => M<Xn<-M. lim Xn=¥ (n®¥).
Свойства б.б. величин:
1.Произведение б.б. величин есть величина б.б.
из Xn – б.б. =>"M $N1
, n>N1
|Xn|>M
из Yn – б.б. => "M $ N2
, n>N2
|Yn|>M
N0
=max(N1
, N2
) => |Xn*Yn|=|Xn||Yn|>MM=M2
>M
Lim XnYn=¥ (n®¥).
2.Обратная величина б.м. есть б.б. Обратная величина б.б. есть б.м. lim Xn=¥ (n®¥) – б.б. Yn=1/Xn – б.м. Из lim Xn=¥ => M=1/E $N0
, n>N0
|Xn|>M =>n>N0
.
|Yn|=1/|Xn|<1/M=E =>Yn – б.м. => lim Yn=0 (n®¥).
3.Сумма б.б величины и ограниченной есть б.б. величина.
Основные теоремы о пределах:
1. lim Xn=a, lim Yn=b => lim (Xn±Yn)=a±b (n®¥)
Док-во:lim Xn=a => Xn=a+an
; lim Yn=b => Yn=b+bn
;
Xn ± Yn = (a + an
) ± (b + bn
) = (a ± b) + (an
± bn
) => lim(Xn±Yn)=a±b (n®¥).
2. limXnYn = lim Xn * lim Yn (n®¥).
3. lim Xn=a, lim Yn=b (n®¥) => lim Xn/Yn = (lim Xn)/(lim Yn) = a/b.
Док-во:Xn/Yn – a/b = (a+an
)/(b+bn
) – a/b = (ab+an
b–ab–abn
)/b(b+bn
) =(ban
-abn
)/b(b+bn
)=gn
=> Xn/Yn=a/b+gn
=> $ lim Xn/Yn = a/b = (lim Xn)/(lim Yn) (n®¥).
Пределы ф-ии непрерывного аргумента.
Число А наз-ся пределом ф-ии y=f(x) при х®x0
, если для любого Е>0 сколь угодно малого сущ-ет такое число d>0, что при "x будет выпол |x-x0
|<d, будет выполняться нер-во |f(x) – A|<E или "x выпол x0
-d<x<x+d=> A-E<f(x)<A+E.
Lim x
®
x0
f(x)=A
Ф-ия y=f(x)наз-ся бесконечно большой при x
®
x0
если для "М>0 сколь угодно большого $d>0, что "x |x-x0
|<d будет выполняться нер-во |f(x)|>M, "x x0
-d<x<x0
+d, -M>f(x)>M.
Lim f(x)=
¥
(x
®
x0
).
Число А наз-ся пределом y=f(x) x
®
¥
,
если для любого Е>0 можно найти число К, "x |x|>K |f(x)-A|<E.
I замечательный предел.
Рассмотрим окр-ть радиуса 1; обозн угол МОВ через Х.
Sтреуг
МОА< Sсект
МОА<Sтреуг
СОА.
Sтреуг
МОА=0,5ОА*МВ=0,5*1*sin=0.5sinX.
Sсект
МОА=0,5*ОА*АМ=0,5*1*х=0,5х.
Sтреуг
СОА=0,5*ОА*АС=0,5*1*tgX=0,5tgX.
SinX<x<tgX {разделим все члены на sinX}
1<x/sinX<1/cosX или 1>(sinX)/x>cosX.
Lim cosX=1, lim 1=1 (x®0) =>lim (sinX)/x=1.
Следствия:
1. limx
®
0
(tgX)/x=lim(sinX)/x*1/cosX=
=lim(sinX)/x*lim (1/cosX)=1;
2.limx
®
0
(arcsinX)/x={arcsinX=t,sint=x,t®0}=
=limt
®
0
t/sint=1;
3. limx
®
0
(sin ax)/bx = lim (aSin ax)/(ax)b=
=a/b lima
x
®
0
(sin ax)/ax=a/b.
II замечательный предел.
limn
®
¥
(1+1/n)n
=?
Бином Ньютона: (a+b)n
=an
+nan-1
b+(n(n-1)an-2
b2
)/2!+... +(n(n-1)(n-2)(n-3)an-4
b4
)/4!+...+bn
.
(1+1/n)n
=1+n1/n+n(n-1)/2!n2
+n(n-1)(n-2)/3!n3
+...+1/nn
= =2+1/2!(1-1/n)+1/3!(1-1/n)(1-2/n)+1/4!(1-1/n)(1-2/n)(1-3/n)+...+1/nn
={послед-ть возрастающая}< 2+0.5(1-1/n) +1/22
(1-1/n)(1-2/n)+1/23
(1-1/n)(1-2/n)(1-3/n)+1/2n
< 2+0.5+1/22
+1/23
+...+1/2n
=2+0.5(1-1/2n
)/(1-0.5)=2+1-1/2n
=3-1/2n
<3.
2£(1+1/n)n
<3 => $ limn
®
¥
(1+1/n)n
=e.
Следствия
:
1.limx
®
+
¥
(1+1/x)x
=e. Док-во: n£x£n+1 =>1/n³1/x³1/(n+1), 1/n+1 ³ (1/x)+1 ³ 1/(n+1) + 1, (1/n+1)x
³(1/x+1)x
³(1+1/(n+1))x
(1/n+1)n+1
³(1+1/x)x
³(1+1/(n+1))n
limn
®
¥
(1+1/n)n
(1+1/n)=e*1=e,· limn
®
¥
(1+1/(n+1))n+1
*1/(1+1/(n+1))=e*1/1=e => $limx
®
+
¥
(1+1/x)x
=e.
Непрерывность.
-фун. y=f(x) наз. неп
в точке х0
, если сущ. предел фун. y=f(x) при х®х0
равный значению фун f(x0
).limf(x)=f(x0
)
Условия:
1. f(x) – опред ф-ия; 2. $limx
®
x0-0
f(x) $limx
®
x0+0
f(x) – конечные пределы; 3. limx
®
x0-
f(x)=limx
®
x0+
f(x);
4. limx
®
x0
±
f(x)=f(x0
).
Если Х0
т-ка разрыва и выполн усл-ие 2, то Х0
– 1 род
Если Х0
– 1 род и выполн усл-ие 3, то разрыв устран.
Если Х0
т-ка разрыва и не вып усл-ие 2, то Х0
– 2род.
Св-ва непрерывности в точке:
1.Если фун f1
(x) и f2
(x) непрерывны в точке х0
, то сумма (разность) y(х)=f1
(x)±f2
(x), произведение у(х)=f1
(x)*f2
(x), а также отношение этих фун у(х)=f1
(x)/f2
(x), есть непрерывная фун в точке х0
.
Док-во (суммы): По определению получ limх
®
х0
f1
(x)=f1
(x0
) и limх
®
х0
f2
(x)=f2
(x0
) на основании св-ва1 можем написать: limх
®
х0
у(х)=limх
®
х0
[f1
(x)+f2
(x) ]=
=limх
®
х0
f1
(x)+limх
®
х0
f2
(x)=f1
(x0
)+f2
(x0
)=у(х0
). Итак сумма есть непрерывная фун.·
2.Всякая непрерывная фун непрерывна в каждой точке, в которой она определена.
3.Если фун z=j(х) непрерывна в точке х=х0
, а фун y=f(z) непрерывна в соот-й точке z0
=j(х0
), то фун y=f(j(х)) непрерывна в точке х0
.
Если фун непрерывна в каждой точке некоторого интервала (а,в), где а<в, то говорят, что фун непреывна на этом интервале.
Если фун непрерывна в каждой точке некоторого интервала (а,в) и непрерывна на концах интервала, то говорят, что f(x) непрерывна на замкнутом интервале
или отрезке (а,в).
Непрерывности на заданном промежутке
Ф-ия наз-ся непрерывной на пром-ке
(a;b)
, если она непрерывн в кажд т-ке этого пром-ка.
Свойства
(small)
:
1. достиг наиб и наим значения; 2. если м и М – наиб и наим знач-ия, то она достиг любые значения м<y<М; 3. если на заданном пром-ке есть хотя бы одна т-ка в кот ф-ия отрицат, то $ x0
на [a;b], f(x0
)=0.
Св-ва непрерывности на заданном промежутке
(full):
1.Еслифун y=f(x) непрерывна на некотором отрезке [а,в] (а<х<в), то на отрезке [а,в] найдется по крайней мере одна точка х=х1
такая, что значение фун в этой точке будут удовл соот-ю f(x1
)³f(x), то значение фун в этой точке наз наибольшим знач фун
y=f(x); и найдется по крайней мере такая точка х2
, что значения фун в этой точке будут удовл соот-ю
f(x2
)£ f(x), то знач фун в этой точке наз наименьшим значением фун
y=f(x).
2.Пусть фун y=f(x) непрерывна на отрезке [а,в] и на концах отрезка принимает значения разных знаков, тогда м/у точками а и в найдется по крайней мере одна точка х=с, в которой фун обращается в нуль: f(с)=0, а<с<в.
3.Пусть фун y=f(x) определена и непрерывна на отрезке [а,в]. Если на концах этого отрезка фун принимает значения f(а)=А, f(в)=В, то каово бы ни было число m, заключенное м/у А и В, найдется такая точка х=с, заключ м/у а и в, что f(с)=m.
Производная.
1.Пусть y=f(x), xÎX, x0
; x0
+Dx ÎX => Dy=Df(x0
)=f(x0
+Dx)-f(x0
), Dy/Dx=(f(x0
+Dx)-f(x0
))/Dx.
Если $ limDx
®0
Dy/Dx, то этот предел наз-ся производн ф-ии в т-ке Х0
. · Если f(x) имеет производ в кажд т-ке xÎX, то мы можем брать прозвол Х, считая его фиксир, х+DхÎХ. LimDх
®0
(f(x0
+Dx)-f(x0
))/Dx= =f/
(х)=df(x)/dx=dy/dx=y|
(x).
2. Геометр смысл производ.
Производная фун f(x) в точке х0
равна угловому коэф-ту касательной к гр-ку фун f(x) в точке М (х0
;
f(x0
)).
Если т-ка М будет приближ-ся к т-ке М0
(при Dх®0), то секущая приближ-ся к касат.
y|
(x0
)=limD
х
®
0
(f(x0
+Dx)-f(x0
))/ /Dx=limD
х
®
0
Dy/Dx=limD
х
®
0
tga==lima
®
a
0
tga=tga0
.
L: y-f(x0
)=f
(x0
)(x-x0
)
Nl
=y-f(x0
)=-(x-x0
)/f
(x0
).
3. Основ теоремы о производных.
1. y=U(x)+V(x), y|
=U|
(x)+ V|
(x)
. Док-во: для х+Dх имеем: y+Dy=(u+Du)+(v+Dv). Следовательно, Dy=Du+Dv, Dy/Dx=Du/Dx+Dv/Dx, y|
=limD
x
®
0
Dy/Dx = limD
x
®
0
Du/Dx+ limD
x
®
0
Dv/Dx=U|
(x)+V/
(x).
2. y=uv, y|
=u|
v+uv|
. Док-во: y+Dy=(u+Du)(v+Dv), Dy=(u+Du)(v+Dv)-uv=Duv+uDv+DuDv, Dy/Dx=Duv/Dx+Dvu/Dx+DuDv/Dx,
y|
= limD
x
®
0
Dy/Dx= limD
x
®
0
Duv/Dx + limD
x
®
0
Dvu/Dx + limD
x
®
0
DuDv/Dx={ limD
x
®
0
Du=0, т.к ф-ия дифф-ма и непрерывна}=u|
v+uv|
.
3. y=u/v, y|
=(u|
v-uv|
)/v2
. Док-во: y+Dy=(u+Du)/(v+Dv), Dy=(u+Du)/(v+Dv)-u/v=(vDu-uDv)/v(v+Dv)
Dy/Dx...
4. y=ax
, y|
=ax
ln a.
Док-во: ln y=x ln a, y|
/y=ln a, y|
=yln a y|
=ax
ln a.
Неявно задан фун и нахождение ее производ.
Говорят, что соот-е F(x;y)=0 задается неявно, если сущ фун у=f(x), х принадлежит отрезку [а,в] и, если подстав-е в F(x;y)=0 соот-е обращает его в тождество(º)· {F(x;y)=0,$у=f(x),х принадлежит отрезку [а,в],F(x;f(x)) º0}
Правило нахождения:
Если F(x;y)=0 задает фцн неявно, т.е это будет тождество, то тождественное равенство можно по членно продифференцировать. {[F(x;y)]/
=0/
}
Формула Лейбница.
y(
n
)
=(uv)(n)
=(u)(n)
v+nu(n-1)
v|
+([n(n-1)]/[1*2])*n(n-2)
v||
+…+uv(n)
Дифференцирование ф-ии в точке.
Ф-ия y=f(x) наз-ся дифференцируемой в т-ке Х0
, если Dy=ADx+O(Dx), где А не зависит от DХ, О(DХ) – б.м., более высокого порядка малости, чем DХ, когда DХ®0, т.е. limD
x
®
0
O(Dx)/Dx=0. АDХ – главная часть приращения.
Теорема
:
y=f(x) дифф-ма в т-ке Х0
т и тт, когда она в этой т-ке имеет конечную производную A=f
(x0
).
Необход усл-ие дифф-ти:
если ф-ия дифф-ма, то она имеет кон производ. Дано: Dy=ADx+O(Dx)
f
(x0
)=limDx
®0
Dy/Dx= limDx
®0
[(ADx+O(Dx))/Dx] = limDx
®0
(A+O(Dx)/Dx)=A => Dy=f
(x0
)Dx+O(Dx) => limDx
®0
Dy=0 => f(x) – непрерывна.
Достат усл-ие дифф-ти:
если ф-ия в заданной т-ке имеет кон производ, то она дифф-ма. Дано: $f
(x0
) – число, f
(x0
)=limDx
®0
Dy/Dx => Dy/Dx=f
(x0
)+a(Dx) {a(Dч) – б.м.}, Dy=f
(x0
)Dx+a(Dx)Dx => Dy=f
(x0
)Dx+O(Dx), т.е. O(Dx)=a(Dx)Dx => limDx
®0
O(Dx)/Dx=limDx
®0
a(Dx)=0. Дифференциал ф-ии это главная часть приращения, линейная относит DХ.
Приближ знач ф-ии в некот т-ке:
Dy=f(x0
+Dx)-f(x0
) =>f(x0
+Dx)=f(x0
)+Dy»f(x0
)+df(x0
)=f(x0
)+f
(x0
)dx, dx=Dx.