Алоджанц Александр Павлович
Мои научные интересы связаны главным образом с квантовой и атомной оптикой, которой я занимаюсь с 1988 года. В то время я был студентом Ереванского государственного университета, изучал астрофизику и гравитацию. Здесь у меня были неплохие перспективы, поскольку это направление исследований традиционно входило в число приоритетных на факультете физики. Но в естественный ход событий вмешался случай.
В один из весенних дней я присутствовал на семинаре кафедры оптики, на котором молодой профессор С. М. Аракелян увлекательно рассказывал о новых экспериментах в области нелинейной оптики, затрагивающих фундаментальные основы квантовой теории. Речь шла о генерации так называемого сжатого света с подавленным уровнем флуктуаций одной из квадратур ниже дробового уровня шумов. В квантовой оптике эти квадратуры - аналоги импульса и координаты в квантовой механике и не могут быть одновременно и точно измерены. Все это показалось мне сложным, но необычайно интересным. Так мой выбор склонился в пользу квантовой оптики. Я стал студентом, а затем и аспирантом С. М. Аракеляна, под влиянием которого сформировались не только мои научные интересы, но и жизненная позиция.
Мне поручили разрабатывать тему "Формирование квантовых состояний света в нелинейных пространственно-периодических и неоднородных средах", к которым можно отнести жидкие кристаллы, пространственно-периодические и туннельно-связанные оптические волокна и волноводы. Эти системы интересны тем, что в них происходит макроскопическое туннелирование фотонов, а также проявляется эффект самовоздействия, обусловленный кубической нелинейностью среды. Мы надеялись поставить первый, по сути, в мире эксперимент по генерации сжатых макроскопических состояний светового поля в рассматриваемых системах. Но нашим планам не суждено было сбыться. В результате известных событий конца 80-х и начала 90-х годов Армения оказалась в сложнейшем экономическом положении. Не было света, тепла, и над кандидатской диссертацией приходилось работать при свечке.
В начале 1993 года я оказался в Международном лазерном центре при кафедре общей физики Физического факультета МГУ им. М. В. Ломоносова, куда меня пригласил профессор Н. И. Коротеев. Здесь мне удалось завершить кандидатскую диссертацию, которую я успешно защитил осенью.
Я попал в сильную группу ведущего научного сотрудника кафедры А. С. Чиркина, известного своими пионерскими работами в лазерной физике, нелинейной и статистической оптике. В то время Анатолий Степанович со своими коллегами решал новую в квантовой оптике задачу о возможности формирования так называемых поляризационно-сжатых состояний света, для которых подавляются дисперсии одного из параметров Стокса ниже своего значения для когерентных состояний. Эти параметры светового поля, как и компоненты спина квантовой системы, удовлетворяют алгебре SU(2), что и определяет их квантовые свойства. Тогда нам удалось показать, что генерация света с такими неклассическими поляризационными характеристиками возможна в результате взаимодействия ортогонально поляризованных мод в пространственно-периодических средах, которыми я занимался прежде.
Новые квантовые состояния света требовали иных методов регистрации. Для этого мы с коллегами создали теорию квантовых невозмущающих измерений параметров Стокса, которую опубликовали в цикле статей. Так был намечен принципиально новый путь измерения квантовой фазы (разности фаз) светового поля. В частности, для полного определения фазовых свойств поляризационной системы с симметрией алгебры SU(2) мы предложили четырехканальный (многопортовый) поляриметр и оценили предельные возможности одновременного гомодинного измерения всех четырех параметров Стокса, а также фазовых углов и их флуктуаций.
Интересно, что все эти вопросы об измерении квантовых поляризационных характеристик светового поля неоднократно становились предметом горячих дискуссий с нашими зарубежными коллегами. Однако лишь недавно, в 2001-2002 годах, научная группа Австралийского национального университета и независимо от них группа в университете г. Эрланген (Германия) экспериментально получили и зарегистрировали световое поле в поляризационно-сжатом состоянии. Наконец, уже в этом году такие состояния света были задействованы для квантовой телепортации поляризации светового поля, что чрезвычайно актуально для передачи и обработки квантовой информации.
С 1995 года я работаю доцентом во Владимирском государственном университете в группе проф
В настоящее время я работаю над проблемой формирования мезоскопических квантовых состояний в квантовой и атомной оптике. Интерес к этой теме появился у меня в 1999-2000 гг. во время научной стажировки в Институте теоретической физики (Инсбрук, Австрия) в группе профессора П. Цоллера. При определенных условиях в двухуровневых оптических системах (например, туннельно-связанных волокон/волноводов) может формироваться новый для оптики тип квантовых перепутанных (entangled) и суперпозиционных состояний, связанных с мезоскопическими свойствами оптической системы. Физика таких состояний связана с эффектами резкого переключения выходных параметров оптического излучения (числа фотонов, поляризации и т. д.) при небольшом изменении входной интенсивности светового поля.
Состояния подобного рода в физике твердого тела известны, по сути, давно и в последнее время интенсивно обсуждаются в связи с квантовой обработкой информации. Физически здесь речь идет о "замороженных" системах с большим (в пределе - бесконечным) числом частиц, максимально изолированных от окружающей среды. При этом переходы всего лишь на одну частицу существенно изменяют поведение параметров всей системы в целом.
Такое свойство мезоскопической системы может быть связано с фазовым переходом и свойствами сверхтекучего состояния. В атомной оптике нечто подобное мы наблюдаем при бозе-эйнштейновской конденсации атомов. В квантовой оптике подобных мезоскопических состояний не наблюдалось. Действительно, принципиальным свойством оптической системы является, с одной стороны, ее мезоскопичность (1010-1013 фотонов), а с другой - учет квантовых переходов относительно небольшого (103-105) числа фотонов; в "идеальном" случае переключение осуществляют единичные фотоны. К сожалению, сегодня не получается выполнить подобные измерения на доступных лазерах - слишком нестабильны параметры их излучения. А надо бы, если нам нужны именно квантовые вычисления!
С практической точки зрения для целей обработки квантовой информации реализация таких систем с большим числом частиц может быть осуществлена в атомной оптике. Особый интерес здесь, на мой взгляд, представляет формирование перепутанных состояний атомов в результате их взаимодействия с внешними электромагнитными полями. В этом случае в атомной среде становится возможным формирование поляритонов, представляющих связанные состояния спиновых волн и фотонов внешнего поля. Для исследования квантовых свойств таких образований мы развиваем два подхода. Первый связан с анализом состояний поляритонов в рамках деформации алгебры SU(2). Второй подход основан на развитии квантовой теории поляризации для систем с симметрией SU(3).
На мой взгляд, это направление исследований может стать наиболее интересным и практически значимым в квантовой и атомной оптике в ближайшее время. Здесь мы уже сделали достаточно много: предложили концепцию SU(3)-поляризации в гильбертовом пространстве для квантовых бозе-систем с симметрией Гелл-Манна, определили параметры степени поляризации, рассмотрели оригинальный SU(3)-интерферометр, позволяющий проводить измерения различных фазовозависящих параметров Гелл-Манна для оптического поля. Однако физические аспекты формирования таких состояний требуют специального анализа. Все эти вопросы сегодня уже стали предметом теоретических и экспериментальных исследований во многих лабораториях мира, и их решение позволит наметить новые пути в решении как фундаментальных, так и практических проблем современной квантовой физики.
В заключение я хотел бы поблагодарить фонд "Династия" и его основателя, господина Д. Б. Зимина, за поддержку моей научной деятельности в наше непростое, но интересное время.