РефератыМатематикаАлАлгоритми Маркова

Алгоритми Маркова

Алгоритми Маркова


Зміст

Вступ. 3


1. Побудова алгоритмів з алгоритмів. 4


Висновки. 8


2. Нормальні Алгоритми Маркова. Побудова алгоритмів з алгоритмів. 9


Список літератури. 13


Вступ

В 1956 році вітчизняним математиком А.А. Марковим було запропоновано нове уточнення поняття алгоритму, яке пізніше названий його ім'ям.


В цьому уточненні виділені нами 7 параметрів були визначено таким чином:


Сукупність початкових даних - слова в алфавіті S;


Сукупність можливих результатів - слова в алфавіті W;


Сукупність можливих проміжних результатів - слова в алфавіті


Р=SWV, де V - алфавіт службових допоміжних символів.


Дії:


Дії мають вигляд або a®g, або aag, де a, gÎP*, де


P* - безліч слів над алфавітом Р, і називається правилом підстановки. Значення цього правила полягає в тому, що оброблюване слово w є видимим зліва направо і шукається входження в нього слова a.


1. Побудова алгоритмів з алгоритмів

Дотепер, будуючи той або інший МТ, або НАМ ми кожного разу всі робили наново. Природно задати питання, а чи не можна при побудові, наприклад, нової МТ користуватися вже побудованою раніше МТ.


Наприклад, МТ3 з прикладу 3


U3((n) 1) =(n) 10


по суті є належним чином з'єднані МТ для U1(n) =n+1 і U2((n) 1) =(n-1) 1.


Аналогічне питання можна сформулювати для НАМ. Іншими словами чи можна акумулювати знання у формі алгоритмів так, щоб з них можна було будувати інші алгоритми.


Ми розглянемо цю проблему стосовно МТ. Проте всі сформульовані нами твердження будуть справедливі і для НАМ і для інших еквівалентних уточнень поняття алгоритму. Еквівалентність уточнень поняття алгоритму ми розглянемо пізніше.


Визначення 3.2. Говоритимемо, що МТ1 можна ефективно побудувати з МТ2 і МТ3 якщо існує алгоритм, який дозволяє, маючи програму для МТ2 і МТ3, побудувати програму для МТ3.


Визначення 3.3. Послідовною композицією МТ А і В називається така МТ З, що


область застосовності МТ А і Із співпадають;


C(a) =B(A(a)).


Іншими словами, застосування З до слова a дає такий же результат, як послідовне застосування до цього ж слова спочатку А, а потім до результату застосування А - В.


Послідовну композицію МТА і МТВ позначатимемо АoВ.


Теорема 3.1. Хай дані МТ А і В, такі, що В застосовна до результатів роботи А і QAQB=Æ.


Тоді можна ефективно побудувати МТ З таку, що С= АoВ.


Доказ.


Як алфавіт даних і безлічі станів для МТС візьмемо об'єднання алфавітів даних і безлічі станів для А і В, тобто


DC=DADВ, QC= QAQB


В програмі для А всі правила ap®b! w, де a,bÎDA* wÎ{Л, П, Н} замінимо на ap®bqoBw, де qoBÎ QB - початковий стан для В. Это забезпечить включення У в той момент, коли А свою роботу закінчила і не раніше, оскільки QAQB=Æ.


Що і т.д.





Табличний запис програми для З показана на малюнку 3.3

Рис 3.3. Структура табличного запису програм для Машини З.


Означення. Паралельною композицією Машин Тюрінга А і В назвемо таку Машину З, для якої:


DC=DADB


QC=QAQB


C(a||b) =A(a||b) °B=B(a||b) °A=A(a) ||B(b).


З цього визначення видно, що порядок застосування МТА і МТВ не впливає на результат. Він буде таким же неначебто ми незалежно застосували А до слова a, а В до слова b.


Теорема 3.2 Для будь-яких МТ А і МТ В можна ефективно побудувати МТ З таку, що С=А||В


Обгрунтовування. Ми не даватимемо тут строго доказу з причини його технічної складності. Покажемо лише обгрунтовування правильності затвердження теореми. Позначимо DC=DADB; QC=QAQB.


Основна проблема: як гарантувати щоб А не торкнулася слова b, а В - слово a. Для цього введемо в алфавіт DС символ ||. Додамо для всіх станів qiÎQC таких, що qiÎQA правила вигляду ||qi®||qiЛ, тобто каретка машини А буде, натикаючись на символ ||, йти вліво. Відповідно для всіх qjÎQC таких, що qjÎQB додамо правила вигляду ||qj®||qjП, тобто каретка машини В йтиме управо. Тим самим ми як би обмежуємо стрічку для А справа, а для В зліва.


Істотним тут є питання: чи не виявляться обчислювальні можливості Машини Тюрінга з напівстрічкою слабіше, ніж обчислювальні можливості Машини Тюрінга з повною стрічкою?


Виявляється справедливо наступне твердження: безліч алгоритмів, реалізовуваних МТ з напівстрічкою, еквівалентно безлічі алгоритмів, реалізовуваних МТ з повною стрічкою. Позначимо Ф(Р) Машину Тюрінга, що реалізовує алгоритм, що розпізнає:



Теорема 3.3 Для будь-яких Машин Тюрінга А, В і Ф, мають один і той же алфавіт S, може бути ефективно побудований машина З над тим же алфавітом S, така що



Доказ.


Позначимо: E(Р) тотожну машину, тобто Е(Р) =Р


СМІТТЮ(Р) копіюючу машину, тобто СМІТТЮ(Р) =Р||Р


де ||ÏS.


BRANCH(P) - ця машина переходить або в стан р1, або в змозі ро. Її програма складається з 4-х команд:


1qo®1р1П


||р1®||р1П


0qo®0роП


||ро®||роП


Побудуємо машину



Ця машина будується по наступній формулі:



Згідно теоремам 3.1 і 3.2., ми можемо побудувати машину, знаючи Е, Ф і СМІТТЮ. Тепер, маючи, BRNCH, А і В, можна побудувати машину З таким чином:


Машина o BRANCH закінчує свою робот

у або в стані р1, якщо слово P володіє потрібною властивістю, або в змозі ро, знаходячись на початку слова P. Тому, якщо прийняти у машини А стан р1, як початкове, а у машини В стан ро, як початкове, то машина А буде включений за умови, що Ф(Р) =1, а машина В буде включений, якщо Ф(Р) =0.


Правило композиції, визначуване цією теоремою записуватимемо, якщо Ф то А інакше В.


Теорема 3.4 Для будь-яких машин А і Ф можна ефективно побудувати машину L таку, що


L(P) ={ Поки Ф(Р) =1, застосовуй А }


Доказ: Замінимо в доведенні теореми 3.3 машину В машиною Е, а заключний стан в машині В замінимо на початковий стан в машині . У результаті отримаємо потрібний результат.


Теорема 3.5 (Бомм, Джакопіні, 1962)


Будь-яка Машина Тюрінга може бути побудований за допомогою операції композицій o ||, якщо Ф, то А інакше В, поки Ф застосовуй А.


Цю теорему ми даємо тут без доказу.


Слідство 3.1 Через Тезу Тюрінга, будь-яка інтуїтивно обчислювана функція може бути запрограмований в термінах цих операцій.


Слідство 3.2 Ми отримали щось подібне до мови, на якій можна описувати нову Машину Тюрінга, використовуючи описи вже існуючих, а потім, використовуючи теореми 3.1 - 3.4, побудувати її функціональну схему.


Слідство 3.3 Алгоритм - це конструктивний об'єкт. У разі Машини Тюрінга атомарними об'єктами є команди, а теорема 3.5 визначає правила композиції.


Висновки

Алгоритм - конструктивний об'єкт;


Алгоритм можна будувати з інших алгоритмів;


o ||, if_then_else, while_do - універсальний набір дій по управлінню обчислювальним процесом.


2. Нормальні Алгоритми Маркова. Побудова алгоритмів з алгоритмів

Означення 3.1. Слово a називається входженням в слово w, якщо існують такі слова b і n над тим же алфавітом, що і a і w, для яких вірно: w=ban.


Якщо входження a в w знайдено, те слово a замінюється на слово g.


Всі правила постановки упорядковуються. Спочатку шукається входження для першого правила підстановки. Якщо воно знайдено, то відбувається підстановка і перетворюване слово знову є видимим зліва направо у пошуках входження. Якщо входження для першого правила не знайдено, то шукається входження для другого правила і т.д. Якщо входження знайдено для i-го правила підстановки, то відбувається підстановка, і проглядання правил починається з першого, а слово є видимим спочатку і зліва направо.


Вся сукупність правил підстановки називається схемою алгоритму.


Правило початку - проглядання правил завжди починається з першого.


Правило закінчення - виконання алгоритму закінчується, якщо:


було застосовано правило підстановки вигляду aag,


не застосовно жодне правило підстановки з схеми алгоритму.


Правило розміщення результату - слово, отримане після закінчення виконання алгоритму.


Розглянемо приклад 1 з лекції 2:


побудувати алгоритм для обчислення


U(n) =n+1;


S={0,1,2,3,4,5,6,7,8,9}; S=W; V={*,+}.


Схема цього НАМ показана на малюнку 1.1








Перегонимо службовий символ * в кінець слова n, щоб відзначити останню цифру молодших розрядів.


Збільшуємо на одиницю, починаючи з цифрами молодших розрядів.



Вводимо службовий символ * в слово, щоб їм відзначити останню цифру в слові.

Рис.1.1 Схема НАМ для обчислення U1(n) =n+1


Неважко зміркувати, що складність цього алгоритму, виражена в кількості виконаних правил підстановки, буде рівна:


(k+1) +(l+1)


де до - кількість цифр в n, l - кількість 9, які були збільшені на 1.


Але у будь-якому випадку складність НАМ для U1(n) більше складності Машини Тюрінга для цієї ж функції, яка дорівнювала k+1.


Зверніть увагу, що у НАМ порядок проходження правил підстановки в схемі алгоритму істотно впливає на результат, тоді як для МТ він не существенен.


Побудуємо НАМ для прикладу 2 з лекції 2:


побудувати алгоритм для обчислення


U2((n) 1) =(n-1) 1


Отже, S={|}; W=S; V=Æ, тобто порожньо.


| a


Складність цього алгоритму рівна 1, тоді як складність алгоритму для Машини Тюрінга дорівнювала n.


Тепер побудуємо НАМ:


побудувати алгоритм для обчислення


U3((n) 1) =(n) 10


S={|}; W={0,1,2,3,4,5,6,7,8,9}; V=Æ


Схема цього алгоритму приведена на малюнку 3.2


1|®2


2|®3


3|®4


4|®5


5|®6


6|®7


7|®8


8|®9


9|®|0


|0®10


0|®1


|®0|


Мал.1.2 Схема НАМ для обчислення U3((n) 1) =(n) 10.


Складність цього НАМ буде n+ [log10n], що істотно менше за складність для Машини Тюрінга, що обчислює цю функцію, яка дорівнювала n2+ [log10n(log10n+1)].


Реалізацію функції U4 порівняння двох цілих чисел залишаємо читачу як вправа.


Зауваження: початкове слово треба задати у формі *


Для нормальних алгоритмів Маркова справедлива теза, аналогічна тезі Тюрінга.


Теза Маркова: Для будь-якої інтуїтивно обчислюваної функції існує алгоритм, що її обчислює.


Список літератури

1. Джон Хопкрофт, Раджів Мотані, Джеффрі Ульман РОЗДІЛ 8. Введення в теорію машин Тюрінга // Введення в теорію автоматів, мов і обчислень. – М., 2002. – С528.

Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Алгоритми Маркова

Слов:1581
Символов:11597
Размер:22.65 Кб.