РефератыМатематикаНеНезависимость событий в примере Бернштейна с правильным тетраэдром

Независимость событий в примере Бернштейна с правильным тетраэдром

Реферат по дисциплине: «Теория вероятности и математическая статистика»


Выполнил: Апаз С.В.


Крымский Экономический Институт Киевского Национального Экономического Университета


Симферополь — 2002


Независимость событий


Понятие независимости является одним из важнейших понятий теории вероятностей.


События А и В называются независимыми, если


Р(АВ) = Р(А)Р(В). (1.1)


В случае Р(А) = 0 и Р(В) > 0 эквивалентны любому из равенств


Р(А|В) = Р(А), Р(В|А) = Р(В). (1.2)


Определение независимости в форме (1.1) симметрично относительно А и В; условие (1.1) несколько шире, чем условия (1.2).


Если математическая модель, описывающая некоторые опыт, подобрана достаточно хорошо, то независимым события реального опыта соответствуют событиям модели, независимые в смысле определения (1.1). Пусть, например, опыт заключается в том, что один раз бросают две симметричные монеты. В обозначениях положим Ω = {ГГ, РР, РГ, ГР}; А = {ГГ, ГР} – первая монета выпала гербом вверх, В = {РГ, Г} – вторая монета выпала гербов вверх. Предполагая равновероятность элементарных событий, получим



Таким образом, Р(АВ) = Р(А)Р(В). события А и В оказались независимыми в смысле определения (1.1).


Условная вероятность. Независимость событий и испытаний.


Начнем с примеров. Пусть эксперимент состоит в троекратно подбрасывании симметричной монеты. Вероятность того, что герб выпадет ровно один раз, т.е. что произойдет одно из элементарных событий (грр), (ргр), (ррг), в классической схеме равно 3/8. обозначим это событие буков А. Предположим теперь, что об исход эксперимента дополнительно известно, что произошло событие


В = {число выпавших гербов нечетно}


Какова вероятность события А при этой дополнительной информации? Событие В состоит из 4 элементарных исходов. Событие же А составляется из 3 исходов события В. в рамках классической схемы естественно принять новую вероятность события А равной ¾.


Рассмотрим еще один более общий пример. Пусть задана классическая схема с n исходами. Событие А состоит из r исходов, событие В из m исходов, а событие АВ содержит k исходов. Вероятность события А при условии, что произошло событие В, по аналогии с предыдущим примером, естественно определить следующим образом:



Полученное отношение равно , так как


Р(АВ) = k/n


Р(В) = m/n.


Мы можем перейти теперь ко общему определению.


Пусть задано вероятностное пространство áΩ, ξ, Рñ и пусть А и В – произвольны события. Если Р(В) > 0, то условная вероятность события А при условии , что произошло с

обытие В, по определению полагается равной



События А и В называются независимыми, если


Р(АВ) = Р(А)


Некоторые свойства независимых событий.


Если Р(В) > 0, то независимость А и В эквивалентна равенству


Р(А/В) = Р(А)


Доказательство очевидно.


Если А и В независимы, от независимы Ā и В.


Действительно,


Р(ĀВ) = Р(В – АВ) = Р(В) – Р(АВ) = Р(В)(1 – Р(А)) = Р(Ā)Р(В)


Пусть событие А и В1 независимы и независимы так же события А и В2, при этом В1В2 = Ø. Тогда независимы события А и В1+В2.


Следующие равенства доказывают это свойство:


Р(А(В1+В2)) = Р(АВ1+АВ2) = Р(АВ2) = =Р(А)(Р(В1))+Р(В2)) = Р(А)Р(В1+В2)


Как мы увидим ниже, требование В1В2 = Ø здесь существенно.


Пусть событие А означает выпадение герба в первом из двух бросаний симметричной монеты, событие В – выпадение решетки во втором бросании. Вероятность каждого из этих событий равна ½. Вероятность пресечения АВ будет равна



Таким образом, события А и В независимы.


Пусть событие А состоит в том, что случайно брошенная точка попала в области, распложенную правее абсциссы а1, событие В – в том, что точка попал в область расположенную выше ординаты b.


На рисунке обе области заштрихованы. Событие АВ на рисунке заштриховано в клеточку. Очевидно, Р(АВ) = Р(А)Р(В) и, значит, события А и В независимы.


Легко проверить также, что ели событие В означает, что брошенная точка попала треугольник FCD, то событие А и В будут уже зависимыми.


События В1,В2,…Вn независимы в совокупности, если для любых 1 ≤ i1<i2<…<ir ≤ in=2,3,…, n




Попарной независимости событий недостаточно для независимости n в совокупности. Это показывает следующий пример.


Рассмотрим такой эксперимент. На плоскость бросается тетраэдр, три грань которого покрашены соответственно в красный, синий и зеленый цвета, а на четвертую нанесены все три цвета событие К означает, что при бросании тетраэдра на плоскость выпала грань, содержащая красный цвет, событие С – грань, содержащая синий цвет, и событие З – грань, содержащихся зеленый цвет. Так как каждый из трех цветов содержится на двух гранях, то Р(К) = Р(С) = Р(З) = ½. Вероятность пересечения любой пары веденных событий равна ¼ = ½ ´ ½ , так как любая пара цветов присутсвует только для одной грани. Это означает попарную независимость всех трех событий.


Но:



Список литературы


Хеннекен П.А. «Теория вероятности»


Гурский Е.И. «Теория вероятности и математическая статистика».


Барковский В.В. «Теория вероятности и математическая статистика».

Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Независимость событий в примере Бернштейна с правильным тетраэдром

Слов:763
Символов:5941
Размер:11.60 Кб.