РефератыМатематикаСуСумма делителей числа

Сумма делителей числа

.


Для начало приведём экспериментальный материал (который был получен с помощью программы Derive (по формуле 1.(см.ниже)): для нахождения делителей числа «a», программа делила число «a» на другие числа не превосходящие само число и если остаток от деления был равен 0, то число записывалось как делитель «a». ):


Ниже приведены все делители чисел от 1 до 1000:


[1, [1]]


[2, [1, 2]]


[3, [1, 3]]


[4, [1, 2, 4]]


[5, [1, 5]]


[6, [1, 2, 3, 6]]


[7, [1, 7]]


[8, [1, 2, 4, 8]]


[9, [1, 3, 9]]


[10, [1, 2, 5, 10]]


[11, [1, 11]]


[12, [1, 2, 3, 4, 6, 12]]


[13, [1, 13]]


[14, [1, 2, 7, 14]]


[15, [1, 3, 5, 15]]


[16, [1, 2, 4, 8, 16]]


[17, [1, 17]]


[18, [1, 2, 3, 6, 9, 18]]


[19, [1, 19]]


[20, [1, 2, 4, 5, 10, 20]]


[21, [1, 3, 7, 21]]


[22, [1, 2, 11, 22]]


[23, [1, 23]]


[24, [1, 2, 3, 4, 6, 8, 12, 24]]


[25, [1, 5, 25]]


[26, [1, 2, 13, 26]]


[27, [1, 3, 9, 27]]


[28, [1, 2, 4, 7, 14, 28]]


[29, [1, 29]]


[30, [1, 2, 3, 5, 6, 10, 15, 30]]


[31, [1, 31]]


[32, [1, 2, 4, 8, 16, 32]]


[33, [1, 3, 11, 33]]


[34, [1, 2, 17, 34]]


[35, [1, 5, 7, 35]]


[36, [1, 2, 3, 4, 6, 9, 12, 18, 36]]


[37, [1, 37]]


[38, [1, 2, 19, 38]]


[39, [1, 3, 13, 39]]


[40, [1, 2, 4, 5, 8, 10, 20, 40]]


[41, [1, 41]]


[42, [1, 2, 3, 6, 7, 14, 21, 42]]


[43, [1, 43]]


[44, [1, 2, 4, 11, 22, 44]]


[45, [1, 3, 5, 9, 15, 45]]


[46, [1, 2, 23, 46]]


[47, [1, 47]]


[48, [1, 2, 3, 4, 6, 8, 12, 16, 24, 48]]


[49, [1, 7, 49]]


[50, [1, 2, 5, 10, 25, 50]]


[51, [1, 3, 17, 51]]


[52, [1, 2, 4, 13, 26, 52]]


[53, [1, 53]]


[54, [1, 2, 3, 6, 9, 18, 27, 54]]


[55, [1, 5, 11, 55]]


[56, [1, 2, 4, 7, 8, 14, 28, 56]]


[57, [1, 3, 19, 57]]


[58, [1, 2, 29, 58]]


[59, [1, 59]]


[60, [1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60]]


[61, [1, 61]]


[62, [1, 2, 31, 62]]


[63, [1, 3, 7, 9, 21, 63]]


[64, [1, 2, 4, 8, 16, 32, 64]]


[65, [1, 5, 13, 65]]


[66, [1, 2, 3, 6, 11, 22, 33, 66]]


[67, [1, 67]]


[68, [1, 2, 4, 17, 34, 68]]


[69, [1, 3, 23, 69]]


[70, [1, 2, 5, 7, 10, 14, 35, 70]]


[71, [1, 71]]


[72, [1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72]]


[73, [1, 73]]


[74, [1, 2, 37, 74]]


[75, [1, 3, 5, 15, 25, 75]]


[76, [1, 2, 4, 19, 38, 76]]


[77, [1, 7, 11, 77]]


[78, [1, 2, 3, 6, 13, 26, 39, 78]]


[79, [1, 79]]


[80, [1, 2, 4, 5, 8, 10, 16, 20, 40, 80]]


[81, [1, 3, 9, 27, 81]]


[82, [1, 2, 41, 82]]


[83, [1, 83]]


[84, [1, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42, 84]]


[85, [1, 5, 17, 85]]


[86, [1, 2, 43, 86]]


[87, [1, 3, 29, 87]]


[88, [1, 2, 4, 8, 11, 22, 44, 88]]


[89, [1, 89]]


[90, [1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90]]


[91, [1, 7, 13, 91]]


[92, [1, 2, 4, 23, 46, 92]]


[93, [1, 3, 31, 93]]


[94, [1, 2, 47, 94]]


[95, [1, 5, 19, 95]]


[96, [1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 96]]


[97, [1, 97]]


[98, [1, 2, 7, 14, 49, 98]]


[99, [1, 3, 9, 11, 33, 99]]


[100, [1, 2, 4, 5, 10, 20, 25, 50, 100]]


[101, [1, 101]]


[102, [1, 2, 3, 6, 17, 34, 51, 102]]


[103, [1, 103]]


[104, [1, 2, 4, 8, 13, 26, 52, 104]]


[105, [1, 3, 5, 7, 15, 21, 35, 105]]


[106, [1, 2, 53, 106]]


[107, [1, 107]]


[108, [1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, 108]]


[109, [1, 109]]


[110, [1, 2, 5, 10, 11, 22, 55, 110]]


[111, [1, 3, 37, 111]]


[112, [1, 2, 4, 7, 8, 14, 16, 28, 56, 112]]


[113, [1, 113]]


[114, [1, 2, 3, 6, 19, 38, 57, 114]]


[115, [1, 5, 23, 115]]


[116, [1, 2, 4, 29, 58, 116]]


[117, [1, 3, 9, 13, 39, 117]]


[118, [1, 2, 59, 118]]


[119, [1, 7, 17, 119]]


[120, [1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 30, 40, 60, 120]]


[121, [1, 11, 121]]


[122, [1, 2, 61, 122]]


[123, [1, 3, 41, 123]]


[124, [1, 2, 4, 31, 62, 124]]


[125, [1, 5, 25, 125]]


[126, [1, 2, 3, 6, 7, 9, 14, 18, 21, 42, 63, 126]]


[127, [1, 127]]


[128, [1, 2, 4, 8, 16, 32, 64, 128]]


[129, [1, 3, 43, 129]]


[130, [1, 2, 5, 10, 13, 26, 65, 130]]


[131, [1, 131]]


[132, [1, 2, 3, 4, 6, 11, 12, 22, 33, 44, 66, 132]]


[133, [1, 7, 19, 133]]


[134, [1, 2, 67, 134]]


[135, [1, 3, 5, 9, 15, 27, 45, 135]]


[136, [1, 2, 4, 8, 17, 34, 68, 136]]


[137, [1, 137]]


[138, [1, 2, 3, 6, 23, 46, 69, 138]]


[139, [1, 139]]


[140, [1, 2, 4, 5, 7, 10, 14, 20, 28, 35, 70, 140]]


[141, [1, 3, 47, 141]]


[142, [1, 2, 71, 142]]


[143, [1, 11, 13, 143]]


[144, [1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 36, 48, 72, 144]]


[145, [1, 5, 29, 145]]


[146, [1, 2, 73, 146]]


[147, [1, 3, 7, 21, 49, 147]]


[148, [1, 2, 4, 37, 74, 148]]


[149, [1, 149]]


[150, [1, 2, 3, 5, 6, 10, 15, 25, 30, 50, 75, 150]]


[151, [1, 151]]


[152, [1, 2, 4, 8, 19, 38, 76, 152]]


[153, [1, 3, 9, 17, 51, 153]]


[154, [1, 2, 7, 11, 14, 22, 77, 154]]


[155, [1, 5, 31, 155]]


[156, [1, 2, 3, 4, 6, 12, 13, 26, 39, 52, 78, 156]]


[157, [1, 157]]


[158, [1, 2, 79, 158]]


[159, [1, 3, 53, 159]]


[160, [1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 80, 160]]


[161, [1, 7, 23, 161]]


[162, [1, 2, 3, 6, 9, 18, 27, 54, 81, 162]]


[163, [1, 163]]


[164, [1, 2, 4, 41, 82, 164]]


[165, [1, 3, 5, 11, 15, 33, 55, 165]]


[166, [1, 2, 83, 166]]


[167, [1, 167]]


[168, [1, 2, 3, 4, 6, 7, 8, 12, 14, 21, 24, 28, 42, 56, 84, 168]]


[169, [1, 13, 169]]


[170, [1, 2, 5, 10, 17, 34, 85, 170]]


[171, [1, 3, 9, 19, 57, 171]]


[172, [1, 2, 4, 43, 86, 172]]


[173, [1, 173]]


[174, [1, 2, 3, 6, 29, 58, 87, 174]]


[175, [1, 5, 7, 25, 35, 175]]


[176, [1, 2, 4, 8, 11, 16, 22, 44, 88, 176]]


[177, [1, 3, 59, 177]]


[178, [1, 2, 89, 178]]


[179, [1, 179]]


[180, [1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 30, 36, 45, 60, 90, 180]]


[181, [1, 181]]


[182, [1, 2, 7, 13, 14, 26, 91, 182]]


[183, [1, 3, 61, 183]]


[184, [1, 2, 4, 8, 23, 46, 92, 184]]


[185, [1, 5, 37, 185]]


[186, [1, 2, 3, 6, 31, 62, 93, 186]]


[187, [1, 11, 17, 187]]


[188, [1, 2, 4, 47, 94, 188]]


[189, [1, 3, 7, 9, 21, 27, 63, 189]]


[190, [1, 2, 5, 10, 19, 38, 95, 190]]


[191, [1, 191]]


[192, [1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 192]]


[193, [1, 193]]


[194, [1, 2, 97, 194]]


[195, [1, 3, 5, 13, 15, 39, 65, 195]]


[196, [1, 2, 4, 7, 14, 28, 49, 98, 196]]


[197, [1, 197]]


[198, [1, 2, 3, 6, 9, 11, 18, 22, 33, 66, 99, 198]]


[199, [1, 199]]


[200, [1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 200]]


[201, [1, 3, 67, 201]]


[202, [1, 2, 101, 202]]


[203, [1, 7, 29, 203]]


[204, [1, 2, 3, 4, 6, 12, 17, 34, 51, 68, 102, 204]]


[205, [1, 5, 41, 205]]


[206, [1, 2, 103, 206]]


[207, [1, 3, 9, 23, 69, 207]]


[208, [1, 2, 4, 8, 13, 16, 26, 52, 104, 208]]


[209, [1, 11, 19, 209]]


[210, [1, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, 105, 210]]


[211, [1, 211]]


[212, [1, 2, 4, 53, 106, 212]]


[213, [1, 3, 71, 213]]


[214, [1, 2, 107, 214]]


[215, [1, 5, 43, 215]]


[216, [1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 27, 36, 54, 72, 108, 216]]


[217, [1, 7, 31, 217]]


[218, [1, 2, 109, 218]]


[219, [1, 3, 73, 219]]


[220, [1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110, 220]]


[221, [1, 13, 17, 221]]


[222, [1, 2, 3, 6, 37, 74, 111, 222]]


[223, [1, 223]]


[224, [1, 2, 4, 7, 8, 14, 16, 28, 32, 56, 112, 224]]


[225, [1, 3, 5, 9, 15, 25, 45, 75, 225]]


[226, [1, 2, 113, 226]]


[227, [1, 227]]


[228, [1, 2, 3, 4, 6, 12, 19, 38, 57, 76, 114, 228]]


[229, [1, 229]]


[230, [1, 2, 5, 10, 23, 46, 115, 230]]


[231, [1, 3, 7, 11, 21, 33, 77, 231]]


[232, [1, 2, 4, 8, 29, 58, 116, 232]]


[233, [1, 233]]


[234, [1, 2, 3, 6, 9, 13, 18, 26, 39, 78, 117, 234]]


[235, [1, 5, 47, 235]]


[236, [1, 2, 4, 59, 118, 236]]


[237, [1, 3, 79, 237]]


[238, [1, 2, 7, 14, 17, 34, 119, 238]]


[239, [1, 239]]


[240, [1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 40, 48, 60, 80, 120, 240]]


[241, [1, 241]]


[242, [1, 2, 11, 22, 121, 242]]


[243, [1, 3, 9, 27, 81, 243]]


[244, [1, 2, 4, 61, 122, 244]]


[245, [1, 5, 7, 35, 49, 245]]


[246, [1, 2, 3, 6, 41, 82, 123, 246]]


[247, [1, 13, 19, 247]]


[248, [1, 2, 4, 8, 31, 62, 124, 248]]


[249, [1, 3, 83, 249]]


[250, [1, 2, 5, 10, 25, 50, 125, 250]]


[251, [1, 251]]


[252, [1, 2, 3, 4, 6, 7, 9, 12, 14, 18, 21, 28, 36, 42, 63, 84, 126, 252]]


[253, [1, 11, 23, 253]]


[254, [1, 2, 127, 254]]


[255, [1, 3, 5, 15, 17, 51, 85, 255]]


[256, [1, 2, 4, 8, 16, 32, 64, 128, 256]]


[257, [1, 257]]


[258, [1, 2, 3, 6, 43, 86, 129, 258]]


[259, [1, 7, 37, 259]]


[260, [1, 2, 4, 5, 10, 13, 20, 26, 52, 65, 130, 260]]


[261, [1, 3, 9, 29, 87, 261]]


[262, [1, 2, 131, 262]]


[263, [1, 263]]


[264, [1, 2, 3, 4, 6, 8, 11, 12, 22, 24, 33, 44, 66, 88, 132, 264]]


[265, [1, 5, 53, 265]]


[266, [1, 2, 7, 14, 19, 38, 133, 266]]


[267, [1, 3, 89, 267]]


[268, [1, 2, 4, 67, 134, 268]]


[269, [1, 269]]


[270, [1, 2, 3, 5, 6, 9, 10, 15, 18, 27, 30, 45, 54, 90, 135, 270]]


[271, [1, 271]]


[272, [1, 2, 4, 8, 16, 17, 34, 68, 136, 272]]


[273, [1, 3, 7, 13, 21, 39, 91, 273]]


[274, [1, 2, 137, 274]]


[275, [1, 5, 11, 25, 55, 275]]


[276, [1, 2, 3, 4, 6, 12, 23, 46, 69, 92, 138, 276]]


[277, [1, 277]]


[278, [1, 2, 139, 278]]


[279, [1, 3, 9, 31, 93, 279]]


[280, [1, 2, 4, 5, 7, 8, 10, 14, 20, 28, 35, 40, 56, 70, 140, 280]]


[281, [1, 281]]


[282, [1, 2, 3, 6, 47, 94, 141, 282]]


[283, [1, 283]]


[284, [1, 2, 4, 71, 142, 284]]


[285, [1, 3, 5, 15, 19, 57, 95, 285]]


[286, [1, 2, 11, 13, 22, 26, 143, 286]]


[287, [1, 7, 41, 287]]


[288, [1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 32, 36, 48, 72, 96, 144, 288]]


[289, [1, 17, 289]]


[290, [1, 2, 5, 10, 29, 58, 145, 290]]


[291, [1, 3, 97, 291]]


[292, [1, 2, 4, 73, 146, 292]]


[293, [1, 293]]


[294, [1, 2, 3, 6, 7, 14, 21, 42, 49, 98, 147, 294]]


[295, [1, 5, 59, 295]]


[296, [1, 2, 4, 8, 37, 74, 148, 296]]


[297, [1, 3, 9, 11, 27, 33, 99, 297]]


[298, [1, 2, 149, 298]]


[299, [1, 13, 23, 299]]


[300, [1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 25, 30, 50, 60, 75, 100, 150, 300]]


[301, [1, 7, 43, 301]]


[302, [1, 2, 151, 302]]


[303, [1, 3, 101, 303]]


[304, [1, 2, 4, 8, 16, 19, 38, 76, 152, 304]]


[305, [1, 5, 61, 305]]


[306, [1, 2, 3, 6, 9, 17, 18, 34, 51, 102, 153, 306]]


[307, [1, 307]]


[308, [1, 2, 4, 7, 11, 14, 22, 28, 44, 77, 154, 308]]


[309, [1, 3, 103, 309]]


[310, [1, 2, 5, 10, 31, 62, 155, 310]]


[311, [1, 311]]


[312, [1, 2, 3, 4, 6, 8, 12, 13, 24, 26, 39, 52, 78, 104, 156, 312]]


[313, [1, 313]]


[314, [1, 2, 157, 314]]


[315, [1, 3, 5, 7, 9, 15, 21, 35, 45, 63, 105, 315]]


[316, [1, 2, 4, 79, 158, 316]]


[317, [1, 317]]


[318, [1, 2, 3, 6, 53, 106, 159, 318]]


[319, [1, 11, 29, 319]]


[320, [1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 64, 80, 160, 320]]


[321, [1, 3, 107, 321]]


[322, [1, 2, 7, 14, 23, 46, 161, 322]]


[323, [1, 17, 19, 323]]


[324, [1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, 81, 108, 162, 324]]


[325, [1, 5, 13, 25, 65, 325]]


[326, [1, 2, 163, 326]]


[327, [1, 3, 109, 327]]


[328, [1, 2, 4, 8, 41, 82, 164, 328]]


[329, [1, 7, 47, 329]]


[330, [1, 2, 3, 5, 6, 10, 11, 15, 22, 30, 33, 55, 66, 110, 165, 330]]


[331, [1, 331]]


[332, [1, 2, 4, 83, 166, 332]]


[333, [1, 3, 9, 37, 111, 333]]


[334, [1, 2, 167, 334]]


[335, [1, 5, 67, 335]]


[336, [1, 2, 3, 4, 6, 7, 8, 12, 14, 16, 21, 24, 28, 42, 48, 56, 84, 112, 168, 336]]


[337, [1, 337]]


[338, [1, 2, 13, 26, 169, 338]]


[339, [1, 3, 113, 339]]


[340, [1, 2, 4, 5, 10, 17, 20, 34, 68, 85, 170, 340]]


[341, [1, 11, 31, 341]]


[342, [1, 2, 3, 6, 9, 18, 19, 38, 57, 114, 171, 342]]


[343, [1, 7, 49, 343]]


[344, [1, 2, 4, 8, 43, 86, 172, 344]]


[345, [1, 3, 5, 15, 23, 69, 115, 345]]


[346, [1, 2, 173, 346]]


[347, [1, 347]]


[348, [1, 2, 3, 4, 6, 12, 29, 58, 87, 116, 174, 348]]


[349, [1, 349]]


[350, [1, 2, 5, 7, 10, 14, 25, 35, 50, 70, 175, 350]]


[351, [1, 3, 9, 13, 27, 39, 117, 351]]


[352, [1, 2, 4, 8, 11, 16, 22, 32, 44, 88, 176, 352]]


[353, [1, 353]]


[354, [1, 2, 3, 6, 59, 118, 177, 354]]


[355, [1, 5, 71, 355]]


[356, [1, 2, 4, 89, 178, 356]]


[357, [1, 3, 7, 17, 21, 51, 119, 357]]


[358, [1, 2, 179, 358]]


[359, [1, 359]]


[360, [1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 36, 40, 45, 60, 72, 90, 120, 180, 360]]


[361, [1, 19, 361]]


[362, [1, 2, 181, 362]]


[363, [1, 3, 11, 33, 121, 363]]


[364, [1, 2, 4, 7, 13, 14, 26, 28, 52, 91, 182, 364]]


[365, [1, 5, 73, 365]]


[366, [1, 2, 3, 6, 61, 122, 183, 366]]


[367, [1, 367]]


[368, [1, 2, 4, 8, 16, 23, 46, 92, 184, 368]]


[369, [1, 3, 9, 41, 123, 369]]


[370, [1, 2, 5, 10, 37, 74, 185, 370]]


[371, [1, 7, 53, 371]]


[372, [1, 2, 3, 4, 6, 12, 31, 62, 93, 124, 186, 372]]


[373, [1, 373]]


[374, [1, 2, 11, 17, 22, 34, 187, 374]]


[375, [1, 3, 5, 15, 25, 75, 125, 375]]


[376, [1, 2, 4, 8, 47, 94, 188, 376]]


[377, [1, 13, 29, 377]]


[378, [1, 2, 3, 6, 7, 9, 14, 18, 21, 27, 42, 54, 63, 126, 189, 378]]


[379, [1, 379]]


[380, [1, 2, 4, 5, 10, 19, 20, 38, 76, 95, 190, 380]]


[381, [1, 3, 127, 381]]


[382, [1, 2, 191, 382]]


[383, [1, 383]]


[384, [1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 384]]


[385, [1, 5, 7, 11, 35, 55, 77, 385]]


[386, [1, 2, 193, 386]]


[387, [1, 3, 9, 43, 129, 387]]


[388, [1, 2, 4, 97, 194, 388]]


[389, [1, 389]]


[390, [1, 2, 3, 5, 6, 10, 13, 15, 26, 30, 39, 65, 78, 130, 195, 390]]


[391, [1, 17, 23, 391]]


[392, [1, 2, 4, 7, 8, 14, 28, 49, 56, 98, 196, 392]]


[393, [1, 3, 131, 393]]


[394, [1, 2, 197, 394]]


[395, [1, 5, 79, 395]]


[396, [1, 2, 3, 4, 6, 9, 11, 12, 18, 22, 33, 36, 44, 66, 99, 132, 198, 396]]


[397, [1, 397]]


[398, [1, 2, 199, 398]]


[399, [1, 3, 7, 19, 21, 57, 133, 399]]


[400, [1, 2, 4, 5, 8, 10, 16, 20, 25, 40, 50, 80, 100, 200, 400]]


[401, [1, 401]]


[402, [1, 2, 3, 6, 67, 134, 201, 402]]


[403, [1, 13, 31, 403]]


[404, [1, 2, 4, 101, 202, 404]]


[405, [1, 3, 5, 9, 15, 27, 45, 81, 135, 405]]


[406, [1, 2, 7, 14, 29, 58, 203, 406]]


[407, [1, 11, 37, 407]]


[408, [1, 2, 3, 4, 6, 8, 12, 17, 24, 34, 51, 68, 102, 136, 204, 408]]


[409, [1, 409]]


[410, [1, 2, 5, 10, 41, 82, 205, 410]]


[411, [1, 3, 137, 411]]


[412, [1, 2, 4, 103, 206, 412]]


[413, [1, 7, 59, 413]]


[414, [1, 2, 3, 6, 9, 18, 23, 46, 69, 138, 207, 414]]


[415, [1, 5, 83, 415]]


[416, [1, 2, 4, 8, 13, 16, 26, 32, 52, 104, 208, 416]]


[417, [1, 3, 139, 417]]


[418, [1, 2, 11, 19, 22, 38, 209, 418]]


[419, [1, 419]]


[420, [1, 2, 3, 4, 5, 6, 7, 10, 12, 14, 15, 20, 21, 28, 30, 35, 42, 60, 70, 84, 105, 140, 210, 420]]


[421, [1, 421]]


[422, [1, 2, 211, 422]]


[423, [1, 3, 9, 47, 141, 423]]


[424, [1, 2, 4, 8, 53, 106, 212, 424]]


[425, [1, 5, 17, 25, 85, 425]]


[426, [1, 2, 3, 6, 71, 142, 213, 426]]


[427, [1, 7, 61, 427]]


[428, [1, 2, 4, 107, 214, 428]]


[429, [1, 3, 11, 13, 33, 39, 143, 429]]


[430, [1, 2, 5, 10, 43, 86, 215, 430]]


[431, [1, 431]]


[432, [1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 36, 48, 54, 72, 108, 144, 216, 432]]


[433, [1, 433]]


[434, [1, 2, 7, 14, 31, 62, 217, 434]]


[435, [1, 3, 5, 15, 29, 87, 145, 435]]


[436, [1, 2, 4, 109, 218, 436]]


[437, [1, 19, 23, 437]]


[438, [1, 2, 3, 6, 73, 146, 219, 438]]


[439, [1, 439]]


[440, [1, 2, 4, 5, 8, 10, 11, 20, 22, 40, 44, 55, 88, 110, 220, 440]]


[441, [1, 3, 7, 9, 21, 49, 63, 147, 441]]


[442, [1, 2, 13, 17, 26, 34, 221, 442]]


[443, [1, 443]]


[444, [1, 2, 3, 4, 6, 12, 37, 74, 111, 148, 222, 444]]


[445, [1, 5, 89, 445]]


[446, [1, 2, 223, 446]]


[447, [1, 3, 149, 447]]


[448, [1, 2, 4, 7, 8, 14, 16, 28, 32, 56, 64, 112, 224, 448]]


[449, [1, 449]]


[450, [1, 2, 3, 5, 6, 9, 10, 15, 18, 25, 30, 45, 50, 75, 90, 150, 225, 450]]


[451, [1, 11, 41, 451]]


[452, [1, 2, 4, 113, 226, 452]]


[453, [1, 3, 151, 453]]


[454, [1, 2, 227, 454]]


[455, [1, 5, 7, 13, 35, 65, 91, 455]]


[456, [1, 2, 3, 4, 6, 8, 12, 19, 24, 38, 57, 76, 114, 152, 228, 456]]


[457, [1, 457]]


[458, [1, 2, 229, 458]]


[459, [1, 3, 9, 17, 27, 51, 153, 459]]


[460, [1, 2, 4, 5, 10, 20, 23, 46, 92, 115, 230, 460]]


[461, [1, 461]]


[462, [1, 2, 3, 6, 7, 11, 14, 21, 22, 33, 42, 66, 77, 154, 231, 462]]


[463, [1, 463]]


[464, [1, 2, 4, 8, 16, 29, 58, 116, 232, 464]]


[465, [1, 3, 5, 15, 31, 93, 155, 465]]


[466, [1, 2, 233, 466]]


[467, [1, 467]]


[468, [1, 2, 3, 4, 6, 9, 12, 13, 18, 26, 36, 39, 52, 78, 117, 156, 234, 468]]


[469, [1, 7, 67, 469]]


[470, [1, 2, 5, 10, 47, 94, 235, 470]]


[471, [1, 3, 157, 471]]


[472, [1, 2, 4, 8, 59, 118, 236, 472]]


[473, [1, 11, 43, 473]]


[474, [1, 2, 3, 6, 79, 158, 237, 474]]


[475, [1, 5, 19, 25, 95, 475]]


[476, [1, 2, 4, 7, 14, 17, 28, 34, 68, 119, 238, 476]]


[477, [1, 3, 9, 53, 159, 477]]


[478, [1, 2, 239, 478]]


[479, [1, 479]]


[480, [1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 32, 40, 48, 60, 80, 96, 120, 160, 240, 480]]


[481, [1, 13, 37, 481]]


[482, [1, 2, 241, 482]]


[483, [1, 3, 7, 21, 23, 69, 161, 483]]


[484, [1, 2, 4, 11, 22, 44, 121, 242, 484]]


[485, [1, 5, 97, 485]]


[486, [1, 2, 3, 6, 9, 18, 27, 54, 81, 162, 243, 486]]


[487, [1, 487]]


[488, [1, 2, 4, 8, 61, 122, 244, 488]]


[489, [1, 3, 163, 489]]


[490, [1, 2, 5, 7, 10, 14, 35, 49, 70, 98, 245, 490]]


[491, [1, 491]]


[492, [1, 2, 3, 4, 6, 12, 41, 82, 123, 164, 246, 492]]


[493, [1, 17, 29, 493]]


[494, [1, 2, 13, 19, 26, 38, 247, 494]]


[495, [1, 3, 5, 9, 11, 15, 33, 45, 55, 99, 165, 495]]


[496, [1, 2, 4, 8, 16, 31, 62, 124, 248, 496]]


[497, [1, 7, 71, 497]]


[498, [1, 2, 3, 6, 83, 166, 249, 498]]


[499, [1, 499]]


[500, [1, 2, 4, 5, 10, 20, 25, 50, 100, 125, 250, 500]]


[501, [1, 3, 167, 501]]


[502, [1, 2, 251, 502]]


[503, [1, 503]]


[504, [1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 18, 21, 24, 28, 36, 42, 56, 63, 72, 84, 126, 168, 252, 504]]


[505, [1, 5, 101, 505]]


[506, [1, 2, 11, 22, 23, 46, 253, 506]]


[507, [1, 3, 13, 39, 169, 507]]


[508, [1, 2, 4, 127, 254, 508]]


[509, [1, 509]]


[510, [1, 2, 3, 5, 6, 10, 15, 17, 30, 34, 51, 85, 102, 170, 255, 510]]


[511, [1, 7, 73, 511]]


[512, [1, 2, 4, 8, 16, 32, 64, 128, 256, 512]]


[513, [1, 3, 9, 19, 27, 57, 171, 513]]


[514, [1, 2, 257, 514]]


[515, [1, 5, 103, 515]]


[516, [1, 2, 3, 4, 6, 12, 43, 86, 129, 172, 258, 516]]


[517, [1, 11, 47, 517]]


[518, [1, 2, 7, 14, 37, 74, 259, 518]]


[519, [1, 3, 173, 519]]


[520, [1, 2, 4, 5, 8, 10, 13, 20, 26, 40, 52, 65, 104, 130, 260, 520]]


[521, [1, 521]]


[522, [1, 2, 3, 6, 9, 18, 29, 58, 87, 174, 261, 522]]


[523, [1, 523]]


[524, [1, 2, 4, 131, 262, 524]]


[525, [1, 3, 5, 7, 15, 21, 25, 35, 75, 105, 175, 525]]


[526, [1, 2, 263, 526]]


[527, [1, 17, 31, 527]]


[528, [1, 2, 3, 4, 6, 8, 11, 12, 16, 22, 24, 33, 44, 48, 66, 88, 132, 176, 264, 528]]


[529, [1, 23, 529]]


[530, [1, 2, 5, 10, 53, 106, 265, 530]]


[531, [1, 3, 9, 59, 177, 531]]


[532, [1, 2, 4, 7, 14, 19, 28, 38, 76, 133, 266, 532]]


[533, [1, 13, 41, 533]]


[534, [1, 2, 3, 6, 89, 178, 267, 534]]


[535, [1, 5, 107, 535]]


[536, [1, 2, 4, 8, 67, 134, 268, 536]]


[537, [1, 3, 179, 537]]


[538, [1, 2, 269, 538]]


[539, [1, 7, 11, 49, 77, 539]]


[540, [1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 27, 30, 36, 45, 54, 60, 90, 108, 135, 180, 270, 540]]


[541, [1, 541]]


[542, [1, 2, 271, 542]]


[543, [1, 3, 181, 543]]


[544, [1, 2, 4, 8, 16, 17, 32, 34, 68, 136, 272, 544]]


[545, [1, 5, 109, 545]]


[546, [1, 2, 3, 6, 7, 13, 14, 21, 26, 39, 42, 78, 91, 182, 273, 546]]


[547, [1, 547]]


[548, [1, 2, 4, 137, 274, 548]]


[549, [1, 3, 9, 61, 183, 549]]


[550, [1, 2, 5, 10, 11, 22, 25, 50, 55, 110, 275, 550]]


[551, [1, 19, 29, 551]]


[552, [1, 2, 3, 4, 6, 8, 12, 23, 24, 46, 69, 92, 138, 184, 276, 552]]


[553, [1, 7, 79, 553]]


[554, [1, 2, 277, 554]]


[555, [1, 3, 5, 15, 37, 111, 185, 555]]


[556, [1, 2, 4, 139, 278, 556]]


[557, [1, 557]]


[558, [1, 2, 3, 6, 9, 18, 31, 62, 93, 186, 279, 558]]


[559, [1, 13, 43, 559]]


[560, [1, 2, 4, 5, 7, 8, 10, 14, 16, 20, 28, 35, 40, 56, 70, 80, 112, 140, 280, 560]]


[561, [1, 3, 11, 17, 33, 51, 187, 561]]


[562, [1, 2, 281, 562]]


[563, [1, 563]]


[564, [1, 2, 3, 4, 6, 12, 47, 94, 141, 188, 282, 564]]


[565, [1, 5, 113, 565]]


[566, [1, 2, 283, 566]]


[567, [1, 3, 7, 9, 21, 27, 63, 81, 189, 567]]


[568, [1, 2, 4, 8, 71, 142, 284, 568]]


[569, [1, 569]]


[570, [1, 2, 3, 5, 6, 10, 15, 19, 30, 38, 57, 95, 114, 190, 285, 570]]


[571, [1, 571]]


[572, [1, 2, 4, 11, 13, 22, 26, 44, 52, 143, 286, 572]]


[573, [1, 3, 191, 573]]


[574, [1, 2, 7, 14, 41, 82, 287, 574]]


[575, [1, 5, 23, 25, 115, 575]]


[576, [1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 32, 36, 48, 64, 72, 96, 144, 192, 288, 576]]


[577, [1, 577]]


[578, [1, 2, 17, 34, 289, 578]]


[579, [1, 3, 193, 579]]


[580, [1, 2, 4, 5, 10, 20, 29, 58, 116, 145, 290, 580]]


[581, [1, 7, 83, 581]]


[582, [1, 2, 3, 6, 97, 194, 291, 582]]


[583, [1, 11, 53, 583]]


[584, [1, 2, 4, 8, 73, 146, 292, 584]]


[585, [1, 3, 5, 9, 13, 15, 39, 45, 65, 117, 195, 585]]


[586, [1, 2, 293, 586]]


[587, [1, 587]]


[588, [1, 2, 3, 4, 6, 7, 12, 14, 21, 28, 42, 49, 84, 98, 147, 196, 294, 588]]


[589, [1, 19, 31, 589]]


[590, [1, 2, 5, 10, 59, 118, 295, 590]]


[591, [1, 3, 197, 591]]


[592, [1, 2, 4, 8, 16, 37, 74, 148, 296, 592]]


[593, [1, 593]]


[594, [1, 2, 3, 6, 9, 11, 18, 22, 27, 33, 54, 66, 99, 198, 297, 594]]


[595, [1, 5, 7, 17, 35, 85, 119, 595]]


[596, [1, 2, 4, 149, 298, 596]]


[597, [1, 3, 199, 597]]


[598, [1, 2, 13, 23, 26, 46, 299, 598]]


[599, [1, 599]]


[600, [1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24, 25, 30, 40, 50, 60, 75, 100, 120, 150, 200, 300, 600]]


[601, [1, 601]]


[602, [1, 2, 7, 14, 43, 86, 301, 602]]


[603, [1, 3, 9, 67, 201, 603]]


[604, [1, 2, 4, 151, 302, 604]]


[605, [1, 5, 11, 55, 121, 605]]


[606, [1, 2, 3, 6, 101, 202, 303, 606]]


[607, [1, 607]]


[608, [1, 2, 4, 8, 16, 19, 32, 38, 76, 152, 304, 608]]


[609, [1, 3, 7, 21, 29, 87, 203, 609]]


[610, [1, 2, 5, 10, 61, 122, 305, 610]]


[611, [1, 13, 47, 611]]


[612, [1, 2, 3, 4, 6, 9, 12, 17, 18, 34, 36, 51, 68, 102, 153, 204, 306, 612]]


[613, [1, 613]]


[614, [1, 2, 307, 614]]


[615, [1, 3, 5, 15, 41, 123, 205, 615]]


[616, [1, 2, 4, 7, 8, 11, 14, 22, 28, 44, 56, 77, 88, 154, 308, 616]]


[617, [1, 617]]


[618, [1, 2, 3, 6, 103, 206, 309, 618]]


[619, [1, 619]]


[620, [1, 2, 4, 5, 10, 20, 31, 62, 124, 155, 310, 620]]


[621, [1, 3, 9, 23, 27, 69, 207, 621]]


[622, [1, 2, 311, 622]]


[623, [1, 7, 89, 623]]


[624, [1, 2, 3, 4, 6, 8, 12, 13, 16, 24, 26, 39, 48, 52, 78, 104, 156, 208, 312, 624]]


[625, [1, 5, 25, 125, 625]]


[626, [1, 2, 313, 626]]


[627, [1, 3, 11, 19, 33, 57, 209, 627]]


[628, [1, 2, 4, 157, 314, 628]]


[629, [1, 17, 37, 629]]


[630, [1, 2, 3, 5, 6, 7, 9, 10, 14, 15, 18, 21, 30, 35, 42, 45, 63, 70, 90, 105, 126, 210, 315, 630]]


[631, [1, 631]]


[632, [1, 2, 4, 8, 79, 158, 316, 632]]


[633, [1, 3, 211, 633]]


[634, [1, 2, 317, 634]]


[635, [1, 5, 127, 635]]


[636, [1, 2, 3, 4, 6, 12, 53, 106, 159, 212, 318, 636]]


[637, [1, 7, 13, 49, 91, 637]]


[638, [1, 2, 11, 22, 29, 58, 319, 638]]


[639, [1, 3, 9, 71, 213, 639]]


[640, [1, 2, 4, 5, 8, 10, 16, 20, 32, 40, 64, 80, 128, 160, 320, 640]]


[641, [1, 641]]


[642, [1, 2, 3, 6, 107, 214, 321, 642]]


[643, [1, 643]]


[644, [1, 2, 4, 7, 14, 23, 28, 46, 92, 161, 322, 644]]


[645, [1, 3, 5, 15, 43, 129, 215, 645]]


[646, [1, 2, 17, 19, 34, 38, 323, 646]]


[647, [1, 647]]


[648, [1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 27, 36, 54, 72, 81, 108, 162, 216, 324, 648]]


[649, [1, 11, 59, 649]]


[650, [1, 2, 5, 10, 13, 25, 26, 50, 65, 130, 325, 650]]


[651, [1, 3, 7, 21, 31, 93, 217, 651]]


[652, [1, 2, 4, 163, 326, 652]]


[653, [1, 653]]


[654, [1, 2, 3, 6, 109, 218, 327, 654]]


[655, [1, 5, 131, 655]]


[656, [1, 2, 4, 8, 16, 41, 82, 164, 328, 656]]


[657, [1, 3, 9, 73, 219, 657]]


[658, [1, 2, 7, 14, 47, 94, 329, 658]]


[659, [1, 659]]


[660, [1, 2, 3, 4, 5, 6, 10, 11, 12, 15, 20, 22, 30, 33, 44, 55, 60, 66, 110, 132, 165, 220, 330, 660]]


[661, [1, 661]]


[662, [1, 2, 331, 662]]


[663, [1, 3, 13, 17, 39, 51, 221, 663]]


[664, [1, 2, 4, 8, 83, 166, 332, 664]]


[665, [1, 5, 7, 19, 35, 95, 133, 665]]


[666, [1, 2, 3, 6, 9, 18, 37, 74, 111, 222, 333, 666]]


[667, [1, 23, 29, 667]]


[668, [1, 2, 4, 167, 334, 668]]


[669, [1, 3, 223, 669]]


[670, [1, 2, 5, 10, 67, 134, 335, 670]]


[671, [1, 11, 61, 671]]


[672, [1, 2, 3, 4, 6, 7, 8, 12, 14, 16, 21, 24, 28, 32, 42, 48, 56, 84, 96, 112, 168, 224, 336, 672]]


[673, [1, 673]]


[674, [1, 2, 337, 674]]


[675, [1, 3, 5, 9, 15, 25, 27, 45, 75, 135, 225, 675]]


[676, [1, 2, 4, 13, 26, 52, 169, 338, 676]]


[677, [1, 677]]


[678, [1, 2, 3, 6, 113, 226, 339, 678]]


[679, [1, 7, 97, 679]]


[680, [1, 2, 4, 5, 8, 10, 17, 20, 34, 40, 68, 85, 136, 170, 340, 680]]


[681, [1, 3, 227, 681]]


[682, [1, 2, 11, 22, 31, 62, 341, 682]]


[683, [1, 683]]


[684, [1, 2, 3, 4, 6, 9, 12, 18, 19, 36, 38, 57, 76, 114, 171, 228, 342, 684]]


[685, [1, 5, 137, 685]]


[686, [1, 2, 7, 14, 49, 98, 343, 686]]


[687, [1, 3, 229, 687]]


[688, [1, 2, 4, 8, 16, 43, 86, 172, 344, 688]]


[689, [1, 13, 53, 689]]


[690, [1, 2, 3, 5, 6, 10, 15, 23, 30, 46, 69, 115, 138, 230, 345, 690]]


[691, [1, 691]]


[692, [1, 2, 4, 173, 346, 692]]


[693, [1, 3, 7, 9, 11, 21, 33, 63, 77, 99, 231, 693]]


[694, [1, 2, 347, 694]]


[695, [1, 5, 139, 695]]


[696, [1, 2, 3, 4, 6, 8, 12, 24, 29, 58, 87, 116, 174, 232, 348, 696]]


[697, [1, 17, 41, 697]]


[698, [1, 2, 349, 698]]


[699, [1, 3, 233, 699]]


[700, [1, 2, 4, 5, 7, 10, 14, 20, 25, 28, 35, 50, 70, 100, 140, 175, 350, 700]]


[701, [1, 701]]


[702, [1, 2, 3, 6, 9, 13, 18, 26, 27, 39, 54, 78, 117, 234, 351, 702]]


[703, [1, 19, 37, 703]]


[704, [1, 2, 4, 8, 11, 16, 22, 32, 44, 64, 88, 176, 352, 704]]


[705, [1, 3, 5, 15, 47, 141, 235, 705]]


[706, [1, 2, 353, 706]]


[707, [1, 7, 101, 707]]


[708, [1, 2, 3, 4, 6, 12, 59, 118, 177, 236, 354, 708]]


[709, [1, 709]]


[710, [1, 2, 5, 10, 71, 142, 355, 710]]


[711, [1, 3, 9, 79, 237, 711]]


[712, [1, 2, 4, 8, 89, 178, 356, 712]]


[713, [1, 23, 31, 713]]


[714, [1, 2, 3, 6, 7, 14, 17, 21, 34, 42, 51, 102, 119, 238, 357, 714]]


[715, [1, 5, 11, 13, 55, 65, 143, 715]]


[716, [1, 2, 4, 179, 358, 716]]


[717, [1, 3, 239, 717]]


[718, [1, 2, 359, 718]]


[719, [1, 719]]


[720, [1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 30, 36, 40, 45, 48, 60, 72, 80, 90, 120, 144, 180, 240, 360, 720]]


[721, [1, 7, 103, 721]]


[722, [1, 2, 19, 38, 361, 722]]


[723, [1, 3, 241, 723]]


[724, [1, 2, 4, 181, 362, 724]]


[725, [1, 5, 25, 29, 145, 725]]


[726, [1, 2, 3, 6, 11, 22, 33, 66, 121, 242, 363, 726]]


[727, [1, 727]]


[728, [1, 2, 4, 7, 8, 13, 14, 26, 28, 52, 56, 91, 104, 182, 364, 728]]


[729, [1, 3, 9, 27, 81, 243, 729]]


[730, [1, 2, 5, 10, 73, 146, 365, 730]]


[731, [1, 17, 43, 731]]


[732, [1, 2, 3, 4, 6, 12, 61, 122, 183, 244, 366, 732]]


[733, [1, 733]]


[734, [1, 2, 367, 734]]


[735, [1, 3, 5, 7, 15, 21, 35, 49, 105, 147, 245, 735]]


[736, [1, 2, 4, 8, 16, 23, 32, 46, 92, 184, 368, 736]]


[737, [1, 11, 67, 737]]


[738, [1, 2, 3, 6, 9, 18, 41, 82, 123, 246, 369, 738]]


[739, [1, 739]]


[740, [1, 2, 4, 5, 10, 20, 37, 74, 148, 185, 370, 740]]


[741, [1, 3, 13, 19, 39, 57, 247, 741]]


[742, [1, 2, 7, 14, 53, 106, 371, 742]]


[743, [1, 743]]


[744, [1, 2, 3, 4, 6, 8, 12, 24, 31, 62, 93, 124, 186, 248, 372, 744]]


[745, [1, 5, 149, 745]]


[746, [1, 2, 373, 746]]


[747, [1, 3, 9, 83, 249, 747]]


[748, [1, 2, 4, 11, 17, 22, 34, 44, 68, 187, 374, 748]]


[749, [1, 7, 107, 749]]


[750, [1, 2, 3, 5, 6, 10, 15, 25, 30, 50, 75, 125, 150, 250, 375, 750]]


[751, [1, 751]]


[752, [1, 2, 4, 8, 16, 47, 94, 188, 376, 752]]


[753, [1, 3, 251, 753]]


[754, [1, 2, 13, 26, 29, 58, 377, 754]]


[755, [1, 5, 151, 755]]


[756, [1, 2, 3, 4, 6, 7, 9, 12, 14, 18, 21, 27, 28, 36, 42, 54, 63, 84, 108, 126, 189, 252, 378, 756]]


[757, [1, 757]]


[758, [1, 2, 379, 758]]


[759, [1, 3, 11, 23, 33, 69, 253, 759]]


[760, [1, 2, 4, 5, 8, 10, 19, 20, 38, 40, 76, 95, 152, 190, 380, 760]]


[761, [1, 761]]


[762, [1, 2, 3, 6, 127, 254, 381, 762]]


[763, [1, 7, 109, 763]]


[764, [1, 2, 4, 191, 382, 764]]


[765, [1, 3, 5, 9, 15, 17, 45, 51, 85, 153, 255, 765]]


[766, [1, 2, 383, 766]]


[767, [1, 13, 59, 767]]


[768, [1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256, 384, 768]]


[769, [1, 769]]


[770, [1, 2, 5, 7, 10, 11, 14, 22, 35, 55, 70, 77, 110, 154, 385, 770]]


[771, [1, 3, 257, 771]]


[772, [1, 2, 4, 193, 386, 772]]


[773, [1, 773]]


[774, [1, 2, 3, 6, 9, 18, 43, 86, 129, 258, 387, 774]]


[775, [1, 5, 25, 31, 155, 775]]


[776, [1, 2, 4, 8, 97, 194, 388, 776]]


[777, [1, 3, 7, 21, 37, 111, 259, 777]]


[778, [1, 2, 389, 778]]


[779, [1, 19, 41, 779]]


[780, [1, 2, 3, 4, 5, 6, 10, 12, 13, 15, 20, 26, 30, 39, 52, 60, 65, 78, 130, 156, 195, 260, 390, 780]]


[781, [1, 11, 71, 781]]


[782, [1, 2, 17, 23, 34, 46, 391, 782]]


[783, [1, 3, 9, 27, 29, 87, 261, 783]]


[784, [1, 2, 4, 7, 8, 14, 16, 28, 49, 56, 98, 112, 196, 392, 784]]


[785, [1, 5, 157, 785]]


[786, [1, 2, 3, 6, 131, 262, 393, 786]]


[787, [1, 787]]


[788, [1, 2, 4, 197, 394, 788]]


[789, [1, 3, 263, 789]]


[790, [1, 2, 5, 10, 79, 158, 395, 790]]


[791, [1, 7, 113, 791]]


[792, [1, 2, 3, 4, 6, 8, 9, 11, 12, 18, 22, 24, 33, 36, 44, 66, 72, 88, 99, 132, 198, 264, 396, 792]]


[793, [1, 13, 61, 793]]


[794, [1, 2, 397, 794]]


[795, [1, 3, 5, 15, 53, 159, 265, 795]]


[796, [1, 2, 4, 199, 398, 796]]


[797, [1, 797]]


[798, [1, 2, 3, 6, 7, 14, 19, 21, 38, 42, 57, 114, 133, 266, 399, 798]]


[799, [1, 17, 47, 799]]


[800, [1, 2, 4, 5, 8, 10, 16, 20, 25, 32, 40, 50, 80, 100, 160, 200, 400, 800]]


[801, [1, 3, 9, 89, 267, 801]]


[802, [1, 2, 401, 802]]


[803, [1, 11, 73, 803]]


[804, [1, 2, 3, 4, 6, 12, 67, 134, 201, 268, 402, 804]]


[805, [1, 5, 7, 23, 35, 115, 161, 805]]


[806, [1, 2, 13, 26, 31, 62, 403, 806]]


[807, [1, 3, 269, 807]]


[808, [1, 2, 4, 8, 101, 202, 404, 808]]


[809, [1, 809]]


[810, [1, 2, 3, 5, 6, 9, 10, 15, 18, 27, 30, 45, 54, 81, 90, 135, 162, 270, 405, 810]]


[811, [1, 811]]


[812, [1, 2, 4, 7, 14, 28, 29, 58, 116, 203, 406, 812]]


[813, [1, 3, 271, 813]]


[814, [1, 2, 11, 22, 37, 74, 407, 814]]


[815, [1, 5, 163, 815]]


[816, [1, 2, 3, 4, 6, 8, 12, 16, 17, 24, 34, 48, 51, 68, 102, 136, 204, 272, 408, 816]]


[817, [1, 19, 43, 817]]


[818, [1, 2, 409, 818]]


[819, [1, 3, 7, 9, 13, 21, 39, 63, 91, 117, 273, 819]]


[820, [1, 2, 4, 5, 10, 20, 41, 82, 164, 205, 410, 820]]


[821, [1, 821]]


[822, [1, 2, 3, 6, 137, 274, 411, 822]]


[823, [1, 823]]


[824, [1, 2, 4, 8, 103, 206, 412, 824]]


[825, [1, 3, 5, 11, 15, 25, 33, 55, 75, 165, 275, 825]]


[826, [1, 2, 7, 14, 59, 118, 413, 826]]


[827, [1, 827]]


[828, [1, 2, 3, 4, 6, 9, 12, 18, 23, 36, 46, 69, 92, 138, 207, 276, 414, 828]]


[829, [1, 829]]


[830, [1, 2, 5, 10, 83, 166, 415, 830]]


[831, [1, 3, 277, 831]]


[832, [1, 2, 4, 8, 13, 16, 26, 32, 52, 64, 104, 208, 416, 832]]


[833, [1, 7, 17, 49, 119, 833]]


[834, [1, 2, 3, 6, 139, 278, 417, 834]]


[835, [1, 5, 167, 835]]


[836, [1, 2, 4, 11, 19, 22, 38, 44, 76, 209, 418, 836]]


[837, [1, 3, 9, 27, 31, 93, 279, 837]]


[838, [1, 2, 419, 838]]


[839, [1, 839]]


[840, [1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15, 20, 21, 24, 28, 30, 35, 40, 42, 56, 60, 70, 84, 105, 120, 140, 168, 210, 280, 420, 840]]


[841, [1, 29, 841]]


[842, [1, 2, 421, 842]]


[843, [1, 3, 281, 843]]


[844, [1, 2, 4, 211, 422, 844]]


[845, [1, 5, 13, 65, 169, 845]]


[846, [1, 2, 3, 6, 9, 18, 47, 94, 141, 282, 423, 846]]


[847, [1, 7, 11, 77, 121, 847]]


[848, [1, 2, 4, 8, 16, 53, 106, 212, 424, 848]]


[849, [1, 3, 283, 849]]


[850, [1, 2, 5, 10, 17, 25, 34, 50, 85, 170, 425, 850]]


[851, [1, 23, 37, 851]]


[852, [1, 2, 3, 4, 6, 12, 71, 142, 213, 284, 426, 852]]


[853, [1, 853]]


[854, [1, 2, 7, 14, 61, 122, 427, 854]]


[855, [1, 3, 5, 9, 15, 19, 45, 57, 95, 171, 285, 855]]


[856, [1, 2, 4, 8, 107, 214, 428, 856]]


[857, [1, 857]]


[858, [1, 2, 3, 6, 11, 13, 22, 26, 33, 39, 66, 78, 143, 286, 429, 858]]


[859, [1, 859]]


[860, [1, 2, 4, 5, 10, 20, 43, 86, 172, 215, 430, 860]]


[861, [1, 3, 7, 21, 41, 123, 287, 861]]


[862, [1, 2, 431, 862]]


[863, [1, 863]]


[864, [1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 24, 27, 32, 36, 48, 54, 72, 96, 108, 144, 216, 288, 432, 864]]


[865, [1, 5, 173, 865]]


[866, [1, 2, 433, 866]]


[867, [1, 3, 17, 51, 289, 867]]


[868, [1, 2, 4, 7, 14, 28, 31, 62, 124, 217, 434, 868]]


[869, [1, 11, 79, 869]]


[870, [1, 2, 3, 5, 6, 10, 15, 29, 30, 58, 87, 145, 174, 290, 435, 870]]


[871, [1, 13, 67, 871]]


[872, [1, 2, 4, 8, 109, 218, 436, 872]]


[873, [1, 3, 9, 97, 291, 873]]


[874, [1, 2, 19, 23, 38, 46, 437, 874]]


[875, [1, 5, 7, 25, 35, 125, 175, 875]]


[876, [1, 2, 3, 4, 6, 12, 73, 146, 219, 292, 438, 876]]


[877, [1, 877]]


[878, [1, 2, 439, 878]]


[879, [1, 3, 293, 879]]


[880, [1, 2, 4, 5, 8, 10, 11, 16, 20, 22, 40, 44, 55, 80, 88, 110, 176, 220, 440, 880]]


[881, [1, 881]]


[882, [1, 2, 3, 6, 7, 9, 14, 18, 21, 42, 49, 63, 98, 126, 147, 294, 441, 882]]


[883, [1, 883]]


[884, [1, 2, 4, 13, 17, 26, 34, 52, 68, 221, 442, 884]]


[885, [1, 3, 5, 15, 59, 177, 295, 885]]


[886, [1, 2, 443, 886]]


[887, [1, 887]]


[888, [1, 2, 3, 4, 6, 8, 12, 24, 37, 74, 111, 148, 222, 296, 444, 888]]


[889, [1, 7, 127, 889]]


[890, [1, 2, 5, 10, 89, 178, 445, 890]]


[891, [1, 3, 9, 11, 27, 33, 81, 99, 297, 891]]


[892, [1, 2, 4, 223, 446, 892]]


[893, [1, 19, 47, 893]]


[894, [1, 2, 3, 6, 149, 298, 447, 894]]


[895, [1, 5, 179, 895]]


[896, [1, 2, 4, 7, 8, 14, 16, 28, 32, 56, 64, 112, 128, 224, 448, 896]]


[897, [1, 3, 13, 23, 39, 69, 299, 897]]


[898, [1, 2, 449, 898]]


[899, [1, 29, 31, 899]]


[900, [1, 2, 3, 4, 5, 6, 9, 10, 12, 15, 18, 20, 25, 30, 36, 45, 50, 60, 75, 90, 100, 150, 180, 225, 300, 450, 900]]


[901, [1, 17, 53, 901]]


[902, [1, 2, 11, 22, 41, 82, 451, 902]]


[903, [1, 3, 7, 21, 43, 129, 301, 903]]


[904, [1, 2, 4, 8, 113, 226, 452, 904]]


[905, [1, 5, 181, 905]]


[906, [1, 2, 3, 6, 151, 302, 453, 906]]


[907, [1, 907]]


[908, [1, 2, 4, 227, 454, 908]]


[909, [1, 3, 9, 101, 303, 909]]


[910, [1, 2, 5, 7, 10, 13, 14, 26, 35, 65, 70, 91, 130, 182, 455, 910]]


[911, [1, 911]]


[912, [1, 2, 3, 4, 6, 8, 12, 16, 19, 24, 38, 48, 57, 76, 114, 152, 228, 304, 456, 912]]


[913, [1, 11, 83, 913]]


[914, [1, 2, 457, 914]]


[[915, [1, 3, 5, 15, 61, 183, 305, 915]]


[916, [1, 2, 4, 229, 458, 916]]


[917, [1, 7, 131, 917]]


[918, [1, 2, 3, 6, 9, 17, 18, 27, 34, 51, 54, 102, 153, 306, 459, 918]]


[919, [1, 919]]


[920, [1, 2, 4, 5, 8, 10, 20, 23, 40, 46, 92, 115, 184, 230, 460, 920]]


[921, [1, 3, 307, 921]]


[922, [1, 2, 461, 922]]


[923, [1, 13, 71, 923]]


[924, [1, 2, 3, 4, 6, 7, 11, 12, 14, 21, 22, 28, 33, 42, 44, 66, 77, 84, 132, 154, 231, 308, 462, 924]]


[925, [1, 5, 25, 37, 185, 925]]


[926, [1, 2, 463, 926]]


[927, [1, 3, 9, 103, 309, 927]]


[928, [1, 2, 4, 8, 16, 29, 32, 58, 116, 232, 464, 928]]


[929, [1, 929]]


[930, [1, 2, 3, 5, 6, 10, 15, 30, 31, 62, 93, 155, 186, 310, 465, 930]]


[931, [1, 7, 19, 49, 133, 931]]


[932, [1, 2, 4, 233, 466, 932]]


[933, [1, 3, 311, 933]]


[934, [1, 2, 467, 934]]


[935, [1, 5, 11, 17, 55, 85, 187, 935]]


[936, [1, 2, 3, 4, 6, 8, 9, 12, 13, 18, 24, 26, 36, 39, 52, 72, 78, 104, 117, 156, 234, 312, 468, 936]]


[937, [1, 937]]


[938, [1, 2, 7, 14, 67, 134, 469, 938]]


[939, [1, 3, 313, 939]]


[940, [1, 2, 4, 5, 10, 20, 47, 94, 188, 235, 470, 940]]


[941, [1, 941]]


[942, [1, 2, 3, 6, 157, 314, 471, 942]]


[943, [1, 23, 41, 943]]


[944, [1, 2, 4, 8, 16, 59, 118, 236, 472, 944]]


[945, [1, 3, 5, 7, 9, 15, 21, 27, 35, 45, 63, 105, 135, 189, 315, 945]]


[946, [1, 2, 11, 22, 43, 86, 473, 946]]


[947, [1, 947]]


[948, [1, 2, 3, 4, 6, 12, 79, 158, 237, 316, 474, 948]]


[949, [1, 13, 73, 949]]


[950, [1, 2, 5, 10, 19, 25, 38, 50, 95, 190, 475, 950]]


[951, [1, 3, 317, 951]]


[952, [1, 2, 4, 7, 8, 14, 17, 28, 34, 56, 68, 119, 136, 238, 476, 952]]


[953, [1, 953]]


[954, [1, 2, 3, 6, 9, 18, 53, 106, 159, 318, 477, 954]]


[955, [1, 5, 191, 955]]


[956, [1, 2, 4, 239, 478, 956]]


[957, [1, 3, 11, 29, 33, 87, 319, 957]]


[958, [1, 2, 479, 958]]


[959, [1, 7, 137, 959]]


[960, [1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 32, 40, 48, 60, 64, 80, 96, 120, 160, 192, 240, 320, 480, 960]]


[961, [1, 31, 961]]


[962, [1, 2, 13, 26, 37, 74, 481, 962]]


[963, [1, 3, 9, 107, 321, 963]]


[964, [1, 2, 4, 241, 482, 964]]


[965, [1, 5, 193, 965]]


[966, [1, 2, 3, 6, 7, 14, 21, 23, 42, 46, 69, 138, 161, 322, 483, 966]]


[967, [1, 967]]


[968, [1, 2, 4, 8, 11, 22, 44, 88, 121, 242, 484, 968]]


[969, [1, 3, 17, 19, 51, 57, 323, 969]]


[970, [1, 2, 5, 10, 97, 194, 485, 970]]


[971, [1, 971]]


[972, [1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54, 81, 108, 162, 243, 324, 486, 972]]


[973, [1,

7, 139, 973]]


[974, [1, 2, 487, 974]]


[975, [1, 3, 5, 13, 15, 25, 39, 65, 75, 195, 325, 975]]


[976, [1, 2, 4, 8, 16, 61, 122, 244, 488, 976]]


[977, [1, 977]]


[978, [1, 2, 3, 6, 163, 326, 489, 978]]


[979, [1, 11, 89, 979]]


[980, [1, 2, 4, 5, 7, 10, 14, 20, 28, 35, 49, 70, 98, 140, 196, 245, 490, 980]]


[981, [1, 3, 9, 109, 327, 981]]


[982, [1, 2, 491, 982]]


[983, [1, 983]]


[984, [1, 2, 3, 4, 6, 8, 12, 24, 41, 82, 123, 164, 246, 328, 492, 984]]


[985, [1, 5, 197, 985]]


[986, [1, 2, 17, 29, 34, 58, 493, 986]]


[987, [1, 3, 7, 21, 47, 141, 329, 987]]


[988, [1, 2, 4, 13, 19, 26, 38, 52, 76, 247, 494, 988]]


[989, [1, 23, 43, 989]]


[990, [1, 2, 3, 5, 6, 9, 10, 11, 15, 18, 22, 30, 33, 45, 55, 66, 90, 99, 110, 165, 198, 330, 495, 990]]


[991, [1, 991]]


[992, [1, 2, 4, 8, 16, 31, 32, 62, 124, 248, 496, 992]]


[993, [1, 3, 331, 993]]


[994, [1, 2, 7, 14, 71, 142, 497, 994]]


[995, [1, 5, 199, 995]]


[996, [1, 2, 3, 4, 6, 12, 83, 166, 249, 332, 498, 996]]


[997, [1, 997]]


[998, [1, 2, 499, 998]]


[999, [1, 3, 9, 27, 37, 111, 333, 999]]


[1000, [1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 125, 200, 250, 500, 1000]]]


Теперь несложно посчитать и сумму делителей чисел от 1 до 1000(которые тоже были получены с помощью программы Derive (по формуле 2.), теперь делители «a» просто складывались):


[1, 1]


[2, 3]


[3, 4]


[4, 7]


[5, 6]


[6, 12]


[7, 8]


[8, 15]


[9, 13]


[10, 18]


[11, 12]


[12, 28]


[13, 14]


[14, 24]


[15, 24]


[16, 31]


[17, 18]


[18, 39]


[19, 20]


[20, 42]


[21, 32]


[22, 36]


[23, 24]


[24, 60]


[25, 31]


[26, 42]


[27, 40]


[28, 56]


[29, 30]


[30, 72]


[31, 32]


[32, 63]


[33, 48]


[34, 54]


[35, 48]


[36, 91]


[37, 38]


[38, 60]


[39, 56]


[40, 90]


[41, 42]


[42, 96]


[43, 44]


[44, 84]


[45, 78]


[46, 72]


[47, 48]


[48, 124]


[49, 57]


[50, 93]


[51, 72]


[52, 98]


[53, 54]


[54, 120]


[55, 72]


[56, 120]


[57, 80]


[58, 90]


[59, 60]


[60, 168]


[61, 62]


[62, 96]


[63, 104]


[64, 127]


[65, 84]


[66, 144]


[67, 68]


[68, 126]


[69, 96]


[70, 144]


[71, 72]


[72, 195]


[73, 74]


[74, 114]


[75, 124]


[76, 140]


[77, 96]


[78, 168]


[79, 80]


[80, 186]


[81, 121]


[82, 126]


[83, 84]


[84, 224]


[85, 108]


[86, 132]


[87, 120]


[88, 180]


[89, 90]


[90, 234]


[91, 112]


[92, 168]


[93, 128]


[94, 144]


[95, 120]


[96, 252]


[97, 98]


[98, 171]


[99, 156]


[100, 217]


[101, 102]


[102, 216]


[103, 104]


[104, 210]


[105, 192]


[106, 162]


[107, 108]


[108, 280]


[109, 110]


[110, 216]


[111, 152]


[112, 248]


[113, 114]


[114, 240]


[115, 144]


[116, 210]


[117, 182]


[118, 180]


[119, 144]


[120, 360]


[121, 133]


[122, 186]


[123, 168]


[124, 224]


[125, 156]


[126, 312]


[127, 128]


[128, 255]


[129, 176]


[130, 252]


[131, 132]


[132, 336]


[133, 160]


[134, 204]


[135, 240]


[136, 270]


[137, 138]


[138, 288]


[139, 140]


[140, 336]


[141, 192]


[142, 216]


[143, 168]


[144, 403]


[145, 180]


[146, 222]


[147, 228]


[148, 266]


[149, 150]


[150, 372]


[151, 152]


[152, 300]


[153, 234]


[154, 288]


[155, 192]


[156, 392]


[157, 158]


[158, 240]


[159, 216]


[160, 378]


[161, 192]


[162, 363]


[163, 164]


[164, 294]


[165, 288]


[166, 252]


[167, 168]


[168, 480]


[169, 183]


[170, 324]


[171, 260]


[172, 308]


[173, 174]


[174, 360]


[175, 248]


[176, 372]


[177, 240]


[178, 270]


[179, 180]


[180, 546]


[181, 182]


[182, 336]


[183, 248]


[184, 360]


[185, 228]


[186, 384]


[187, 216]


[188, 336]


[189, 320]


[190, 360]


[191, 192]


[192, 508]


[193, 194]


[194, 294]


[195, 336]


[196, 399]


[197, 198]


[198, 468]


[199, 200]


[200, 465]


[201, 272]


[202, 306]


[203, 240]


[204, 504]


[205, 252]


[206, 312]


[207, 312]


[208, 434]


[209, 240]


[210, 576]


[211, 212]


[212, 378]


[213, 288]


[214, 324]


[215, 264]


[216, 600]


[217, 256]


[218, 330]


[219, 296]


[220, 504]


[221, 252]


[222, 456]


[223, 224]


[224, 504]


[225, 403]


[226, 342]


[227, 228]


[228, 560]


[229, 230]


[230, 432]


[231, 384]


[232, 450]


[233, 234]


[234, 546]


[235, 288]


[236, 420]


[237, 320]


[238, 432]


[239, 240]


[240, 744]


[241, 242]


[242, 399]


[243, 364]


[244, 434]


[245, 342]


[246, 504]


[247, 280]


[248, 480]


[249, 336]


[250, 468]


[251, 252]


[252, 728]


[253, 288]


[254, 384]


[255, 432]


[256, 511]


[257, 258]


[258, 528]


[259, 304]


[260, 588]


[261, 390]


[262, 396]


[263, 264]


[264, 720]


[265, 324]


[266, 480]


[267, 360]


[268, 476]


[269, 270]


[270, 720]


[271, 272]


[272, 558]


[273, 448]


[274, 414]


[275, 372]


[276, 672]


[277, 278]


[278, 420]


[279, 416]


[280, 720]


[281, 282]


[282, 576]


[283, 284]


[284, 504]


[285, 480]


[286, 504]


[287, 336]


[288, 819]


[289, 307]


[290, 540]


[291, 392]


[292, 518]


[293, 294]


[294, 684]


[295, 360]


[296, 570]


[297, 480]


[298, 450]


[299, 336]


[300, 868]


[301, 352]


[302, 456]


[303, 408]


[304, 620]


[305, 372]


[306, 702]


[307, 308]


[308, 672]


[309, 416]


[310, 576]


[311, 312]


[312, 840]


[313, 314]


[314, 474]


[315, 624]


[316, 560]


[317, 318]


[318, 648]


[319, 360]


[320, 762]


[321, 432]


[322, 576]


[323, 360]


[324, 847]


[325, 434]


[326, 492]


[327, 440]


[328, 630]


[329, 384]


[330, 864]


[331, 332]


[332, 588]


[333, 494]


[334, 504]


[335, 408]


[336, 992]


[337, 338]


[338, 549]


[339, 456]


[340, 756]


[341, 384]


[342, 780]


[343, 400]


[344, 660]


[345, 576]


[346, 522]


[347, 348]


[348, 840]


[349, 350]


[350, 744]


[351, 560]


[352, 756]


[353, 354]


[354, 720]


[355, 432]


[356, 630]


[357, 576]


[358, 540]


[359, 360]


[360, 1170]


[361, 381]


[362, 546]


[363, 532]


[364, 784]


[365, 444]


[366, 744]


[367, 368]


[368, 744]


[369, 546]


[370, 684]


[371, 432]


[372, 896]


[373, 374]


[374, 648]


[375, 624]


[376, 720]


[377, 420]


[378, 960]


[379, 380]


[380, 840]


[381, 512]


[382, 576]


[383, 384]


[384, 1020]


[385, 576]


[386, 582]


[387, 572]


[388, 686]


[389, 390]


[390, 1008]


[391, 432]


[392, 855]


[393, 528]


[394, 594]


[395, 480]


[396, 1092]


[397, 398]


[398, 600]


[399, 640]


[400, 961]


[401, 402]


[402, 816]


[403, 448]


[404, 714]


[405, 726]


[406, 720]


[407, 456]


[408, 1080]


[409, 410]


[410, 756]


[411, 552]


[412, 728]


[413, 480]


[414, 936]


[415, 504]


[416, 882]


[417, 560]


[418, 720]


[419, 420]


[420, 1344]


[421, 422]


[422, 636]


[423, 624]


[424, 810]


[425, 558]


[426, 864]


[427, 496]


[428, 756]


[429, 672]


[430, 792]


[431, 432]


[432, 1240]


[433, 434]


[434, 768]


[435, 720]


[436, 770]


[437, 480]


[438, 888]


[439, 440]


[440, 1080]


[441, 741]


[442, 756]


[443, 444]


[444, 1064]


[445, 540]


[446, 672]


[447, 600]


[448, 1016]


[449, 450]


[450, 1209]


[451, 504]


[452, 798]


[453, 608]


[454, 684]


[455, 672]


[456, 1200]


[457, 458]


[458, 690]


[459, 720]


[460, 1008]


[461, 462]


[462, 1152]


[463, 464]


[464, 930]


[465, 768]


[466, 702]


[467, 468]


[468, 1274]


[469, 544]


[470, 864]


[471, 632]


[472, 900]


[473, 528]


[474, 960]


[475, 620]


[476, 1008]


[477, 702]


[478, 720]


[479, 480]


[480, 1512]


[481, 532]


[482, 726]


[483, 768]


[484, 931]


[485, 588]


[486, 1092]


[487, 488]


[488, 930]


[489, 656]


[490, 1026]


[491, 492]


[492, 1176]


[493, 540]


[494, 840]


[495, 936]


[496, 992]


[497, 576]


[498, 1008]


[499, 500]


[500, 1092]


[501, 672]


[502, 756]


[503, 504]


[504, 1560]


[505, 612]


[506, 864]


[507, 732]


[508, 896]


[509, 510]


[510, 1296]


[511, 592]


[512, 1023]


[513, 800]


[514, 774]


[515, 624]


[516, 1232]


[517, 576]


[518, 912]


[519, 696]


[520, 1260]


[521, 522]


[522, 1170]


[523, 524]


[524, 924]


[525, 992]


[526, 792]


[527, 576]


[528, 1488]


[529, 553]


[530, 972]


[531, 780]


[532, 1120]


[533, 588]


[534, 1080]


[535, 648]


[536, 1020]


[537, 720]


[538, 810]


[539, 684]


[540, 1680]


[541, 542]


[542, 816]


[543, 728]


[544, 1134]


[545, 660]


[546, 1344]


[547, 548]


[548, 966]


[549, 806]


[550, 1116]


[551, 600]


[552, 1440]


[553, 640]


[554, 834]


[555, 912]


[556, 980]


[557, 558]


[558, 1248]


[559, 616]


[560, 1488]


[561, 864]


[562, 846]


[563, 564]


[564, 1344]


[565, 684]


[566, 852]


[567, 968]


[568, 1080]


[569, 570]


[570, 1440]


[571, 572]


[572, 1176]


[573, 768]


[574, 1008]


[575, 744]


[576, 1651]


[577, 578]


[578, 921]


[579, 776]


[580, 1260]


[581, 672]


[582, 1176]


[583, 648]


[584, 1110]


[585, 1092]


[586, 882]


[587, 588]


[588, 1596]


[589, 640]


[590, 1080]


[591, 792]


[592, 1178]


[593, 594]


[594, 1440]


[595, 864]


[596, 1050]


[597, 800]


[598, 1008]


[599, 600]


[600, 1860]


[601, 602]


[602, 1056]


[603, 884]


[604, 1064]


[605, 798]


[606, 1224]


[607, 608]


[608, 1260]


[609, 960]


[610, 1116]


[611, 672]


[612, 1638]


[613, 614]


[614, 924]


[615, 1008]


[616, 1440]


[617, 618]


[618, 1248]


[619, 620]


[620, 1344]


[621, 960]


[622, 936]


[623, 720]


[624, 1736]


[625, 781]


[626, 942]


[627, 960]


[628, 1106]


[629, 684]


[630, 1872]


[631, 632]


[632, 1200]


[633, 848]


[634, 954]


[635, 768]


[636, 1512]


[637, 798]


[638, 1080]


[639, 936]


[640, 1530]


[641, 642]


[642, 1296]


[643, 644]


[644, 1344]


[645, 1056]


[646, 1080]


[647, 648]


[648, 1815]


[649, 720]


[650, 1302]


[651, 1024]


[652, 1148]


[653, 654]


[654, 1320]


[655, 792]


[656, 1302]


[657, 962]


[658, 1152]


[659, 660]


[660, 2016]


[661, 662]


[662, 996]


[663, 1008]


[664, 1260]


[665, 960]


[666, 1482]


[667, 720]


[668, 1176]


[669, 896]


[670, 1224]


[671, 744]


[672, 2016]


[673, 674]


[674, 1014]


[675, 1240]


[676, 1281]


[677, 678]


[678, 1368]


[679, 784]


[680, 1620]


[681, 912]


[682, 1152]


[683, 684]


[684, 1820]


[685, 828]


[686, 1200]


[687, 920]


[688, 1364]


[689, 756]


[690, 1728]


[691, 692]


[692, 1218]


[693, 1248]


[694, 1044]


[695, 840]


[696, 1800]


[697, 756]


[698, 1050]


[699, 936]


[700, 1736]


[701, 702]


[702, 1680]


[703, 760]


[704, 1524]


[705, 1152]


[706, 1062]


[707, 816]


[708, 1680]


[709, 710]


[710, 1296]


[711, 1040]


[712, 1350]


[713, 768]


[714, 1728]


[715, 1008]


[716, 1260]


[717, 960]


[718, 1080]


[719, 720]


[720, 2418]


[721, 832]


[722, 1143]


[723, 968]


[724, 1274]


[725, 930]


[726, 1596]


[727, 728]


[728, 1680]


[729, 1093]


[730, 1332]


[731, 792]


[732, 1736]


[733, 734]


[734, 1104]


[735, 1368]


[736, 1512]


[737, 816]


[738, 1638]


[739, 740]


[740, 1596]


[741, 1120]


[742, 1296]


[743, 744]


[744, 1920]


[745, 900]


[746, 1122]


[747, 1092]


[748, 1512]


[749, 864]


[750, 1872]


[751, 752]


[752, 1488]


[753, 1008]


[754, 1260]


[755, 912]


[756, 2240]


[757, 758]


[758, 1140]


[759, 1152]


[760, 1800]


[761, 762]


[762, 1536]


[763, 880]


[764, 1344]


[765, 1404]


[766, 1152]


[767, 840]


[768, 2044]


[769, 770]


[770, 1728]


[771, 1032]


[772, 1358]


[773, 774]


[774, 1716]


[775, 992]


[776, 1470]


[777, 1216]


[778, 1170]


[779, 840]


[780, 2352]


[781, 864]


[782, 1296]


[783, 1200]


[784, 1767]


[785, 948]


[786, 1584]


[787, 788]


[788, 1386]


[789, 1056]


[790, 1440]


[791, 912]


[792, 2340]


[793, 868]


[794, 1194]


[795, 1296]


[796, 1400]


[797, 798]


[798, 1920]


[799, 864]


[800, 1953]


[801, 1170]


[802, 1206]


[803, 888]


[804, 1904]


[805, 1152]


[806, 1344]


[807, 1080]


[808, 1530]


[809, 810]


[810, 2178]


[811, 812]


[812, 1680]


[813, 1088]


[814, 1368]


[815, 984]


[816, 2232]


[817, 880]


[818, 1230]


[819, 1456]


[820, 1764]


[821, 822]


[822, 1656]


[823, 824]


[824, 1560]


[825, 1488]


[826, 1440]


[827, 828]


[828, 2184]


[829, 830]


[830, 1512]


[831, 1112]


[832, 1778]


[833, 1026]


[834, 1680]


[835, 1008]


[836, 1680]


[837, 1280]


[838, 1260]


[839, 840]


[840, 2880]


[841, 871]


[842, 1266]


[843, 1128]


[844, 1484]


[845, 1098]


[846, 1872]


[847, 1064]


[848, 1674]


[849, 1136]


[850, 1674]


[851, 912]


[852, 2016]


[853, 854]


[854, 1488]


[855, 1560]


[856, 1620]


[857, 858]


[858, 2016]


[859, 860]


[860, 1848]


[861, 1344]


[862, 1296]


[863, 864]


[864, 2520]


[865, 1044]


[866, 1302]


[867, 1228]


[868, 1792]


[869, 960]


[870, 2160]


[871, 952]


[872, 1650]


[873, 1274]


[874, 1440]


[875, 1248]


[876, 2072]


[877, 878]


[878, 1320]


[879, 1176]


[880, 2232]


[881, 882]


[882, 2223]


[883, 884]


[884, 1764]


[885, 1440]


[886, 1332]


[887, 888]


[888, 2280]


[889, 1024]


[890, 1620]


[891, 1452]


[892, 1568]


[893, 960]


[894, 1800]


[895, 1080]


[896, 2040]


[897, 1344]


[898, 1350]


[899, 960]


[900, 2821]


[901, 972]


[902, 1512]


[903, 1408]


[904, 1710]


[905, 1092]


[906, 1824]


[907, 908]


[908, 1596]


[909, 1326]


[910, 2016]


[911, 912]


[912, 2480]


[913, 1008]


[914, 1374]


[915, 1488]


[916, 1610]


[917, 1056]


[918, 2160]


[919, 920]


[920, 2160]


[921, 1232]


[922, 1386]


[923, 1008]


[924, 2688]


[925, 1178]


[926, 1392]


[927, 1352]


[928, 1890]


[929, 930]


[930, 2304]


[931, 1140]


[932, 1638]


[933, 1248]


[934, 1404]


[935, 1296]


[936, 2730]


[937, 938]


[938, 1632]


[939, 1256]


[940, 2016]


[941, 942]


[942, 1896]


[943, 1008]


[944, 1860]


[945, 1920]


[946, 1584]


[947, 948]


[948, 2240]


[949, 1036]


[950, 1860]


[951, 1272]


[952, 2160]


[953, 954]


[954, 2106]


[955, 1152]


[956, 1680]


[957, 1440]


[958, 1440]


[959, 1104]


[960, 3048]


[961, 993]


[962, 1596]


[963, 1404]


[964, 1694]


[965, 1164]


[966, 2304]


[967, 968]


[968, 1995]


[969, 1440]


[970, 1764]


[971, 972]


[972, 2548]


[973, 1120]


[974, 1464]


[975, 1736]


[976, 1922]


[977, 978]


[978, 1968]


[979, 1080]


[980, 2394]


[981, 1430]


[982, 1476]


[983, 984]


[984, 2520]


[985, 1188]


[986, 1620]


[987, 1536]


[988, 1960]


[989, 1056]


[990, 2808]


[991, 992]


[992, 2016]


[993, 1328]


[994, 1728]


[995, 1200]


[996, 2352]


[997, 998]


[998, 1500]


[999, 1520]


[1000, 2340]


Теперь посмотрим, все ли числа являются суммой делителей какого-либо числа и есть ли такие числа сумма делителей которых равна (в первых двух сотнях).


Ниже приведена таблица: [[4, 7]](на втором месте сумма делителей, а на первом число с данной суммой делителей) … [[1, 1]], [2] (т.е. нет такого числа с суммой делителей равной двум):


[1,1]


[2]


[2,3]


[3,4]


[5]


[5,6]


[4,7]


[7,8]


[9]


[10]


[11]


[6,12]


[11, 12]


[9,13]


[13,14]


[8,15]


[16]


[17]


[10,18]


[17,18]


[19]


[19.20]


[21]


[22]


[23]


[14,24]


[15,24]


[23,24]


[25]


[26]


[27]


[12, 28].


[29]


[29,30]


[16,31]


[25.31]


[21,32]


[31,32]


[33]


[34]


[35]


[22,36]


[37]


[37,38]


[18,39]


[27, 40]


[41]


[20,42]


[26,42]


[41,42].


[43]


[43,44].


[45]


[46]


[47]


[33,48].


[35,4 8]


[47,48]


[49]


[50]


[51]


[52]


[53]


[34,54]


[53, 54]


[55]


[28,56]


[39.56]


[49,57]


[58]


[59]


[24,60]


[38.60]


[59,60]


[61]


[61,62]


[32,63]


[64]


[65]


[66]


[67]


[67, 68]


[69]


[70]


[71]


[30,72]


[46,72]


[51,72]


[55,72]


[71,72]


[73]


[73,74]


[75]


[76]


[77]


[45,78]


[79]


[57,80]


[79,80]


[81]


[82]


[83]


[44,84]


[65,84]


[83,84]


[85]


[86]


[87]


[88]


[89]


[40, 90]


[58,90]


[89,90]


[36,91]


[92]


[50,93].


[94]


[95]


[42, 96]


[62,96]


[69,96]


[77,96]


[97]


[52,98]


[97,98]


[99]


[100]


[101]


[102]


[103]


[63,104]


[105]


[106]


[107]


[85,108]


[109]


[110]


[111]


[91, 112]


[113]


[74,114],


[115]


[116]


[117]


[118]


[119]


[54,120]


[56,120]


[87,120]


[95,120]


[81,121]


[122]


[123]


[48,124]


[75, 124]


[125]


[68,126]


[82.126]


[64,127]


[9 3,128]


[129]


[130]


[131]


[86,132]


[133]


[134]


[135]


[136]


[137]


[138]


[139]


[76,140]


[141]


[142]


[143]


[66,144]


[70,144]


[94,144]


[145]


[146]


[147]


[178]


[149]


[150]


[151]


[152]


[153]


[154]


[155]


[99,156]


[157]


[158]


[159]


[160]


[161]


[162]


[163]


[164]


[165]


[166]


[167]


[60,168]


[78,168]


[92,168]


[169]


[170]


[98,171]


[172]


[173]


[174]


[175]


[176]


[177]


[178]


[179]


[88,180]


[181]


[182]


[183]


[184]


[185]


[80,186]


[187]


[188]


[189]


[190]


[191]


[192]


[193]


[194]


[72,195]


[196]


[197]


[198]


[199]


[200]


Как мы заметили, есть такие числа, которые не являются суммой делителей ни одного числа и так же есть такие числа, которые являются суммой делителей ни одного, а нескольких чисел. Теперь посмотрим только те числа, которые являются суммой делителей ни одного, а нескольких чисел:


[6,12], [11,12]


[10,18], [17,18]


[14,24], [15,24], [23,24]


[16,31]. [25,31]


[21,32], [31,32]


[20, 42], [26,42], [41,42]


[33,48], [35,48], [47,48]


[34,5 4], [53,54]


[28,56], [39,56]


[24,60], [38,60], [59, 60]


[30,72], [46,72], [51,72], [55,72], [71,72]


[57,80], [79,80]


[44,84], [65,84], [83,84]


[40,90], [58, 9 0], [89,90]


[42,96], [62,96], [69,96], [77,96]


[52,98], [97,98]


[54,120], [56, 120], [87,120], [95,120]


[48,124], [75,124]


[68,126], [82,126]


[66,144], [70, 144], [94,144]


[60,168], [78,168], [92,168]


Отсюда можно сделать вывод, что нахождение числа по его сумме делителей не всегда возможно и не всегда однозначно.





Теперь построим график. По оси Х расположим числа, а по оси Y их сумму делителей (числа от 1 до 1000):

Посмотрим, что же у нас получилось: на графике отчётливо просматриваются несколько прямых линий, например, нижняя это – простые числа. Верхняя граница – это наиболее сложные числа (имеющие наибольшее количество делителей) - это не прямая, но и не парабола. Скорее всего, – это показательная функция (у = ах
).


В мемуарах Эйлера я нашел много интересных мне рассуждений(σ(n) – сумма делителей числа n): Определив значение σ(n) мы ясно видим, что если p – простое, то σ(p)= p + 1. σ(1)=1, а если число n – составное, то σ(n)>1 + n.


Если a, b, c, d – различные простые числа, то мы видим:


σ(ab)=1+a+b+ab=(1+a)(1+b)= σ(a)σ(b)


σ(abcd)= σ(a)σ(b)σ(c)σ(d)


σ(a^2)=1+a+a2
=


σ(a^3)=1+a+a2
+a3
=


И вообще


σ(nn
)=


Пользуясь этим:


σ(aq
bw
ce
dr
)= σ(aq
)σ(bw
)σ(ce
)σ(dr
)


Например σ(360), 360 = 23
*32
*5 => σ(23
) σ(32
) σ(5)=15*13*6=1170.


Чтобы показать последовательность сумм делителей приведём таблицу:






































































































































n

0
1
2
3
4
5
6
7
8
9
0
- 1 3 4 7 6 12 8 15 13
10
18 12 28 14 24 24 31 18 39 20
20
42 32 36 24 60 31 42 40 56 30
30
72 32 63 48 54 48 91 38 60 56
40
90 42 96 44 84 78 72 48 124 57
50
93 72 98 54 120 72 120 80 90 60
60
168 62 96 104 127 84 144 68 126 96
70
144 72 195 74 114 424 140 96 168 80
80
186 121 126 84 224 108 132 120 180 90
90
234 112 168 128 144 120 252 98 171 156

Если σ(n) обозначает член любой этой последовательности, а σ(n - 1), σ(n - 2), σ(n - 3)… предшествующие члены, то σ(n) всегда можно получить по нескольким предыдущим членам:


σ(n) = σ(n - 1) + σ(n - 2) - σ(n - 5) - σ(n - 7) + σ(n - 12) + σ(n - 15) - σ(n - 22) - σ(n – 26) + … (**)


Знаки «+» «-» в правой части формулы попарно чередуются. Закон чисел 1, 2, 5, 7, 12, 15…,которые мы должны вычитать из рассматриваемого числа n, станет ясен если мы возьмем их разности:


Числа:1, 2, 5, 7, 12, 15, 22, 26, 35, 40, 51, 57, 70, 77, 92, 100…


Разности: 1
, 3, 2
, 5, 3
, 7, 4
, 9, 5
, 11, 6
, 13, 7
, 15, 8


В самом деле, мы имеем здесь поочередно все целые числа 1, 2, 3, 4, 5, 6, 7… и нечетные 3, 5, 7,9 11…


Хотя эта последовательность бесконечна, мы должны в каждом случае брать только те члены, для которых числа стоящие под знаком σ, еще положительны, и опускать σ для отрицательных чисел. Если в нашей формуле встретиться σ(0), то, поскольку его значение само по себе является неопределённым, мы должны подставить вместо σ(0) рассматриваемое число n. Примеры:


σ(1) = σ(0) =1 = 1


σ(2) = σ(1) + σ(0) = 1 + 2 = 3



σ(20) = σ(19)+σ(18)-σ(15)-σ(13)+9σ(8)+σ(5)=20+39-24-14+15+6= 42


Доказательство теоремы (**) я приводить не буду.


Вообще, найти сумму всех делителей числа можно с помощью канонического разложения натурального числа (это уже было сказано выше). Сумму делителей числа n обозначают σ(n). Легко найти σ(n) для небольших натуральных чисел, например σ(12) = 1+2+3+4+6+12=28(это было приведено выше). Но при достаточно больших числах отыскивание всех делителей, а тем более их суммы становится затруднительным. Совсем другое дело, если уже известно, что каноническое


разложение числа n таково:.


Его делителями являются все числа , для которых 0 ≤βs
≤ αs
, s = 1, …, k. Ясно, что σ(n) представляет собой сумму всех таких чисел при различных значениях показателей


β1
, β2
, … βk
. Этот результат мы получим раскрыв скобки в произведении



По формуле конечного числа членов геометрической прогрессии приходим к равенству


(*)


По этой формуле σ(360) = .


Формулу для вычисления значения функции σ(n) вывел замечательный английский математик Джон Валлис(1616 - 1703) – один из основателей и первых членов Лондонского Королевства общества (Академии наук). Он был первым из английских математиков, начавших заниматься математическим анализом. Ему принадлежат многие обозначения и термины, применяемые сейчас в математике, в частности знак ∞ для обозначения бесконечности. Валлис вывел удивительную формулу, представляющую число π в виде бесконечного произведения:



Д. Валлис много занимался комбинаторикой и её приложениями к теории шифров, не без основания считая себя родоначальником новой науки – криптологии (от греч. «криптос» - тайный, «логос» - наука, учение). Он был одним из лучших шифровальщиков своего времени и по поручению министра полиции Терло занимался в республиканском правительстве Кромвеля расшифровкой посланий монархических заговорщиков.


С функцией σ(n) связан ряд любопытных задач.Например:


1.) Найти пару целых чисел, удовлетворяющих условию: σ(m1
)=m2
, σ(m2
)=m1
.


Некоторые из них не удаётся решить даже с использованием формулы (*). Так, например, не иначе как подбором можно найти числа, для которых σ(n) есть квадрат некоторого натурального числа. Такими числами являются 22, 66, 70, 81, 343, 1501, 4479865. Вот ещё две задачи, приведённые в 1657 г. Пьером Ферма:


1.) найти такое m, для которого σ(m3
) – квадрат натурального числа (Ферма нашёл не одно решение этой задачи);


2.) найти такое m, для которого σ(m2
) – куб натурального числа.


Например, одним из решений первой задачи является m = 7, а для второй m = 43098.


С помощью программы Derive, я попробовал найти ещё решения и у меня этого не получилось. (я рассматривал σ(m3
) = n2
, где m принимает значения от 1 до 1000, а n от 1 до 5000 в 1.) и тоже самое в 2.) )


Формулы:


1. DELITELI(m) := SELECT(MOD(m, n) = 0, n, 1, m)


DIMENSION(DELITELI(m))


2. SUMMADELITELEY(m) := Σ ELEMENT(DELITELI(m), i)


i=1

Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Сумма делителей числа

Слов:11833
Символов:94482
Размер:184.54 Кб.