РефератыБиологияФиФизо Покровский Том 1

Физо Покровский Том 1

Глава 1. ФИЗИОЛОГИЯ. ПРЕДМЕТ И МЕТОДЫ. ЗНАЧЕНИЕ ДЛЯ МЕДИЦИНЫ. КРАТКАЯ ИСТОРИЯ


1.1. ФИЗИОЛОГИЯ, ЕЕ ПРЕДМЕТ И РОЛЬ


В СИСТЕМЕ МЕДИЦИНСКОГО ОБРАЗОВАНИЯ


Физиология (от греч. physis— природа и logos— уче­ние) — наука о природе, о существе жизненных процессов. Физи­ология изучает жизнедеятельность организма и отдельных его частей: клеток, тканей, органов, систем. Предметом изучения физиологии являются функции живого организма, их связь между собой, регу­ляция и приспособление к внешней среде, происхождение и ста­новление в процессе эволюции и индивидуального развития особи.


Физиологическаяфункция (functio— деятель­ность) — проявления жизнедеятельности организма и его частей, име­ющие приспособительное значение и направленные на достижение по­лезного результата. В основе функции лежит обмен веществ, энергии и информации.


Достижения последних лет в области биохимии, молекулярной биологии, биофизики клеточных мембран позволили исследователям приоткрыть занавес неизвестности над рядом ранее недоступных для познания частных механизмов жизнедеятельности, что не может не вызывать восхищения и стремления к дальнейшему углубленному анализу жизненных процессов. Нисколько не умаляя роль такого направления в развитии научной мысли, нельзя не констатировать некоторого забвения целостного, синтетического подхода к позна­нию организма
— подхода уверенно декларированного к мировой науке классиками отечественной физиологии — И. М. Сеченовым и И. П. Павловым.


Очевидно, что если предметом познания биохимии является про­текание химических процессов в живом организме, биофизики — физических процессов, то физиология изучает новое качество жи­вого — его функцию. При этом для удобства преподавания функция отдельных органов и систем рассматривается иногда самостоятельно. Стержневым моментом синтетического подхода служит представле­ние о том, что функция каждого органа находится в тесной связи с функциями других органов и систем, а весь комплекс регуляторных механизмов обеспечивает не только тонкое взаимодействие внутри организма, но и приспособление организма как целого к постоянно меняющимся физико-химическим и социальным условиям среды.


Успешно изучать физиологию можно лишь зная макро- и мик­роструктуру органов (т. е. анатомию и гистологию) и основы протекания физических и химических процессов в живых тканях (т. е. биофизику и биохимию). С другой стороны, изучение физи­ологии должно предшествовать познанию клинических дисциплин. Идея о преподавании физиологии как предмета, завершающего и интегрирующего общебиологическую подготовку будущего врача и предваряющего начало его клинической подготовки, не нова. При­нято изображать систему медицинского образования в форме дерева, корнями которого являются морфологические (анатомия и гистоло­гия), стволом — функциональные (физиология) науки. От ствола отходят две основные ветви — хирургический и терапевтический циклы, а от каждой из них — более мелкие ветви — частные медицинские специальности (дерматовенерология, офтальмология, оториноларингология, фтизиатрия, стоматология и т.д.).


В качестве первойзадачи нормальной физиологии как учеб­ной дисциплины в системе высшего медицинского образования сле­дует, видимо, рассматривать обучение будущих врачей пониманию механизма функциониррвания каждого органа. При этом особое внимание следует уделить взаимодействию каждого органа и систем в зависимости от меняющейся ситуации в организме и вне его. Познание будущими врачами функции органов является непремен­ным условием, основой понимания патогенеза нарушений и путей их коррекции. Вылечить — это, в конечном счете, восстановить нарушенную функцию.


Иными словами, у будущего врача должны быть заложены основы функционального мышления,
являющегося фундаментом врачебного мышления, базой его профессионального творчества.


В связи с новым уровнем развития медицины, ее оснащенности ди­агностической аппаратурой особое значение приобретает знание принципов получения достоверной информации о деятельности орга­нов и систем и грамотной ее интерпретации. Следовательно, второй задачей нормальной физиологии как учебной дисциплины являет­ся всегда имевшая место, но обретающая новые формы методическая подготовка
будущего врача. Изучая физиологию, он обретает первые навыки не только манипулирования на живом организме, но и оценки состояния как отдельных систем, так и организма в целом на базе по­лученной информации. Это закладывает фундамент для формирова­ния у будущих врачей навыков функциональной диагностики.


Стремительно меняющиеся условия жизни ставят человека перед необходимостью постоянно адаптироваться к ним, а также выявили неготовность врача оценить возможности адаптации и рационально скорригировать деятельность здорового человека. В самом деле, человек самых земных профессий (не говоря уже о космонавтах, подводниках и т. п.) в считанные часы на самолете преодолевает тысячекилометровые расстояния, испытывая воздействие не только факторов полета, но и оказывается неадаптированным к новой географической зоне. Физиология должна готовить будущего врача к пониманию, оценке и рациональной подготовке здорового чело­века
к различным видам труда, разработке принципов профессио­нального отбора. Это составляет третью задачу физиологии как учебной дисциплины. В этой связи встает вопрос об оценке и грамотной интерпретации уровня здоровья,
а также путей и спо­собов его укрепления у каждого человека. Физиология должна под­готовить врача к оценке здоровья и путей его адаптации как к меняющейся экологической ситуации, так и характеру деятельности.


1.2. МЕТОДЫ ФИЗИОЛОГИЧЕСКИХ ИССЛЕДОВАНИЙ


Наблюдение как метод физиологического исследования. Срав­нительно медленное развитие экспериментальной физиологии на протяжении двух столетий после работ В. Гарвея объясняется низким уровнем производства и развития естествознания, а также несовер­шенством исследования физиологических явлений путем их обычного наблюдения. Подобный методический прием был и остается причи­ной многочисленных ошибок, так как экспериментатор должен про­водить опыт, видеть и запоминать множество сложных процессов и явлений, что представляет собой трудную задачу. О трудностях, которые создает методика простого наблюдения физиологических явлений, красноречиво свидетельствуют слова Гарвея: «Скорость сердечного движения не позволяет различить, как происходит сис­тола и диастола, и поэтому нельзя узнать, в какой момент и в которой части совершается расширение и сжатие. Действительно, я не мог отличить систолы от диастолы, так как у многих животных сердце показывается и исчезает в мгновение ока, с быстротой мол­нии, так что мне казалось один раз здесь систола, а здесь — диастола, другой раз — наоборот. Во всем разность и сбивчивость».


Действительно, физиологические процессы представляют собой динамические явления. Они непрерывно развиваются и изменяются, поэтому непосредственно удается наблюдать лишь 1—2 или, в луч­шем случае, 2—3 процесса. Однако, чтобы их анализировать, не­обходимо установить связь этих явлений с другими процессами, которые при таком способе исследования остаются незамеченными. Вследствие этого простое наблюдение физиологических процессов как метод исследования является источником субъективных ошибок. Обычно наблюдение позволяет установить лишь качественную сто­рону явлений и лишает возможности исследовать их количественно.


Важной вехой в развитии экспериментальной физиологии было изобретение кимографа и введение метода графической регистрации артериального давления немецким ученым Карлом Людвигом в 1847 г.


Графическая регистрация физиологических процессов. Метод графической регистрации ознаменовал новый этап в физиологии. Он позволил осуществить объективную запись изучаемого процесса, сводившую до минимума возможность субъективных ошибок. При этом эксперимент и анализ изучаемого явления можно было про­водить в два этапа. Во время самого опыта задача экспериментатора заключалась в том, чтобы получить высококачественные записи — кривые — кимограммы.
Анализ полученных данных можно было производить позже, когда внимание экспериментатора уже не отвлекалось на проведение опыта. Метод графической регистрации дал возможность записывать одновременно (синхронно) не один, а несколько физиологических процессов.


Довольно скоро после изобретения способа записи артериального давления были предложены методы регистрации сокращения сердца и мышц (Энгельман), введена техника воздушной передачи (капсула Марея), позволившая записывать иногда на значительном расстоя­нии от объекта ряд физиологических процессов в организме: дыха­тельные движения грудной клетки и живота, перистальтику и из­менение тонуса желудка, кишечника и т. д. Был предложен метод регистрации изменения сосудистого тонуса (плетизмография по Мос-со), объема различных внутренних органов — онкометрия, и т. д.


Исследования биоэлектрических явлений. Чрезвычайно важное направление развития физиологии было ознаменовано открытием «животного электричества». Л. Гальвани показал, что живые ткани являются источником электрических потенциалов, способных воз­действовать на нервы и мышцы другого организма и вызывать сокращение мышц. С тех пор на протяжении почти целого столетия единственным индикатором потенциалов, генерируемых живыми тканями (биоэлектрических потенциалов), был нервно-мышечный препарат лягушки. Он помог открыть потенциалы, генерируемые сердцем при его деятельности (опыт Келликера и Мюллера), а также необходимость непрерывной генерации электрических потен­циалов для постоянного сокращения мышц (опыт «вторичного те­тануса» Маттеуччи). Стало ясно, что биоэлектрические потенциа­лы — это не случайные (побочные) явления в деятельности живых тканей, а сигналы, при помощи которых в организме передаются «команды» в нервной системе и от нее мышцам и другим органам. Таким образом, живые ткани взаимодействуют, используя «элект­рический язык».


Понять этот «язык» удалось значительно позже, после изобре­тения физических приборов, улавливающих биоэлектрические по­тенциалы. Одним из первых таких приборов был простой телефон. Замечательный русский физиолог Н. Е. Введенский при помощи те­лефона открыл ряд важнейших физиологических свойств нервов и мышц. Используя телефон, удалось прослушать биоэлектрические потенциалы, т. е. исследовать их путем наблюдения. Значительным шагом вперед было изобретение методики объективной графической регистрации биоэлектрических явлений. Нидерландский физиолог Эйнтховен изобрел струнный гальванометр — прибор, позволивший зарегистрировать на фотопленке электрические потенциалы, возни­кающие при деятельности сердца, — электрокардиограмму (ЭКГ). В нашей стране пионером этого метода был крупнейший физиолог, ученик И. М. Сеченова и И. П. Павлова А. Ф. Самойлов, работавший некоторое время в лаборатории Эйнтховена в Лейдене.


Электрокардиография из физиологических лабораторий очень скоро перешла в клинику как совершенный метод исследования состояния сердца, и многие миллионы больных сегодня обязаны этому методу своей жизнью.


В последующем успехи электроники позволили создать компакт­ные электрокардиографы и методы телеметрического контроля, даю­щие возможность регистрировать ЭКГ и другие физиологические про­цессы у космонавтов на околоземной орбите, у спортсменов во время соревнований и у больных, находящихся в отдаленных местностях, откуда информация передается по телефонным проводам в крупные специализированные учреждения для всестороннего анализа.


Объективная графическая регистрация биоэлектрических потен­циалов послужила основой важнейшего раздела нашей науки — электрофизиологии.
Крупным шагом вперед было предложение ан­глийского физиолога Эдриана использовать для записи биоэлектри­ческих явлений электронные усилители. В. Я. Данилевский и В. В. Правдич-Неминский впервые зарегистрировали биотоки головного мозга. Этот метод был позже усовершенствован немецким ученым Бергером. В настоящее время электроэнцефалография широко ис­пользуется в клинике, так же как и графическая запись электри­ческих потенциалов мышц (электромиография), нервов и других возбудимых тканей и органов. Это позволило проводить тонкую оценку функционального состояния органов и систем. Для развития физиологии указанные методы имели также большое значение: они позволили расшифровать механизмы деятельности нервной системы и других органов и тканей, механизмы регуляции физиологических процессов.


Важной вехой в развитии электрофизиологии было изобретение микроэлектродов, т. е. тончайших электродов, диаметр кончика ко­торых равен долям микрона. Эти электроды при помощи микрома­нипуляторов, можно вводить непосредственно в клетку и регистри­ровать биоэлектрические потенциалы внутриклеточно. Микроэлек­тродная техника дала возможность расшифровать механизмы генерации биопотенциалов — процессов, протекающих в мембранах клетки. Мембраны являются важнейшими образованиями, так как через них осуществляются процессы взаимодействия клеток в ор­ганизме и отдельных элементов клетки между собой. Наука о фун­кциях биологических мембран — мембранология
— стала важным разделом физиологии.


Методы электрического раздражения органов и тканей. Суще­ственной вехой в развитии физиологии было введение метода элек­трического раздражения органов и тканей. Живые органы и ткани способны реагировать на любые воздействия: тепловые, механиче­ские, химические и др. Электрическое раздражение по своей природе близко к «естественному языку», с помощью которого живые системы обмениваются информацией. Основоположником этого метода был немецкий физиолог Дюбуа- Реймон, предложивший свой знаменитый «санный аппарат» (индукционная катушка) для дозированного элек­трического раздражения живых тканей.


В настоящее время для этого используют электронные стимуля­торы, позволяющие получить электрические импульсы любой фор­мы, частоты и силы. Электрическая стимуляция стала важным методом исследования функций органов и тканей. Указанный метод широко применяется и в клинике. Разработаны конструкции раз­личных электронных стимуляторов, которые можно вживлять в организм. Электрическая стимуляция сердца стала надежным спо­собом восстановления нормального ритма и функций этого жизненно важного органа и возвратила к труду сотни тысяч людей. Успешно применяется электростимуляция скелетных мышц, разрабатываются методы электрической стимуляции участков головного мозга при помощи вживленных электродов. Последние при помощи специаль­ных стереотаксических приборов вводят в строго определенные нер­вные центры (с точностью до долей миллиметра). Этот метод, перенесенный из физиологии в клинику, позволил излечить тысячи неврологических больных и получить большое количество важных данных о механизмах работы человеческого мозга (Н. П. Бехтерева).


Помимо регистрации электрических потенциалов, температуры, давления, механических движений и других физических процессов, а также результатов воздействия этих процессов на организм, в физиологии широко применяются химические методы.


Химические методы исследования в физиологии. «Язык» элек­трических сигналов не единственный в организме. Распространенным является также химическое взаимодействие процессов жизнедея­тельности (цепи химических процессов, происходящих в живых тканях). Поэтому возникла область химии, изучающая эти процес­сы, — физиологическая химия.
Сегодня она превратилась в само­стоятельную науку — биологическую химию,
раскрывающую моле­кулярные механизмы физиологических процессов. Физиологи в экс­периментах широко используют методы, возникшие на стыке химии, физики и биологии, что в свою очередь породило уже новые отрасли науки, например биологическую физику,
изучающую физическую сторону физиологических явлений.


Физиолог широко использует радионуклидные методы. В со­временных физиологических исследованиях применяются и другие методы, заимствованные из точных наук. Они дают поистине бесценные сведения при количественном анализе механизмов фи­зиологических процессов.


Электрическая запись неэлектрических величин. Сегодня зна­чительные успехи физиологии связаны с использованием радиоэлек­тронной техники. Применяются датчики — преобразователи раз­личных неэлектрических явлений и величин (движение, давление, температура, концентрация различных веществ, ионов и т.д.) в электрические потенциалы, которые затем усиливаются электрон­ными усилителями и регистрируются осциллографами. Разработано огромное количество разных типов таких регистрирующих устройств, которые позволяют записать на осциллографе очень многие физи­ологические процессы и ввести полученную информацию в компь­ютер. В ряде приборов используют дополнительные воздействия на организм (ультразвуковые или электромагнитные волны и т. д.). В таких случаях записывают величины параметров этих воздейст­вий, изменяющих те или иные физиологические функции. Преиму­ществом подобных приборов является то, что преобразователь — датчик можно укрепить не на исследуемом органе, а на поверхности тела. Испускаемые прибором волны проникают в организм и после отражения исследуемого органа регистрируются датчиком. На таком принципе построены, например, ультразвуковые расходомеры, оп­ределяющие скорость кровотока в сосудах; реографы и реоплетиз-мографы регистрируют изменение величины электрического сопро­тивления тканей, которое зависит от кровенаполнения различных органов и частей организма. Преимуществом таких методов является возможность исследования организма в любой момент без предва­рительных операций. Кроме того, такие исследования не наносят вред человеку. Большинство современных методов физиологических исследований в клинике основано на этих принципах. В России инициатором использования радиоэлектронной техники для физи­ологических исследований был академик В. В.
Парин.


Метод острого эксперимента.
Прогресс науки обусловлен не толь­ко развитием экспериментальной науки и методов исследования. Он в огромной мере зависит и от эволюции мышления физиологов, от раз­вития методологических и методических подходов к изучению физи­ологических явлений. С начала зарождения и до 80-х годов прошлого столетия физиология оставалась наукой аналитической. Она расчле­няла организм на отдельные органы и системы и изучала деятельность их изолированно. Основным методическим приемом аналитической физиологии были эксперименты на изолированных органах. При этом, чтобы получить доступ к какому-либо внутреннему органу или системе, физиолог должен был заниматься вивисекцией (живосечени­ем). Такие эксперименты называют также острыми опытами.


Подопытное животное привязывали к станку и производили сложную и
болезненную операцию. Это был тяжелый труд, но иного способа проникнуть в глубь организма наука не знала. Дело не только в моральной стороне проблемы. Жестокие пытки, не­выносимые страдания, которым подвергалось животное, грубо на­рушали нормальный ход физиологических явлений и не позволяли понять сущность процессов, протекающих в организме в естест­венных условиях, в норме. Существенно не помогло и применение наркоза, а также других методов обезболивания. Фиксация жи­вотного, воздействие наркотических веществ, операция, кровопо-теря — все это совершенно меняло и нарушало нормальную жизнедеятельность организма. Образовался заколдованный круг. Чтобы исследовать тот или иной процесс или функцию органа либо системы, нужно было проникнуть в глубь организма, а сама попытка такого проникновения нарушала нормальное протекание физиологических процессов, для изучения которых и предприни­мался опыт. Кроме того, исследование изолированных органов не давало представления об их истинной функции в условиях цело­стного неповрежденного организма.


Метод хронического эксперимента. Величайшей заслугой рус­ской науки в истории физиологии стало то, что один из самых талантливых и ярких ее представителей И. П. Павлов сумел найти выход из этого тупика. И. П. Павлов болезненно переживал недостатки аналитической физиологии и острого эксперимента. Он нашел способ, позволяющий заглянуть в глубь организма, не нарушая его целостности. Это был метод хронического эксперимента, проводи­мого на основе «физиологической хирургии».


На наркотизированном животном в условиях стерильности пред­варительно производили сложную операцию, позволяющую получить доступ к тому или иному внутреннему органу, проделывали «окошеч­ко» в полый орган, вживляли фистульную трубку или выводили нару­жу и подшивали к коже проток железы. Сам опыт начинали много дней спустя, когда рана заживала, животное выздоравливало и по ха­рактеру течения физиологических процессов практически ничем не отличалось от нормального, здорового. Благодаря наложенной фисту­ле можно было длительно изучать течение тех или иных физиологи­ческих процессов в естественных условиях поведения.


1.3. ФИЗИОЛОГИЯ ЦЕЛОСТНОГО ОРГАНИЗМА


Развитие науки обусловлено успехами применяемых методов. Павловский метод хронического эксперимента создавал принципи­ально новую науку — физиологию целостного организма, синтети­ческую физиологию, которая смогла выявить влияние внешней среды на физиологические процессы, обнаружить изменения функций раз­личных органов и систем для обеспечения жизни организма в раз­личных условиях.


С появлением современных технических средств исследования процессов жизнедеятельности появилась возможность изучения без предварительных хирургических операций функций многих внут­ренних органов не только у животных, но и у человека. «Физио­логическая хирургия» как методический прием в ряде разделов физиологии оказалась вытесненной современными методами бес­кровного эксперимента. Но дело не в том или ином конкретном техническом приеме, а в методологии физиологического мышления. И. П. Павлов создал новую методологию, благодаря чему физиология стала развиваться как синтетическая наука и ей органически стал присущ системный подход.


Целостный организм неразрывно связан с окружающей его внеш­ней средой и поэтому, как писал еще И. М. Сеченов, в научное определение организма должна входить и среда, влияющая на него. Физиология целостного организма изучает не только внутренние механизмы саморегуляции физиологических процессов, но и меха­низмы, обеспечивающие непрерывное взаимодействие и неразрывное единство организма и окружающей среды.


Физиология и кибернетика.
Кибернетика (от греч. kybernetike— искусство управления) — наука об управлении автоматизирован­ными процессами. Процессы управления, как известно, осуществ­ляются путем сигналов, несущих определенную информацию. В ор­ганизме такими сигналами являются нервные импульсы, имеющие электрическую природу, а также различные химические вещества. Кибернетика изучает процессы восприятия, кодирования, пере­работки, хранения и воспроизведения информации. В организме для этих целей существуют специальные структуры и системы (рецеп­торы, нервные волокна, нервные клетки и т. д.).


Технические кибернетические устройства позволили создать мо­дели, воспроизводящие некоторые функции нервной системы. Однако работа мозга в целом такому моделированию еще не поддается, и необходимы дальнейшие исследования.


Союз кибернетики и физиологии возник всего лишь четыре десятилетия назад, но за это время математический и технический арсенал современной кибернетики обеспечил значительные успехи изучения и моделирования физиологических процессов.


Математика и компьютерная техника в физиологии. Одновре­менная (синхронная) регистрация физиологических процессов по­зволяет изучать взаимодействие различных явлений. Для этого не­обходимы точные математические методы, использование которых также знаменовало новую важную ступень в развитии физиологии. Математизация исследований позволяет использовать в физиологии компьютерную технику, что не только увеличивает скорость обра­ботки информации, но и дает возможность производить такую об­работку непосредственно в момент эксперимента, позволяет менять ход и задачи самого исследования в соответствии с получаемыми результатами.


Таким образом, как бы завершился виток спирали в развитии физиологии. На заре возникновения этой науки исследование, ана­лиз и оценка результатов производились экспериментатором одно­временно в процессе наблюдения, непосредственно во время самого эксперимента. Графическая регистрация позволила разделить эти процессы во времени и обрабатывать и анализировать результаты после окончания эксперимента. Радиоэлектроника и кибернетика сделали возможным вновь соединить анализ и обработку результатов с проведением самого опыта, но на принципиально иной основе: одновременно исследуется взаимодействие множества различных фи­зиологических процессов и количественно анализируются результа­ты такого взаимодействия. Это позволило производить так называ­емый управляемый автоматический эксперимент, в котором компь­ютер помогает исследователю не просто анализировать результаты, но и менять ход опыта и постановку задач, равно как и типы воздействия на организм, в зависимости от характера реакций ор­ганизма, возникающих непосредственно в ходе опыта. Физика, ма­тематика, кибернетика и другие точные науки перевооружили фи­зиологию и представили врачу могучий арсенал современных тех­нических средств для точной оценки функционального состояния организма и для воздействия на организм.


Математическое моделирование в физиологии. Знание физио­логических закономерностей, количественных характеристик раз­личных физиологических процессов, взаимоотношений между ними позволило создать их математические модели. С помощью таких моделей физиологические процессы воспроизводят на компьютерах, исследуя различные варианты реакций, т. е. возможных будущих их изменений при тех или иных воздействиях на организм (лекар­ственные вещества, физические факторы или экстремальные условия окружающей среды). В настоящее время союз физиологии и кибер­нетики оказался полезным при проведении сложных хирургических операций, в чрезвычайных условиях, требующих точной оценки как текущего состояния важнейших физиологических процессов ор­ганизма, так и предвидения возможных их изменений. Такой подход позволяет значительно повысить надежность «человеческого факто­ра» в трудных и ответственных звеньях современного производства.


Объективное изучение высшей нервной деятельности. На про­тяжении тысячелетий было принято считать, что поведение человека определяется влиянием некой нематериальной сущности («души»), познать которую физиолог не в силах. Физиология XXвека имеет существенные успехи не только в области раскрытия механизмов процессов жизнедеятельности и управления этими процессами, но осуществила прорыв в самую сложную и таинственную область — в область психических явлений. Физиологическая основа психики — высшая нервная деятельность человека и животных, стала одним из важных объектов физиологического исследования.


И. М. Сеченов был первым из физиологов мира, который рискнул представить поведение на основе принципа рефлекса, т. е. на основе известных в физиологии механизмов нервной деятельности. В своей знаменитой книге «Рефлексы головного мозга» он показал, что сколь бы сложными ни казались нам внешние проявления психической деятельности человека, они рано или поздно сводятся лишь к од­ному — мышечному движению. «Улыбается ли ребенок при виде новой игрушки, смеется ли Гарибальди, когда его гонят за излишнюю любовь к родине, создает ли Ньютон мировые законы и пишет их на бумаге, дрожит ли девушка при мысли о первом свидании, всегда конечным итогом мысли является одно — мышечное движение», — писал И. М. Сеченов.


Сеченовская попытка обосновать механизмы мозговой деятель­ности была чисто теоретической. Необходим был следующий шаг — экспериментальные исследования физиологических механизмов, ле­жащих в основе психической деятельности и поведенческих реакций. И этот шаг был сделан И. П. Павловым.


То, что именно И. П. Павлов, а не кто-нибудь другой стал на­следником идей И. М. Сеченова и первым проник в основные тайны работы высших отделов мозга, не случайно. К этому привела логика проводимых им экспериментальных физиологических исследований. Изучая процессы жизнедеятельности организма в условиях естест­венного поведения животного, И. П. Павлов обратил внимание на важную роль психических факторов, влияющих на все физиологи­ческие процессы. От наблюдательности И. П. Павлова не ускользнул тот факт, что слюна, желудочный сок и другие пищеварительные соки начинают выделяться у животного не только в момент еды, а задолго до еды, при виде еды, звуке шагов служителя, который обычно кормит животное. И. П. Павлов обратил внимание на то, что аппетит, страстное желание еды является столь же мощным сокоотделительным агентом, как и сама еда. Аппетит, желание, настроение, переживания, чувства — все это психические явления. Они до И. П. Павлова физиологами не изучались. И. П. Павлов же увидел, что физиолог не вправе игнорировать эти явления, так как они властно вмешиваются в течение физиологических процессов, меняя их характер. Поэтому физиолог обязан был их изучать. Но как? До И. П. Павлова эти явления рассматривались наукой, которая называется зоопсихологией.


Обратившись к этой науке, И. П. Павлов должен был отойти от твердой «почвы» физиологических фактов и войти в область гаданий относительно кажущегося психического состояния животных. Для объяснения поведения человека правомерны методы, используемые в психологии, ибо человек всегда может сообщить о своих чувствах, настроениях, переживаниях и т. д. Зоопсихологи слепо переносили на животных данные, полученные при обследовании человека, и также говорили о «чувствах», «настроениях», «переживаниях», «же­ланиях» и т. д. у животного, не имея возможности проверить, так это или нет на самом деле. Впервые в павловских лабораториях по поводу механизмов одних и тех же фактов возникало столько мне­ний, сколько наблюдателей видело эти факты. Каждый из наблю­дателей трактовал факты по-своему, и не было возможности про­верить правильность любой из трактовок. И. П. Павлов понял, что подобные трактовки бессмысленны и поэтому сделал решительный, поистине революционный, шаг. Не пытаясь гадать о тех или иных внутренних психических состояниях животного, он начал изучать поведение животного объективно, сопоставляя те или иные воздей­ствия на организм с ответными реакциями организма. Этот объек­тивный метод позволил выявить законы, лежащие в основе пове­денческих реакций организма.


Метод объективного изучения поведенческих реакций создал но­вую науку — физиологию высшей нервной деятельности
с ее точным знанием процессов, происходящих в нервной системе при тех или иных воздействиях внешней среды. Эта наука много дала для понима­ния сущности механизмов психической деятельности человека.


Созданная И. П. Павловым физиология высшей нервной деятель­ности стала естественно-научной основой психологии. Она имеет важ­нейшее значение в философии, медицине, педагогике и во всех нау­ках, которые так или иначе сталкиваются с необходимостью изучать внутренний (духовный) мир человека. Учение И. П. Павлова о вы­сшей нервной деятельности имеет огромное практическое значение.


1.4. ОРГАНИЗМ И ВНЕШНЯЯ СРЕДА. АДАПТАЦИЯ


Целостный организм неразрывно связан с окружающей его внеш­ней средой, и поэтому, как писал еще И. М. Сеченов, в научное определение организма должна входить и среда, влияющая на него. Физиология целостного организма изучает не только внутренние механизмы саморегуляции физиологических процессов, но и меха­низмы, обеспечивающие непрерывное взаимодействие и неразрывное единство организма с окружающей средой. Непременным условием и проявлением такого единства является адаптация организма к данным условиям. Однако понятие адаптации имеет и более широкий смысл и значение.


Адаптация (от лат. adaptatio— приспособление) — все виды врожденной и приобретенной приспособительной деятельности, которые обеспечиваются на основе физиологических процессов, про­исходящих на клеточном, органном, системном и организменном уровнях. Этим термином пользуются для характеристики широкого круга приспособительных процессов: от адаптивного синтеза белков в клетке и адаптации рецепторов к длительно действующему раз­дражителю до социальной адаптации человека и адаптации народов к определенным климатическим условиям. На уровне организма человека под адаптацией понимают его приспособление к постоянно меняющимся условиям существования.


Организм человека адаптирован к адекватным условиям среды в результате длительной эволюции и онтогенеза, создания и совер­шенствования в ходе их адаптивных механизмов (адаптогенез) в ответ на выраженные и достаточно длительные изменения окружа­ющей среды. К одним факторам внешней среды организм адапти­рован полностью, к другим — частично, к третьим — не может адаптироваться из-за их крайней экстремальности. В этих условиях человек погибает без специальных средств жизнеобеспечения (на­пример, в космосе без скафандра вне космического корабля). К менее жестким — субэкстремальным влияниям человек может адап­тироваться, однако длительное нахождение человека в субэкстре­мальных условиях ведет к перенапряжению адаптационных меха­низмов, болезням, а иногда и смерти.


Различают многие виды адаптации. Физиологической адапта­цией
называют достижение устойчивого уровня активности организ­ма и его частей, при котором возможна длительная активная дея­тельность организма, включая трудовую активность в измененных условиях существования (в том числе социальных) и способность воспроизведения здорового потомства. Физиология исследует фор­мирование и механизмы индивидуальной адаптации.


Различные люди с разной скоростью и полнотой адаптируются к одним и тем же условиям среды. Скорость и полнота адаптации обусловлена состоянием здоровья, эмоциональной устойчивостью, физической тренированностью, типологическими особенностями, по­лом, возрастом конкретного человека.


Адаптационные реакции также делят на общие,
или неспецифи­ческие,
происходящие под влиянием практически любого достаточно сильного или длительного стимула и сопровождающиеся однотип­ными сдвигами функций организма, систем и органов в ответ на различные по характеру воздействия, и частные,
или специфиче­ские,
проявляющиеся в зависимости от характера и свойств воздей­ствующего фактора или их комплекса.


Неспецифический ответ организма на любое интенсивное воздей­ствие на него Г. Селье назвал стрессом
(напряжение, давление), а вызывающий его фактор — стрессором. По Селье, общий адаптацион­ный синдром как ответная реакция на стрессор включает в себя уси­ление деятельности гипоталамуса, гипофиза с увеличением продук­ции АКТГ, гипертрофию коры надпочечников, атрофию вилочковой железы, изъязвление слизистой оболочки желудка. В дальнейшем бы­ли доказаны участие в стрессорной реакции практически всего орга­низма и ведущая роль в этом центральной нервной системы.


В общем адаптационном синдроме Г. Селье выделил три фазы измененияуровнясопротивленияорганизма стрессору: 1) реакция тревоги, когда сопротивление снижалось; 2) фаза повышенного сопротивления; 3) фаза истощения механизмов сопротивления. В повседневной жизни встречаются все эти фазы реакций организма — ощущение трудности перенесения сложной ситуации, «втягивание» — привыкание к ней, затем ощущение невозможности дальнейшего нахождения в этой ситуации, острая потребность выхода из нее.


Предложены и другие классификации фаз адаптации организма человека, о которых будет сказано в соответствующих главах учеб­ника.


Каждая реакция адаптации имеет некую «стоимость», т. е. цену адаптации, за которую «платит» организм затратой веществ, энер­гии, различных резервов, в том числе защитных. Истощение этих резервов приводит к фазе дизадаптации, для которой характерны состояние сдвигов гомеостаза, мобилизация вспомогательных физи­ологических систем, неэкономная трата энергии.


Если организм возвращается к исходным условиям, то он посте­пенно утрачивает приобретенную адаптацию, т. е. реадаптируется к исходным условиям. Повторная адаптация возможна. Если орга­низм вновь окажется в неких условиях, к которым он был адапти­рован. При этом в одних случаях способность к повторной адаптации может быть повышена, в других — понижена в зависимости от истощенности или тренированности механизмов адаптации. Трени­ровка механизмов адаптации благоприятна для мобильности и стой­кости адаптации. Готовность к адаптации и ее эффективность ди­намичны и зависят от многих факторов, в числе которых состояние здоровья, рациональное питание, режим сна и бодрствования, труда и отдыха, физическая активность и тренировка, закаливание, адап­тирующие лекарственные средства (адаптогены), воздействие гипо­ксии.


Состояние стресса может быть тем фоном, на котором на организм действуют иные раздражители. Такая ситуация является типичной для повседневной жизни. Реакция на такой добавочный раздражи­тель может усилиться, что рассматривают как перекрестную сен­сибилизацию, а может быть ослаблена — это обозначают как пе­рекрестная резистентность.


Добавочный раздражитель сам по себе влияет на выраженность стрессорной реакции. Так, отрицательные эффекты распространенного в нашей жизни эмоционального стресса ослабляются или сни­маются интенсивной физической нагрузкой, любимым занятием, философией оптимизма и многими другими приемами.


Описанные фазы неспецифической адаптации характеризуют ак­тивность адаптационных реакций, которые должны быть дополнены еще и адаптивным поведением, целью которых является ускорение адаптации и уменьшение отрицательных влияний адаптогенных фак­торов.


Существует и пассивная форма адаптации по принципу «эконо-мизации активности», которая проявляется в гипореактивности или ареактивности. Ее выражением может быть такое общее состояние организма, как сон. Физиологический сон выступает в роли эконо-мизирующего энергетические затраты фактора, «охранительное» его значение отмечал И.П.Павлов. Известно лечебное применение раз­личных видов сна.


Ареактивность может быть результатом снижения реактивности рецепторов (адаптация рецепторов), торможения центральной части рефлекторной дуги. В механизме адаптации может принять участие и эффекторный компонент, когда с помощью различных механизмов снижается интенсивность или исключаются реакции эффекторов — органов-исполнителей.


Объективное определение адаптированности или неадаптирован-ности человека к субэкстремальным условиям вызывает значитель­ные затруднения. Тем не менее об адаптированности организма человека к новым условиям свидетельствуют восстановление пол­ноценной физической и умственной работоспособности; сохранение общей резистентности в ответ на действие дополнительного возму­щающего фактора, его переносимость в субэкстремальных условиях; достаточно совершенная адаптированность к временным факторам; нормальный иммунный статус организма человека; воспроизведение здорового потомства; устойчивый (без дрейфа) уровень активности реакций и взаимодействия функциональных систем.


В субэкстремальных условиях у человека проявляются не только неспецифические, но и специфические,
частные, общие реакции,
направленные на адаптацию организма к конкретным условиям внешней среды. В одних случаях эти условия созданы искусственно, например специфические условия производства, в других случаях это естественные условия, например климатические.


В развитии большинства адаптации прослеживается два этапа: начальный — «срочная» адаптация, и последующий — «долговре­менная» адаптация. «Срочная» адаптационная реакция
развивается сразу с началом действия стрессора на основе готовых физиологи­ческих механизмов. Например, увеличение теплопродукции в ответ на холодовое воздействие или повышение легочной вентиляции при недостатке кислорода во вдыхаемом воздухе и т. д. «Срочная» адап­тация мобилизует функциональные резервы и часто в неполной мере обеспечивает адаптационный эффект.


«Долговременная» адаптационная реакция
развивается посте­пенно в результате длительного или многократного действия на организм факторов внешней среды. Эта адаптация происходит на основе многократной «срочной» адаптации. В итоге накопления структурных и функциональных изменений организм приобретает новое качество — из неадаптированного превращается в адаптиро­ванный. Именно переход от «срочной» адаптации к «долговременной» делает возможной стабильную жизнь организма в новых условиях.


Адаптации значительно отличаются у разных людей скоростью и выраженностью в зависимости от индивидуальных особенностей каждого человека.


На основании результатов исследования адаптации лиц, пересе­ляющихся в район Сибири и Крайнего Севера, выявлены следующие конституционные типы (по В. П. Казначееву): «спринтеры», «стай­еры» и «миксты» (смешанный тип).


Организм «спринтера» способен осуществлять мощные физиологи­ческие реакции с высокой степенью надежности в ответ на действие значительных, но кратковременных факторов внешней среды. Высо­кий уровень надежности физиологических реакций может поддержи­ваться лишь относительно короткий срок. «Спринтеры» мало приспо­соблены к выдерживанию длительных и менее интенсивных нагрузок.


«Стайер» менее приспособлен к переносимости мощных кратко­временных нагрузок. Однако после кратковременной перестройки его организм способен выдерживать продолжительные равномерные воздействия факторов внешней среды. Промежуточные варианты конституционных типов названы «микстами».


«Спринтеры» и «стайеры» различаются по ряду конституцио­нальных, физиологических и биохимических показателей, а также заболеваемостью. В целом цикл адаптивной перестройки в новой экологической и климатической зоне с субэкстремальными услови­ями у людей длится 2—3 года. Это относительно короткий срок — у других биологических видов эквивалентные перестройки требуют смены нескольких поколений.


Вопросы адаптации человека к условиям гипоксии, различной по напряженности физической активности, временной, психосоци­альной и других видов адаптации изложены в соответствующих главах учебника.


1.5. КРАТКАЯ ИСТОРИЯ ФИЗИОЛОГИИ


Физиология обязана своим возникновением потребностям меди­цины, а также стремлению человека познать себя, сущность и проявления жизни на различных уровнях ее организации. Потреб­ность сохранения жизни человека была на всех этапах его развития, и уже в древние времена формировались элементарные представ­ления о деятельности организма человека, являясь обобщением на­копленного опыта человечества. Отец медицины Гиппократ (460— 377 гг. до н. э.) представлял организм человека как некое единство жидких сред и психического склада личности, подчеркивал связь человека со средой обитания и то, что движение является основной формой этой связи. Это определяло его подход к комплексному лечению больного. Аналогичный в принципе подход был характерен для врачей древнего Китая, Индии, Ближнего Востока и Европы.


В средние века господствовали далекие от реалий представления, основанные на постулатах римского анатома Галена, и засилие церкви определило неопределимую преграду между телом и душой.


Эпоха Возрождения (XVI—XVIIвека) с ее возросшими по­требностями общественного производства пробудила к жизни науку и культуру, а несомненные успехи физики и химии, обращение к ним врачей определили стремление объяснить деятельность ор­ганизма человека на основе происходящих в нем химических (ятрохимия) и физических (ятрофизика) процессов. Однако уро­вень знаний наук того времени, конечно же, не мог составить сколько-нибудь полное и адекватное представление о физиологи­ческих функциях.


Вместе с тем изобретение микроскопа и углубление знаний о мик­роскопическом строении тканей животных побуждает к исследованию функционального назначения открываемых структур. Успехи химии и изучения кругооборота веществ в природе направляют интересы че­ловека к судьбе поступающих в его организм веществ, что становится предметом исследовательского интереса. Совершенствование точных наук, естествознания в целом и философии определяет обращение че­ловеческой мысли к механизмам движения. Так, Р. Декарт (1596— 1650) формулирует рефлекторный принцип организации движений,
в основе которого лежит побуждающий их стимул.


Особое место в науке о человеке сыграло открытие английским врачом В. Гарвеем (1578—1657) кровообращения. Обладая обшир­ными анатомическими знаниями, В. Гарвей проводил эксперимен­тальные исследования на животных и наблюдения на людях, основал физиологию как науку, основным методом которой является экс­перимент. Официальной датой возникновения физиологии человека и животных как науки принят 1628 г. — год выхода в свет трактата В. Гарвея «Анатомическое исследование о движении сердца и крови у животных». Это произведение послужило стимулом к изучению деятельности организма в экспериментах на животных как основ­ного объективного источника знаний.


В XVIIвеке выполняется ряд исследований по
физиологии мышц, дыхания, обмена веществ. В Европе в XVIIIвеке возникает учение о «животном электричестве» (Л. Гальвани, 1737—1798), переросшее в один из ведущих разделов современной науки — электрофизиологию.
Получает дальнейшее развитие принцип ре­флекторной деятельности (И. Прохаска, 1749—1820). Вносится много ценного в понимание деятельности систем кровообращения (С. Хелс, 1667—1761), дыхания (Д. Пристли, 1733—1804), обмена веществ (А.Лавуазье, 1743—1794).


В этот период открывается Российская академия наук (1724), где Д. Бернулли выполнил первые в России экспериментальные исследования движения крови по кровеносным сосудам. В России солидные физиологические открытия сделаны М. В. Ломоносовым (1711—1765). XIX век — период расцвета аналитической физиологии, когда были сделаны выдающиеся открытия практически по всем физиологическим системам. Это происходило одновременно с бурным ростом естествознания, обретением фундаментальных знаний о природе: открытие закона сохранения энергии, клеточного строения организмов, формирование основ учения об эволюции жизни на Земле. Особое значение в развитии физиологии сыграли новые методические подходы и изобретения выдающихся физиологов той поры, о чем сказано в предыдущем разделе. Все это определило в середине XIXвека выделение физиологии в самостоятельную науку.
В университетах России, Англии создаются физиологические лаборатории, интенсифицируются физиологические исследования в Европе.


Во второй половине XIXвека — начале XXстолетия физио­логия в России становится одной из передовых в мировой науке, в чем выдающуюся роль сыграли столичные школы И. М. Сеченова (1829—1905), И. П. Павлова (1849—1936), известные школы Ка­зани, Киева, Одессы, Томска, Екатеринбурга. Российская наука при всей ее самобытности, методологической оригинальности под­держивала теснейшие творческие связи с ведущими физиологиче­скими школами Западной Европы, а затем и Америки.


XX век — период интеграции и специализации наук, не обошел величайшими открытиями и физиологию. В 40—50-х годах утверждается мембранная теория биоэлектрических потенциалов
(А. Л. Ходжкин, Э.Ф.Хаксли, Б. Катц). Роль этой теории в установлении ионных механизмов возбуждения нейронов в 1963 г. отмечается Нобелевской премией (Д. К. Экклс, Э. Ф. Хаксли, А. Л. Ходжкин). Делаются принципиальные открытия в области цитофизиологии и цитохимии.


Конец XIXи начало XXвека — период определяющих успехов в области физиологии нервов и мышц как возбудимых тканей (Дюбуа-Реймон, Э. Ф. Пфлюгер, П. Г. Гейденгайн, Ю. Бернштейн, Г. Л. Гельмгольц). В России особенно заметные исследования в этом разделе науки выполняются Н. Е. Введенским (1852—1922),


A. И. Бабухиным (1835—1891), Б. Ф. Вериго (1860—1925),


B. Я. Данилевским (1852—1939), В. Ю. Чаговцем (1873—1941). За открытия теплообразования в мышцах А. В. Хиллу (1886—1977) и О. Ф. Мейергофу (1884—1951) присуждается Нобелевская премия. Достижением XXвека, отмеченным Нобелевской премией 1936 г., явилось открытие химического механизма передачи нервного импульса в синапсах О. Леви (1873—1961) и Г. X. Дейлом (1875—1968). Развитие этого направления в трудах У. Эйлера, Д. Аксельрода и Б. Катца было отмечено Нобелевской премией в 1970 г. А. Д. Эрлангер и Г. Гассер были отмечены в 1944 г. той же премией за успехи в изучении проведения импульсов по нервным волокнам. В решение проблемы возбуждения нервов и мышц в этот период существенный вклад вносят и советские физиологи — А. А. Ухтомский (1875—1942), А. Ф.Самойлов (1867—1930), Д. С.Воронцов (1886—1965).


XIXи XXвека ознаменованы многими значительными успехами в изучении функций мозга.


Выдающаяся роль в исследовании функций мозга принадлежит И. М.Сеченову (1829—1905), который в 1862 г. открыл явление торможения в ЦНС, что во многом определило последующие успехи исследований координации рефлекторной деятельности. Идеи, из­ложенные И. М. Сеченовым в книге «Рефлексы головного мозга» (1863), определили то, что к рефлекторным актам были отнесены психические явления, внесли новые представления в механизмы деятельности мозга, наметили принципиально новые подходы к его дальнейшим исследованиям. При этом ученый подчеркнул опреде­ляющую роль внешней среды в рефлекторной деятельности мозга.


На качественно новый уровень вывел теорию рефлекторной де­ятельности мозга И. П. Павлов (1849—1936), создав учение о высшей нервной деятельности
(поведении) человека и животных, ее фи­зиологии и патологии. И. П. Павлов основал школу отечественных физиологов, внесшую выдающийся вклад в мировую науку.


В числе учеников и последователей И. П. Павлова академики П. К. Анохин, Э. А. Асратян, К. М. Быков, Л. А. Орбели и многие другие, создавшие отечественные физиологические научные школы.


Идеи И. П. Павлова о рефлекторной деятельности мозга получили дальнейшее развитие в учении о функциональных системах
П. К. Анохина (1898—1974), которые являются основой организа­ции сложных форм поведенческой деятельности и обеспечения го-меостаза организма человека и животных. Трудно переоценить вклад в физиологию нервной системы И. С. Бериташвили (1885—1975), открывшего фундаментальные закономерности в деятельности мозга и создавшего ряд оригинальных теорий о ее организации.


Э. А. Асратян (1903—1981) — автор ряда фундаментальных ра­бот, в которых развивал основные положения И. П. Павлова о вы­сшей нервной деятельности. К. М. Быков (1887—1959) основал уче­ние о двусторонней связи коры головного мозга с внутренними органами, о кортико-висцеральной патологии. Его ученик В. Н. Чер­ниговский (1907—1981) обогатил науку учением об интероцепции висцеральных органов, регуляции системы крови.


Л. А. Орбели (1882—1958) основал учение об адаптационно-тро­фических влияниях симпатической нервной системы на соматические и вегетативные функции организма, явился одним из основателей эво­люционной физиологии. Л. С. Штерн (1878—1968) создала учение о гематоэнцефалическом и гистогематическом барьерах, обеспечиваю­щих гомеостатические функции в организме человека и животных.


Велика заслуга А. А. Ухтомского (1875—1942) в изучении фи­зиологии ЦНС. Его учение о доминанте — «основном принципе деятельности» мозга и поныне питает идеи организации целенап­равленной деятельности человека и животных.


Несомненно, что вклад отечественных физиологов в мировую науку о мозге оригинален и общепризнан, многое сделано и в изучении локализации функций в мозге (В. М. Бехтерев, М. А. Мис-лавский, Ф. В. Овсянников и др.), в разработке методов его изучения.


В конце XIXи в XXвеке физиология мозга успешно развивается в Европе и Америке. В большой мере это связано с созданием нейронной теории рефлекторной деятельности мозга на основе его гистологического исследования К. Гольджи (1844—1926) и С. Ра-мон-и-Кахалем (1852—1934), удостоенными Нобелевской премии в 1906 г., а затем Лоренте де Но.


Выдающуюся роль в изучении функций центральной нервной системы
сыграл Ч. С. Шеррингтон (1856—1952), разработавший и сформулировавший основные принципы координационной деятель­ности мозга. Эти работы были удостоены в 1932 г. Нобелевской премии. Премию одновременно получил и электрофизиолог


3. Д. Эдриан (1889—1977), также внесший существенный вклад в современные представления о деятельности мозга. Заслуга


4. С. Шеррингтона и в том, что он воспитал плеяду физиологов, которым наука обязана многими выдающимися открытиями (Р. Гра­нит, Р. Магнус, У. Пенфилд, Дж. Экклс и др.).


Р. Магнусу (1873—1927) наука обязана учением об установочных рефлексах,
распределяющих тонус скелетных мышц. Р. Гранит, X. К. Хартлайнен и Д. Уолд в 1967 г., а Д. Хьюбел и Т. Визел в 1981 г. были удостоены Нобелевской премии за работы по физио­логии и биохимии зрительного анализатора. В этот раздел науки внесли достойный вклад также отечественные ученые П. П. Лазарев (1878—1942) и В. С. Кравков (1893—1951).


Современная физиология ретикулярной формации мозга
создана экспериментальными исследованиями Г. Мэгуна и Д. Моруцци. Сле­дует подчеркнуть, что основой для проведения этих исследований по­служили результаты научных работ И. М. Сеченова и В. М. Бехтерева.


Конечно, функции мозга привлекали и привлекают к себе вни­мание многих выдающихся ученых мира и в этой области успешные поиски продолжаются. Об основных их результатах сказано в со­ответствующих главах учебника с упоминанием имен и ныне здрав­ствующих физиологов.


Физиология висцеральных органов
в истории науки занимает весьма заметное место со времени возникновения физиологии до наших дней. XIXи XXвека ознаменованы крупными открытиями по механизмам регуляции деятельности сердца и кровеносных сосудов:
К.Людвиг (1816—1895), И. Ф. Цион (1842—1912), К. Бер-нар (1813—1878), Ф.В.Овсянников (1827—1906), В. Эйнтховен (1860—1927), Э. Г. Старлинг (1866—1927) и др.


За исследования капиллярного кровообращения
в 1920 г. Нобе­левской премии был удостоен А. Крог (1874—1949). В советское время крупный научный вклад в физиологию сердечно-сосудистой системы внесли В. В. Парин (1903—1971), В. Н. Черниговский, А. М. Чернух и др.


Богат XXвек успехами в области физиологии дыхания,
особенно его регуляции (Н. А. Миславский, К. Гейманс, Д. С. Холдейн). За работы в этой области К. Гейманс (1892—1968) получил Нобелев­скую премию в 1939 г. Крупные открытия были сделаны по биохимии газообмена и клеточного дыхания (А. Крог, Д. Баркрофт), а О. Г. Варбургу (1883—1970) за открытие ферментативного меха­низма клеточного дыхания была присуждена Нобелевская премия в 1931 г. Велик вклад в физиологию дыхательного центра М. В. Сер­гиевского (1898—1982).


Физиологией пищеварения
в разное время занимались выдаю­щиеся физиологи Европы и Америки (К. Людвиг, К. Бернар, Р. Ге-денгайн, Э. Старлинг и др.), но «пересоздал физиологию пищева­рения» (так сказано в дипломе Нобелевского лауреата 1904 г.) И. П. Павлов — первый среди физиологов мира и первый Россий­ский ученый, удостоенный этого высокого звания. Внутриклеточному пищеварению были посвящены работы еще одного Нобелевского лауреата — И. И. Мечникова (1845—1916). В лаборатории И. П. Павлова работали Е. С. Лондон, И. П. Разенков, Г. В. Фоль-борт, Б. П. Бабкин и др., которые продолжили славные традиции первооткрывателей в области физиологии пищеварения. Выдающу­юся роль в этой области науки сыграл А. М. Уголев (1926—1992), которому принадлежат честь открытия мембранного кишечного пи­щеварения и определение его места в пищеварительном конвейере, современные концепции эндокринной деятельности желудочно-кишеч­ного тракта, эволюции секреторных процессов, теория адекватного питания и другие оригинальные теории и гипотезы в физиологии.


В физиологии висцеральных систем формировались основные концепции функциональной организации автономной (вегетативной) нервной системы. Об этих страницах истории физиологии достаточно подробно написано в разделе 4.3 учебника.


XXвек богат открытиями в области изучения деятельности эн­докринных желез.
В 1923 г. Нобелевская премия присуждена Ф. Г. Бантингу (1891—1941). Д. Маклеоду (1876—1935) и Ч. Г. Ве­сту (1899—1978) за работы по инсулину. Этой премии в 1947 г. удостоен Б. А. Усай (1887—1971) за открытия в области физиологии гипофиза. Работы по изучению функции этой железы были отмечены и в 1977 г. — Р. Гиймен, Э. В. Шалли и Р. С. Ялоу. В 1950 г. Нобелевской премии за исследование функции надпочечников удо­стоены Ф. Ш. Хенч (1896—1965), Э. К. Кендалл (1886—1972) и Т. Рейхштейн (р. в 1897).


В 1971 г. Нобелевским лауреатом стал Э. У. Сазерленд (1915— 1974), который открыл роль АМФ в регуляции обмена веществ, показал его значение как посредника в гормональном воздействии на обмен веществ.


Отечественным физиологам принадлежит приоритет в создании искусственного сердца (А. А. Брюхоненко), записи ЭЭГ (В. В. Прав-дич-Неминский), создании таких важных и новых направлений в науке, как космическая физиология, физиология труда, физиология спорта, исследовании физиологических механизмов адаптации, ре­гуляции механизмов реализации многих физиологических функций. Эти и многие другие исследования имеют первостепенное значение для медицины.


Глава
2. ВОЗБУДИМЫЕ ТКАНИ


2.1. ФИЗИОЛОГИЯ ВОЗБУДИМЫХ ТКАНЕЙ


Основным свойством живых клеток является раздражимость, т. е. их способность реагировать изменением обмена веществ в ответ на действие раздражителей. Возбудимость — свойство клеток отвечать на раздражение возбуждением. К возбудимым относят нерв­ные, мышечные и некоторые секреторные клетки. Возбужде­ние — ответ ткани на ее раздражение, проявляющийся в специфи­ческой для нее функции (проведение возбуждения нервной тканью, сокращение мышцы, секреция железы) и неспецифических реакциях (генерация потенциала действия, метаболические изменения).


Одним из важных свойств живых клеток является их элект­рическая возбудимость, т.е. способность возбуждаться в ответ на действие электрического тока. Высокая чувствительность возбудимых тканей к действию слабого электрического тока впервые была продемонстрирована Гальвани в опытах на нервно-мышечном препарате задних лапок лягушки. Если к нервно-мышечному пре­парату лягушки приложить две соединенные между собой пластинки из различных металлов, например медь—цинк, таким образом, что­бы одна пластинка касалась мышцы, а другая — нерва, то мышца будет сокращаться (.первый опыт Гальвани).


Детальный анализ результатов опытов Гальвани, проведенный А. Вольта, позволил сделать другое заключение: электрический ток возникает не в живых клетках, а в месте контакта разнородных ме­таллов с электролитом,
поскольку тканевые жидкости представля­ют собой раствор солей. В результате своих исследований А.Вольта создал устройство, получившее название «вольтов столб» — набор по­следовательно чередующихся цинковых и серебряных пластинок, раз­деленных бумагой, смоченной солевым раствором. В доказательство справедливости своей точки зрения Гальвани предложил другой опыт: набрасывать на мышцу дистальный отрезок нерва, который иннерви-рует эту мышцу, при этом мышца также сокращалась (второй опыт Гальвани,
или Опыт без металла)
. Отсутствие металлических про­водников при проведении опыта позволило Гальвани подтвердить свою точку зрения и развить представления о «животном электриче­стве», т. е. электрических явлениях, возникающих в живых клетках. Окончательное доказательство существования электрических явле­ний в живых тканях было получено в опыте «вторичного тетануса»


Маттеуччи, в котором один нервно-мышечный препарат возбуждался током, а биотоки сокращающейся мышцы раздражал нерв второго нервно-мышечного препарата.


В конце XIXвека благодаря работам Л. Германа, Э. Дюбуа-Раймо-на, Ю. Бернштейна стало очевидно, что электрические явления, ко­торые возникают в возбудимых тканях, обусловлены электрическими свойствами клеточных мембран.


2.1.1. Строение и основные свойства клеточных мембран и ионных каналов


Согласно современным представлениям, биологические мембра­ны образуют наружную оболочку всех животных клеток и фор­мируют многочисленные внутриклеточные органеллы. Наиболее характерным структурным признаком является то, что мембраны всегда образуют замкнутые пространства, и такая микроструктур­ная организация мембран позволяет им выполнять важнейшие функции.


Строение и функции клеточных мембран. 1. Барьерная функция выражается в том, что мембрана при помощи соответствующих механизмов участвует в создании концентрационных градиентов, препятствуя свободной диффузии. При этом мембрана принимает участие в механизмах электрогенеза. К ним относятся механизмы создания потенциала покоя, генерация потенциала действия, меха­низмы распространения биоэлектрических импульсов по однородной и неоднородной возбудимым структурам.


2. Регуляторная функция клеточной мембраны заключается в тонкой регуляции внутриклеточного содержимого и внутриклеточ­ных реакций за счет рецепции внеклеточных биологически активных веществ, что приводит к изменению активности ферментных систем мембраны и запуску механизмов вторичных «месенджеров» («по средников»).


3. Преобразование внешних стимулов неэлектрической природы в электрические сигналы (в рецепторах).


4. Высвобождение нейромедиаторов в синаптических оконча­ ниях.


Современными методами электронной микроскопии была опре­делена толщина клеточных мембран (6—12 нм). Химический анализ показал, что мембраны в основном состоят из липидов и белков, количество которых неодинаково у разных типов клеток. Сложность изучения молекулярных механизмов функционирования клеточных мембран обусловлена тем, что при выделении и очистке клеточных мембран нарушается их нормальное функционирование. В настоящее время можно говорить о нескольких видах моделей клеточной мем­браны, среди которых наибольшее распространение получила жид-костно-мозаичная модель.


Согласно этой модели, мембрана представлена бислоем фосфо-липидных молекул, ориентированных таким образом, что гидрофоб-


ные концы молекул находятся внутри бислоя, а гидрофильные на­правлены в водную фазу (рис. 2.1). Такая структура идеально подходит для образования раздела двух фаз: вне- и внутриклеточной.


В фосфолипидном бислое интегрированы глобулярные белки, полярные участки которых образуют гидрофильную поверхность в водной фазе. Эти интегрированные белки выполняют различные функции, в том числе рецепторную, ферментативную, образуют ионные каналы, являются мембранными насосами и переносчиками ионов и молекул.


Некоторые белковые молекулы свободно диффундируют в пло­скости липидного слоя; в обычном состоянии части белковых мо­лекул, выходящие по разные стороны клеточной мембраны, не изменяют своего положения. Здесь описана только общая схема строения клеточной мембраны и для других типов клеточных мем­бран возможны значительные различия.


Электрические характеристики мембран.
Особая морфология клеточных мембран определяет их электрические характеристики, среди которых наиболее важными являются емкость и проводимость.


Емкостные свойства
в основном определяются фосфолипидным бислоем, который непроницаем для гидратированных ионов и в то же время достаточно тонок (около 5 нм), чтобы обеспечивать эф-


фективное разделение и накопление зарядов и электростатическое взаимодействие катионов и анионов. Кроме того, емкостные свойства клеточных мембран являются одной из причин, определяющих вре­менные характеристики электрических процессов, протекающих на клеточных мембранах.


Проводимость (
g
)
— величина, обратная электрическому сопро­тивлению и равная отношению величины общего трансмембранного тока для данного иона к величине, обусловившей его трансмемб­ранную разность потенциалов.


Через фосфолипидный бислой могут диффундировать различные вещества, причем степень проницаемости (Р), т. е. способность кле­точной мембраны пропускать эти вещества, зависит от разности кон­центраций диффундирующего вещества по обе стороны мембраны, его растворимости в липидах и свойств клеточной мембраны. Скорость диффузии для заряженных ионов в условиях постоянного поля в мем­бране определяется подвижностью ионов, толщиной мембраны, рас­пределением ионов в мембране. Для неэлектролитов проницаемость мембраны не влияет на ее проводимость, поскольку неэлектролиты не несут зарядов, т. е. не могут переносить электрический ток.


Проводимость мембраны является мерой ее ионной проницаемо­сти. Увеличение проводимости свидетельствует об увеличении ко­личества ионов, проходящих через мембрану.


Строение и функции ионных каналов.
Ионы Na+
, K+
, Са2+
, Сl-проникают внутрь клетки и выходят наружу через специальные, заполненные жидкостью каналы. Размер каналов довольно мал (ди­аметр 0,5—0,7 нм). Расчеты показывают, что суммарная площадь каналов занимает незначительную часть поверхности клеточной мембраны.


Функцию ионных каналов изучают различными способами. На­иболее распространенным является метод фиксации напряжения, или «voltage-clamp» (рис. 2.2). Сущность метода заключается в том, что с помощью специальных электронных систем в процессе опыта изменяют и фиксируют на определенном уровне мембранный по­тенциал. При этом измеряют величину ионного тока, протекающего через мембрану. Если разность потенциалов постоянна, то в соот­ветствии с законом Ома величина тока пропорциональна проводи­мости ионных каналов. В ответ на ступенчатую деполяризацию открываются те или иные каналы, соответствующие ионы входят в клетку по электрохимическому градиенту, т. е. возникает ионный


ток, который деполяризует клетку. Это изменение регистрируется с помощью управляющего усилителя и через мембрану пропускается электрический ток, равный по величине, но противоположный по направлению мембранному ионному току. При этом трансмембран­ная разность потенциалов не изменяется. Совместное использование метода фиксации потенциала и специфических блокаторов ионных каналов привело к открытию различных типов ионных каналов в клеточной мембране.


В настоящее время установлены многие типы каналов для раз­личных ионов (табл. 2.1). Одни из них весьма специфичны, вторые, кроме основного иона, могут пропускать и другие ионы.


Изучение функции отдельных каналов возможно методом ло­кальной фиксации потенциала «path-clamp»; рис. 2.3, А). Стеклян­ный микроэлектрод (микропипетка) заполняют солевым раствором, прижимают к поверхности мембраны и создают небольшое разре­жение. При этом часть мембраны подсасывается к микроэлектроду. Если в зоне присасывания оказывается ионный канал, то регист­рируют активность одиночного канала. Система раздражения и ре­гистрации активности канала мало отличается от системы фиксации напряжения.


Таблица 2.1. Важнейшие ионные каналы и ионные токи возбудимых клеток






































Тип канала
Функция
Ток
Блокатор канала
Калиевый (в покое) Генерация потенциала по­коя 1к+
(утечка)
ТЭА
Натриевый Генерация потенциала действия INa+
ттх
Кальциевый Генерация медленных по- ICa2+
D-600,
верапа-
тенциалов мил
Калиевый (задер- Обеспечение реполяриза- IK
+
(задержка)
ТЭА
жанное выпрямле­ние) ции
Калиевый кальций-активируемый O2раничение деполяриза­ции, обусловленной то­ком Са2+
1к+
сa2+
ТЭА

Примечание. ТЭА — тетраэтиламмоний; ТТХ — тетродотоксин.


Ток через одиночный ионный канал имеет прямоугольную форму и одинаков по амплитуде для каналов различных типов (рис. 2.3, Б). Длительность пребывания канала в открытом состоянии имеет ве­роятностный характер, но зависит от величины мембранного потен­циала. Суммарный ионный ток определяется вероятностью нахож­дения в открытом состоянии в каждый конкретный период времени определенного числа каналов (рис. 2.3, В).


Наружная часть канала сравнительно доступна для изучения, исследование внутренней части представляет значительные трудно-


сти. П. Г. Костюком был разработан метод внутриклеточного диа­лиза, который позволяет изучать функцию входных и выходных структур ионных каналов без применения микроэлектродов. Ока­залось, что часть ионного канала, открытая во внеклеточное про­странство, по своим функциональным свойствам отличается от части канала, обращенной во внутриклеточную среду.


Именно ионные каналы обеспечивают два важных свойства мем­браны: селективность и проводимость.


Селективность,
или избирательность,
канала обеспечивается его особой белковой структурой. Большинство каналов являются электроуправляемыми, т. е. их способность проводить ионы зависит от величины мембранного потенциала. Канал неоднороден по своим функциональным характеристикам, особенно это касается белковых структур, находящихся у входа в канал и у его выхода (так назы­ваемые воротные механизмы).


Рассмотрим принцип работы ионных каналов на примере натри­евого канала. Полагают, что в состоянии покоя натриевый канал закрыт. При деполяризации клеточной мембраны до определенного уровня происходит открытие m-активационных ворот (активация) и усиление поступления ионов Na+
внутрь клетки. Через несколько миллисекунд после открытия m-ворот происходит закрытие h-ворот, расположенных у выхода натриевых каналов (инактивация) (рис. 2.4). Инактивация развивается в клеточной мембране очень быстро


и степень инактивации зависит от величины и времени действия деполяризующего стимула.


Работа натриевых каналов определяется величиной мембранного потенциала в соответствии с определенными законами вероятности. Рассчитано, что активированный натриевый канал пропускает всего 6000 ионов за 1 мс. При этом весьма существенный натриевый ток, который проходит через мембраны во время возбуждения, представ­ляет собой сумму тысяч одиночных токов.


При генерации одиночного потенциала действия в толстом нерв­ном волокне изменение концентрации ионов Naво внутренней среде составляет всего 1/100 000 от внутреннего содержания ионов Naги­гантского аксона кальмара. Однако для тонких нервных волокон это изменение концентрации может быть весьма существенным.


Кроме натриевых, в клеточных мембранах установлены другие виды каналов, избирательно проницаемых для отдельных ионов: К+
, Са2+
, причем существуют разновидности каналов для этих ионов (см. табл. 2.1).


Ходжкин и Хаксли сформулировали принцип «независимости» каналов, согласно которому потоки натрия и калия через мембрану независимы друг от друга.


Свойство проводимости
различных каналов неодинаково. В ча­стности, для калиевых каналов процесс инактивации, как для на­триевых каналов, не существует. Имеются особые калиевые каналы, активирующиеся при повышении внутриклеточной концентрации кальция и деполяризации клеточной мембраны. Активация калий-кальцийзависимых каналов ускоряет реполяризацию, тем самым восстанавливая исходное значение потенциала покоя.


Особый интерес представляют кальциевые каналы.


Входящий кальциевый ток, как правило, недостаточно велик, чтобы нормально деполяризовать клеточную мембрану. Чаще всего поступающий в клетку кальций выступает в роли «мессенджера», или вторичного посредника. Активация кальциевых каналов обес­печивается деполяризацией клеточной мембраны, например входя­щим натриевым током.


Процесс инактивации кальциевых каналов достаточно сложен. С одной стороны, повышение внутриклеточной концентрации сво­бодного кальция приводит к инактивации кальциевых каналов. С другой стороны, белки цитоплазмы клеток связывают кальций, что позволяет поддерживать длительное время стабильную величину кальциевого тока, хотя и на низком уровне; при этом натриевый ток полностью подавляется. Кальциевые каналы играют существен­ную роль в клетках сердца. Электрогенез кардиомиоцитов рассмат­ривается в главе 7. Электрофизиологические характеристики кле­точных мембран исследуют с помощью специальных методов.


2.1.2. Методы изучения возбудимых клеток


Электрические явления, которые возникают в возбудимых тка­нях, обусловлены электрическими свойствами клеточных мембран.


Поэтому необходимо остановиться на методических подходах совре­менной физиологии возбудимых тканей, используемых при иссле­довании электрических характеристик клеточных мембран.


Любая физиологическая установка, предназначенная для изучения возбудимых клеток и тканей, должна содержать следующие основные элементы: 1) электроды для регистрации и стимуляции; 2) усилители биоэлектрических сигналов; 3) реги­стратор; 4) стимулятор; 5) систему для обработки физиологической информации. В зависимости от задач исследования обычно требуется дополнительное оборудование. Поскольку в современной медицине широко используются методы электрофизиоло­гического исследования и воздействия электрическим током, необходимо кратко познакомиться с основными методическими приемами.


При работе на изолированных органах, тканях и отдельных клетках применяют специальные камеры и растворы определенного состава, например Рингера—Локка, Тироде, Хэнкса, позволяющие в течение длительного времени поддерживать нор­мальную жизнедеятельность биологического объекта. Во время эксперимента раствор должен быть насыщен кислородом и иметь соответствующую температуру (для холоднокровных животных +20 С, для теплокровных +37°С). В процессе эксперимента необходимо использовать проточные камеры для непрерывного обновления раствора, в котором находится биологический объект.


При электрофизиологических исследованиях используют различные типы электро­дов, детальное описание которых можно найти в соответствующих руководствах. В то же время есть определенные требования ко всем без исключения электродным системам.


Электроды, которые используют в эксперименте, должны оказывать минимальное влияние на объект исследования, т. е. они должны только передавать информацию от объекта или на объект.


Если в электрофизиологическом эксперименте исследуют собственно процесс возбуждения, то необходимо применять два электрода с различной величиной площади контактной поверхности (желательно в соотношении не менее 1:100), при этом электрод меньшей площади называют активным, или референтным, большей пло­щади — пассивным, или индифферентным. При исследовании процесса распрост­ранения возбуждения необходимо использовать два активных электрода с одинаковой площадью контактных поверхностей, устанавливаемых на возбудимой ткани на не­котором расстоянии друг от друга, и индифферентный электрод, который устанав­ливается в отдалении. В первом случае говорят о моно-(уни-) полярном способе отведения потенциала (раздражении), во втором — о биполярном способе. Необходимо подчеркнуть, что термин «униполярный» способ весьма условен, поскольку всегда регистрируется разность потенциалов, а не абсолютное значение потенциала.


Поскольку работа с биологическим объектом подразумевает контакт электрода с жидкостью, содержащейся в биологическом объекте, высока вероятность возникно­вения контактных поляризационных потенциалов, которые могут существенно иска­зить результаты исследования. Чтобы избежать возможных искажений в электрофи­зиологических экспериментах, как правило, используют специальные слабополяри-зующиеся электроды, например хлорсеребряные или каломельные, имеющие незначительный поляризационный потенциал.


При исследовании электрофизиологических характеристик отдельных клеток ис­пользуют стеклянные микроэлектроды. Они представляют собой микропипетку с диаметром кончика менее 0,5 мкм, заполненные ЗМ раствором хлорида калия.


В электрофизиологических экспериментах применяют самые различные усили­тели биологических сигналов, позволяющие измерять минимальные изменения тока (до 10 А) и напряжения (до 10 В). В связи с тем что регистрируемые сигналы могут иметь высокую скорость нарастания переднего фронта, усилители должны иметь достаточно широкую полосу пропускания (сотни кГц). Наибольшие требования предъявляются ко входным каскадам усилителей, которые должны быть согласованы с внутренним сопротивлением измерительного электрода, причем наибольшие труд­ности экспериментатор встречает при использовании микроэлектродов для регистра­ции быстрых изменений тока или потенциала, поскольку микроэлектроды могут иметь очень высокое внутреннее сопротивление (до 150 мОм).


Стимуляторы, регистраторы, системы управления экспериментом и обработки физиологической информации еще более разнообразны и их описание можно найти в специальной литературе.


На рис. 2.5, А показана схема простейшей установки для из­мерения трансмембранной разности потенциалов и изучения реакций возбудимой мембраны при ее электрической стимуляции.


Исследуемый биообъект (клетка, кусочек ткани) помещен в каме­ру, содержащую солевой раствор и электрод сравнения. Если измери­тельный электрод также находится в растворе, то разность потенциа­лов между ним и электродом сравнения стремится к нулю. В момент проникновения микроэлектрода внутрь клетки регистрируют отрица­тельный потенциал относительно внешней среды (рис. 2.5, Б). Пере­мещение кончика микроэлектрода внутри клетки не приводит к изме­нению измеряемой разности потенциалов, если электрод не повредил клетку. У покоящейся клетки с нормальным метаболизмом и стабиль­ными условиями внешней и внутренней среды постоянная разность потенциалов будет регистрироваться неопределенно долго. Эта посто­янная разность потенциалов называется потенциалом покоя,
или мембранным потенциалом покоя.
При этом потенциал внеклеточной среды принимается равным нулю. Величина потенциала покоя неоди­накова у различных типов клеток и колеблется обычно от —70 до —95 мВ.


В том случае, если в клетку введен второй, стимулирующий микроэлектрод, можно исследовать реакцию возбудимой мембраны на действие электрического тока. Если стимулирующий электрод электроотрицателен по отношению к внутренней среде клетки, то говорят о входящем токе, при этом общая трансмембранная разность потенциалов увеличивается, т. е. происходит гиперполяризация кле­точной мембраны. Напротив, если стимулирующий электрод элек­троположителен по отношению к внутренней среде клетки, то го­ворят о выходящем токе, при этом общая трансмембранная разность потенциалов уменьшается, т. е. происходит деполяризация клеточ­ной мембраны (рис. 2.6). Как правило, при действии гиперполяри-зующего тока потенциал мембраны изменяется в соответствии с законом Ома. При этом изменение потенциала не зависит от мо­лекулярных процессов в мембране, поэтому говорят, что изменяются пассивные электрические свойства мембраны. При действии депо­ляризующего тока потенциал мембраны не подчиняется закону Ома, что связано с изменением функциональных характеристик ионных каналов клеточной мембраны. Если деполяризация клеточной мем­браны достигает так называемого критического уровня, происходит активация ионных каналов клеточной мембраны и возникает по­тенциал действия. Критический потенциал (Екр) — уровень мемб­ранного потенциала, при котором начинается генерация потенциала действия. Потенциал действия
(ПД, спайк, импульс) — быстрое колебание мембранного потенциала покоя в положительном направ­лении. В этом случае мембрана реагирует активно, поскольку из­менение трансмембранной разности потенциалов обусловлено изме­нением функциональных свойств ионных каналов.


Детальный анализ процессов, протекающих в мембранах возбу­димых клеток, был проведен Ходжкиным, Хаксли и Катцем в опытах на гигантском аксоне кальмара и привел к созданию современной теории происхождения потенциала покоя и потенциала действия.


2.1.3. Потенциал покоя


Схема опыта Ходжкина—Хаксли приведена на рис. 2.7. В аксон кальмара диаметром около 1 мм, помещенный в морскую воду, вводили активный электрод, второй электрод (электрод сравнения)


находился в морской воде. В момент введения электрода внутрь аксона регистрировали скачок отрицательного потенциала, т. е. внутренняя среда аксона была заряжена отрицательно относительно внешней среды.


Как указывалось в разделе 2.1.2, электрический потенциал со­держимого живых клеток принято измерять относительно потенци­ала внешней среды, который обычно принимают равным нулю. Поэтому считают синонимами такие понятия, как трансмембранная разность потенциалов в покое, потенциал покоя, мембранный по­тенциал. Обычно величина потенциала покоя колеблется от —70 до —95 мВ. Согласно концепции Ходжкина и Хаксли, величина потенциала покоя зависит от ряда факторов, в частности от селек­тивной (избирательной) проницаемости клеточной мембраны для различных ионов; различной концентрации ионов цитоплазмы клет­ки и ионов окружающей среды (ионной асимметрии); работы ме­ханизмов активного транспорта ионов. Все эти факторы тесно свя­заны между собой и их разделение имеет определенную условность.


Известно, что в невозбужденном состоянии клеточная мембрана высокопроницаема для ионов калия и малопроницаема для ионов натрия. Это было показано в опытах с использованием изотопов натрия и калия: спустя некоторое время после введения внутрь аксона радиоактивного калия его обнаруживали во внешней среде. Таким образом, происходит пассивный (по градиенту концентраций)


выход ионов калия из аксона. Добавление радиоактивного натрия во внешнюю среду приводило к незначительному повышению его концентрации внутри аксона. Пассивный вход натрия внутрь аксона несколько уменьшает величину потенциала покоя.


Установлено, что имеется разность концентраций ионов калия вне и внутри клетки, причем внутри клетки ионов калия примерно в 20—50 раз больше, чем вне клетки (табл. 2.2).


Таблица
2.2. Концентрация ионов снаружи и внутри клетки, ммоль/л

















Ионы
Аксон кальмара
Мышечное волокно (лягушка)
внутри клетки
снаружи клетки
внутри клетки
снаружи клетки

к+


Na+

СГ


397 50 40
20 437 556

124


4 1,5


2,2 109


77



Разность концентраций ионов калия вне и внутри клетки и высо­кая проницаемость клеточной мембраны для ионов калия обеспечива­ют диффузионный ток этих ионов из клетки наружу и накопление избытка положительных ионов К на наружной стороне клеточной мембраны, что противодействует дальнейшему выходу ионов К из клетки. Диффузионный ток ионов калия существует до тех пор, пока стремление их двигаться по концентрационному градиенту не уравно­весится разностью потенциалов на мембране. Эта разность потенциа­лов называется калиевым равновесным потенциалом.


Равновесный потенциал
(для соответствующего иона, Е*) — разность потенциалов между внутренней средой клетки и внекле­точной жидкостью, при которой вход и выход иона уравновешен (химическая разность потенциалов равна электрической).


Важно подчеркнуть следующие два момента: 1) состояние рав­новесия наступает в результате диффузии лишь очень небольшого количества ионов (по сравнению с их общим содержанием); кали­евый равновесный потенциал всегда больше (по абсолютному зна­чению) реального потенциала покоя, поскольку мембрана в покое не является идеальным изолятором, в частности имеется небольшая утечка ионов Na+
. Сопоставление теоретических расчетов с исполь­зованием уравнений постоянного поля Д. Гольдмана, формулы Не-рнста показали хорошее совпадение с экспериментальными данными при изменении вне- и внутриклеточной концентрации К+
(рис. 2.8).


Трансмембранная диффузионная разность потенциалов рассчи­тывается по формуле Нернста:


где Ек'
— равновесный потенциал, R
— газовая постоянная, Т
— абсолютная температура, Z— валентность иона, F
— постоянная


40


Фарадея, Ко
и Ki
— концентрации ионов К вне и внутри клетки соответственно.


Величина мембранного потенциала для значений концентрации ионов К+
, приведенных в табл. 2.2, при температуре +20 °С составит примерно —60 мВ. Поскольку концентрация ионов К+
вне клетки меньше, чем внутри, Ек
будет отрицательным.


В состоянии покоя клеточная мембрана высокопроницаема не только для ионов К+
. У мышечных волокон мембрана высокопро­ницаема для ионов Сl. В клетках с высокой проницаемостью для ионов Сl, как правило, оба иона (Сl и К+
) практически в одинаковой степени участвуют в создании потенциала покоя.


Известно, что в любой точке электролита количество анионов всегда соответствует количеству катионов (принцип электронейт­ральности), поэтому внутренняя среда клетки в любой точке элек­тронейтральна. Действительно, в опытах Ходжкина, Хаксли и Катца перемещение электрода внутри аксона не выявило различие в транс­мембранной разности потенциалов.


Поскольку мембраны живых клеток в той или иной степени проницаемы для всех ионов, совершенно очевидно, что без специ­альных механизмов невозможно поддерживать постоянную разность концентрации ионов (ионную асимметрию). В клеточных мембранах существуют специальные системы активного транспорта, работаю­щие с затратой энергии и перемещающие ионы против градиента концентраций. Экспериментальным доказательством существования механизмов активного транспорта служат результаты опытов, в которых активность АТФазы подавляли различными способами, на­пример сердечным гликозидом оуабаином. При этом происходило выравнивание концентраций ионов К+ вне и внутри клетки и мем­бранный потенциал уменьшался до нуля.


Важнейшим механизмом, поддерживающим низкую внутрикле­точную концентрацию ионов Na+
и высокую концентрацию ионов К+
, является натрий-калиевый насос (рис. 2.9). Известно, что в клеточной мембране имеется система переносчиков, каждый из ко­торых связывается с 3 находящимися внутри клетки ионами Na+
и выводит их наружу. С наружной стороны переносчик связывается с 2 находящимися вне клетки ионами К+
, которые переносятся в


цитоплазму, .знергоооеспечение раооты систем переносчиков ооес-печивается АТФ. Функционирование насоса по такой схеме приводит к следующим результатам.


1. Поддерживается высокая концентрация ионов К+
внутри клет­ки, что обеспечивает постоянство величины потенциала покоя. Вследствие того что за один цикл обмена ионов из клетки выводится на один положительный ион больше, чем вводится, активный транс­порт играет роль в создании потенциала покоя. В этом случае говорят об электрогенном насосе. Однако величина вклада элект-


рогенного насоса в общее значение потенциала покоя обычно не­велика и составляет несколько милливольт.


2. Поддерживается низкая концентрация ионов натрия внутри клетки, что, с одной стороны, обеспечивает работу механизма ге­нерации потенциала действия, с другой — обеспечивает сохранение нормальных осмолярности и объема клетки.


3. Поддерживая стабильный концентрационный градиент Na+
, натрий-калиевый насос способствует сопряженному транспорту ами­нокислот и Сахаров через клеточную мембрану.


Таким образом, возникновение трансмембранной разности по­тенциалов (потенциала покоя) обусловлено высокой проводимостью клеточной мембраны в состоянии покоя для ионов К+
(для мышечных клеток и ионов Сl~), ионной асимметрией концентраций для ионов К+
(для мышечных клеток и для ионов Сl~), работой систем активного транспорта, которые создают и поддерживают ионную асимметрию.


2.1.4. Потенциал действия


Емкость мембраны и работа метаболических ионных насосов приводят к накоплению потенциальной электрической энергии на клеточной мембране в форме потенциала покоя. Эта энергия может освобождаться в виде специфических электрических сигналов (по­тенциала действия), характерных для возбудимых тканей: нервной, мышечной, некоторых рецепторных и секреторных клеток. Под потенциалом действия
понимают быстрое колебание потенциала покоя, сопровождающееся, как правило, перезарядкой мембраны. Форма потенциала действия аксона и терминология, используемая для описания потенциала действия, приведены на рис. 2.10.


Для правильного понимания процессов, происходящих при ге­нерации потенциала действия, используем схему опыта, приведен­ную на рис. 2.5. Если через стимулирующий электрод подавать короткие толчки гиперполяризующего тока, то можно зарегистри­ровать увеличение мембранного потенциала, пропорциональное ам­плитуде подаваемого тока; при этом мембрана проявляет свои ем­костные свойства — замедленное нарастание и снижение мембран­ного потенциала (см. рис. 2.6).


Ситуация будет изменяться, если через стимулирующий электрод подавать короткие толчки деполяризующего тока. При небольшой (подпороговой) величине деполяризующего тока мембрана ответит пассивной деполяризацией и проявит емкостные свойства. Подпо-роговое пассивное поведение клеточной мембраны называется элек­тротоническим, или электротоном.
Увеличение деполяризующего тока приведет к появлению активной реакции клеточной мембраны в форме повышения натриевой проводимости (gNa+
). При этом проводимость клеточной мембраны не будет подчиняться закону Ома. Отклонение от пассивного поведения проявляется обычно при 50—80% значении порогового тока. Активные подпороговые изме­нения мембранного потенциала называются локальным ответом.


Смещение мембранного потенциала до критического уровня при­водит к генерации потенциала действия. Минимальное значение тока, необходимого для достижения критического потенциала, на­зывают пороговым током.
Следует подчеркнуть, что не существует абсолютных значений величины порогового тока и критического уровня потенциала, поскольку эти параметры зависят от электри­ческих характеристик мембраны и ионного состава окружающей внешней среды, а также от параметров стимула. Зависимость между величиной стимулирующего тока и временем его действия рассмат­ривается в разделе 2.1.5.


В опытах Ходжкина и Хаксли был обнаружен, на первый взгляд, удивительный эффект. Во время генерации потенциала действия мем­бранный потенциал уменьшался не просто до нуля, как следовало бы из уравнения Нернста, но изменил свой знак на противоположный.


Анализ ионной природы потенциала действия, проведенный пер­воначально Ходжкиным, Хаксли и Катцем, позволил установить, что фронт нарастания потенциала действия и перезарядка мембраны (овершут) обусловлены движением ионов натрия внутрь клетки. Как уже указывалось выше, натриевые каналы оказались электроуправ-ляемыми. Деполяризующий толчок тока приводит к активации натри­евых каналов и увеличению натриевого тока. Это обеспечивает ло­кальный ответ. Смещение мембранного потенциала до критического уровня приводит к стремительной деполяризации клеточной мембра­ны и обеспечивает фронт нарастания потенциала действия. Если уда­лить ион Naиз внешней среды, то потенциал действия не возникает. Аналогичный эффект удавалось получить при добавлении в перфузи-онный раствор ТТХ (тетродотоксин) — специфического блокатора на­триевых каналов (см. табл. 2.1). При использовании метода «voltage-clamp» было показано, что в ответ на действие деполяризующего тока


через мембрану протекает кратковременный (1—2 мс) входящий ток, который сменяется через некоторое время выходящим током (рис. 2.11). При замене ионов натрия на другие ионы и вещества, например холин, удалось показать, что входящий ток обеспечивается натрие­вым током, т. е. в ответ на деполяризующий стимул происходит повы­шение натриевой проводимости (gNa+
). Таким образом, развитие фа­зы деполяризации потенциала действия обусловлено повышением на­триевой проводимости.


Критический потенциал определяет уровень максимальной акти­вации натриевых каналов. Если смещение мембранного потенциала достигает значения критического уровня
потенциала, то процесс по­ступления ионов Na+
в клетку лавинообразно нарастает. Система на­чинает работать по принципу положительной обратной связи, т. е. возникает регенеративная (самоусиливающаяся) деполяризация.


Перезарядка мембраны, или овершут, весьма характерна для большинства возбудимых клеток. Амплитуда овершута характери­зует состояние мембраны и зависит от состава вне- и внутрикле­точной среды. На высоте овершута потенциал действия приближается к равновесному натриевому потенциалу, поэтому происходит изме­нение знака заряда на мембране.


Экспериментально было показано, что амплитуда потенциала действия практически не зависит от силы стимула, если он превы­шает пороговую величину. Поэтому принято говорить, что потенциал действия подчиняется закону "все или ничего".


На пике потенциала действия проводимость мембраны для ионов натрия (gNa+
) начинает быстро снижаться. Этот процесс называется инактивацией. Скорость и степень натриевой инактивации зависят от величины мембранного потенциала, т. е. они потенциалзависимы. При постепенном уменьшении мембранного потенциала до —50 мВ


(например, при дефиците кислорода, действии некоторых лекарст­венных веществ) система натриевых каналов полностью инактиви-руется и клетка становится невозбудимой.


Потенциалзависимость активации и инактивации в большой сте­пени обусловлена концентрацией ионов кальция. При повышении концентрации кальция значение порогового потенциала увеличива­ется, при понижении — уменьшается и приближается к потенциалу покоя. При этом в первом случае возбудимость уменьшается, во втором — увеличивается.


После достижения пика потенциала действия происходит репо-ляризация, т. е. мембранный потенциал возвращается к контроль­ному значению в покое. Рассмотрим эти процессы подробнее. Раз­витие потенциала действия и перезарядка мембраны приводят к тому, что внутриклеточный потенциал становится еще более поло­жительным, чем равновесный калиевый потенциал, и, следователь­но, электрические силы, перемещающие ионы калия через мембрану, увеличиваются. Максимума эти силы достигают во время пика потенциала действия. Кроме тока, обусловленного пассивным пере­движением ионов калия, был обнаружен задержанный выходящий ток, который также переносился ионами К+
, что было показано в опытах с применением изотопа К+
. Этот ток достигает максимума спустя 5—8 мс от начала генерации потенциала действия. Введение тетраэтиламмония (ТЭА) — блокатора калиевых каналов — замед­ляет процесс реполяризации. В обычных условиях задержанный выходящий калиевый ток существует некоторое время после гене­рации потенциала действия и это обеспечивает гиперполяризацию клеточной мембраны, т. е. положительный следовой потенциал.
Положительный следовой потенциал может возникать и как след­ствие работы натриево-электрогенного насоса. На рис. 2.12 показано изменение проводимости клеточной мембраны для ионов натрия и калия в различные фазы потенциала действия.


Инактивация натриевой системы в процессе генерации потенци­ала действия приводит к тому, что клетка в этот период не может быть повторно возбуждена, т. е. наблюдается состояние абсолютной рефрактерности.


Постепенное восстановление потенциала покоя в процессе репо­ляризации дает возможность вызвать повторный потенциал действия, но для этого требуется сверхпороговый стимул, так как клетка находится в состоянии относительной рефрактерности.


Исследование возбудимости клетки во время локального ответа или во время отрицательного следового потенциала показало, что генерация потенциала действия возможна при действии стимула ниже порогового значения. Это состояние супернормальности,
или экзальтации.
На рис. 2.13 показано изменение возбудимости во время генерации потенциала действия.


Продолжительность периода абсолютной рефрактерности ограни­чивает максимальную частоту генерации потенциалов действия дан­ным типом клеток. Например, при продолжительности периода аб­солютной рефрактерности 4 мс максимальная частота равна 250 Гц.


Н. Б. Введенский ввел понятие лабильности,
или функциональ­ной подвижности, возбудимых тканей. Мерой лабильности является количество потенциалов действия, которое способна генерировать возбудимая ткань в единицу времени. Очевидно, что лабильность возбудимой ткани в первую очередь определяется продолжительно­стью периода рефрактерности. Наиболее лабильными являются во­локна слухового нерва, в которых частота генерации потенциалов действия достигает 1000 Гц.


Таким образом, генерация потенциала действия в возбудимых мембранах возникает под влиянием различных факторов и сопро­вождается повышением проводимости клеточной мембраны для ионов натрия, входом их внутрь клетки, что приводит к деполяри­зации клеточной мембраны и появлению локального ответа. Этот процесс может достигнуть критического уровня деполяризации, по-


еле чего проводимость мембраны для натрия увеличивается до мак­симума, мембранный потенциал при этом приближается к натрие­вому равновесному потенциалу. Через несколько миллисекунд про­исходит инактивация натриевых каналов, активация калиевых ка­налов, увеличение выходящего калиевого тока, что приводит к реполяризации и восстановлению исходного потенциала покоя.


2.1.5. Действие электрического тока на возбудимые ткани


Электрический ток широко используется в экспериментальной физиологии при изучении характеристик возбудимых тканей, в клинической практике для диагностики и лечебного воздействия, поэтому необходимо рассмотреть механизмы воздействия электри­ческого тока на возбудимые ткани. Реакция возбудимой ткани за­висит от формы тока (постоянный, переменный или импульсный), продолжительности действия тока, крутизны нарастания (измене­ния) амплитуды тока.


Эффект воздействия определяется не только абсолютным значе­нием тока, но и плотностью тока под стимулирующим электродом. Плотность тока определяется отношением величины тока, протека­ющего по цепи, к величине площади электрода, поэтому при мо­нополярном раздражении площадь активного электрода всегда мень­ше пассивного.


Постоянный ток. При кратковременном пропускании подпорого-вого постоянного электрического тока изменяется возбудимость ткани под стимулирующими электродами. Микроэлектродные исследования показали, что под катодом происходит деполяризация клеточной мем­браны, под анодом—гиперполяризация (рис. 2.14, А). В первом случае будет уменьшаться разность между критическим потенциалом и мем­бранным потенциалом, т. е. возбудимость ткани под катодом увели­чивается. Под анодом происходят противоположные явления (рис. 2.14, Г), т. е. возбудимость уменьшается. Если мембрана отвечает пас­сивным сдвигом потенциала, то говорят об электротонических сдви­гах, или электротоне. При кратковременных электротонических сдви­гах значение критического потенциала не изменяется.


Поскольку практически у всех возбудимых клеток длина клетки превышает ее диаметр, электротонические потенциалы распределя­ются неравномерно. В точке локализации стимулирующего электрода сдвиг потенциала происходит очень быстро и временные параметры определяются величной емкости мембраны. В удаленных участках мембраны ток проходит не только через мембрану, но и преодолевает продольное сопротивление внутренней среды. Электротонический по­тенциал падает экспоненциально с увеличением длины, а расстояние, на котором он падает в 1 /е раз (до 37%), называют константой длины (
lamda
.).


При сравнительно большой продолжительности действия подпо-рогового тока изменяется не только мембранный потенциал, но и значение критического потенциала. При этом под катодом проис­ходит смещение уровня критического потенциала вверх (рис. 2.14, Б), что свидетельствует об инактивации натриевых каналов. Таким


образом, возбудимость под катодом уменьшается при длительном воздействии подпорогового тока. Это явление уменьшения возбуди­мости при длительном действии подпорогового раздражителя назы­вается аккомодацией.
При этом в исследуемых клетках возникают аномально низкоамплитудные потенциалы действия.


Скорость нарастания интенсивности раздражителя имеет суще­ственное значение при определении возбудимости ткани, поэтому чаще всего используют импульсы прямоугольной формы (импульс тока прямоугольной формы имеет максимальную крутизну нараста­ния) . Замедление скорости изменения амплитуды раздражителя при­водит к тому, что происходит инактивация натриевых каналов вследствие постепенной деполяризации клеточной мембраны, а сле­довательно, к падению возбудимости.


Увеличение силы стимула до порогового значения приводит к генерации потенциала действия (рис. 2.14, В).


Под анодом при действии сильного тока происходит изменение уровня критического потенциала, в противоположном направле­нии — вниз (рис. 2.14, Д). При этом уменьшается разность меж­ду критическим потенциалом и мембранным потенциалом, т. е. возбудимость под анодом при длительном действии тока повыша­ется.


Очевидно, что увеличение значения тока до пороговой величины приведет к тому, что возбуждение будет возникать под катодом при замыкании цепи. Следует подчеркнуть, что этот эффект может


быть выявлен в случае продолжительного действия электрического тока. При действии достаточно сильного тока смещение критического потенциала под анодом может быть весьма существенным и достигать первоначального значения мембранного потенциала. Выключение тока приведет к тому, что гиперполяризация мембраны исчезнет, мембранный потенциал вернется к первоначальному значению, а это соответствует величине критического потенциала, т. е. возникает анодно-размыкательное возбуждение.


Изменение возбудимости и возникновение возбуждения под ка­тодом при замыкании и анодом при размыкании носит название закона полярного действия тока.
Экспериментальное подтвержде­ние этой зависимости впервые было получено Пфлюгером еще в прошлом веке.


Как указывалось выше, существует определенное соотношение между временем действия раздражителя и его амплитудой. Эта зависимость в графическом выражении получила название кривой «сила—длительность» (рис. 2.15). Иногда по имени авторов ее на­зывают кривой Гоорвега—Вейса—Лапика. На этой кривой видно, что уменьшение значения тока ниже определенной критической величины не приводит к возбуждению ткани независимо от про­должительности времени, в течение которого действует этот раз­дражитель, а минимальная величина тока, вызывающая возбужде­ние, получила название порога раздражения,
или реобазы.
Величина реобазы определяется разностью между критическим потенциалом и мембранным потенциалом покоя.


С другой стороны, раздражитель должен действовать не меньше определенного времени. Уменьшение времени действия раздражи­теля ниже критического значения приводит к тому, что раздражитель любой интенсивности не оказывает эффекта. Для характеристики возбудимости ткани по времени ввели понятие порога времени — минимальное (полезное)
время, в течение которого должен действовать раздражитель пороговой силы с тем, чтобы вызвать возбуждение (отрезок АС на рис. 2.15).


Порог времени определяется емкостной и резистивной характе­ристикой клеточной мембраны, т. е. постоянной времени T = R*C.


В связи с тем что величина реобазы может изменяться, особенно в естественных условиях, и это может привести к значительной погреш­ности в определении порога времени, Лапик ввел понятие хронаксии для характеристики временных свойств клеточных мембран. Хронак-сия
— время, в течение которого должен действовать раздражитель удвоенной реобазы, чтобы вызвать возбуждение. Использование этого критерия позволяет точно измерить временные характеристики воз­будимых структур, поскольку измерение происходит на крутом изгибе гиперболы (отрезок ADна рис. 2.15).


Хронаксиметрия используется при оценке функционального со­стояния нервно-мышечной системы у человека. При ее органических поражениях величина хронаксии и реобазы нервов и мышц значи­тельно возрастает.


Таким образом, при оценке степени возбудимости возбудимых


структур используют количественные характеристики раздражите­ля — амплитуду, продолжительность действия, скорость нарастания амплитуды. Следовательно, количественная оценка физиологиче­ских свойств возбудимой ткани производится опосредованно
по характеристикам раздражителя.


Переменный ток. Эффективность действия переменного тока определяется не только амплитудой, продолжительностью воздей­ствия, но и частотой. При этом низкочастотный переменный ток, например частотой 50 Гц (сетевой), представляет наибольшую опасность при прохождении через область сердца. В первую оче­редь это обусловлено тем, что при низких частотах возможно попадание очередного стимула в фазу повышенной уязвимости миокарда (см. главу 7) и возникновение фибрилляции желудочков сердца. Действие тока частотой выше 10 кГц представляет мень­шую опасность, поскольку длительность полупериода составляет 0,05 мс. При такой длительности импульса мембрана клеток вслед­ствие своих емкостных свойств не успевает деполяризоваться до критического уровня. Токи большей частоты вызывают, как пра­вило, тепловой эффект.


2.2. ФИЗИОЛОГИЯ НЕРВНОЙ ТКАНИ


2.2.1. Строение и морфофункциональная классификация нейронов


Структурной и функциональной единицей нервной системы яв­ляется нервная клетка — нейрон.


Нейроны — специализированные клетки, способные прини­мать, обрабатывать, кодировать, передавать и хранить информацию, организовывать реакции на раздражения, устанавливать контакты с другими нейронами, клетками органов. Уникальными особенно­стями нейрона являются способность генерировать электрические разряды и передавать информацию с помощью специализированных окончаний — синапсов.


Выполнению функций нейрона способствует синтез в его аксо-плазме веществ-передатчиков — нейромедиаторов (нейротрансмит-теры): ацетилхолина, катехоламинов и др.


Размеры нейронов колеблются от 6 до 120 мкм.


Число нейронов мозга человека приближается к 10й
. На одном нейроне может быть до 10
000 синапсов. Если только эти элементы считать ячейками хранения информации, то можно прийти к выводу, что нервная система может хранить 1019
ед. информации, т. е. способна вместить практически все знания, накопленные человече­ством. Поэтому вполне обоснованным является представление, что человеческий мозг в течение жизни запоминает все происходящее в организме и при его общении со средой. Однако мозг не может извлекать из памяти всю информацию, которая в нем хранится.


Для различных структур мозга характерны определенные типы нейронной организации. Нейроны, организующие единую функцию, образуют так называемые группы, популяции, ансамбли, колонки, ядра. В коре большого мозга, мозжечке нейроны формируют слои клеток. Каждый слой имеет свою специфическую функцию.


Клеточные скопления образуют серое вещество мозга.
Между ядрами, группами клеток и между отдельными клетками проходят миелинизированные или немиелинизированные волокна: аксоны и дендриты.


Одно нервное волокно из нижележащих структур мозга в коре разветвляется на нейроны, занимающие объем 0,1 мм3
, т. е. одно нервное волокно может возбудить до 5000 нейронов. В постнатальном развитии происходят определенные изменения в плотности распо­ложения нейронов, их объема, ветвления дендритов.


Строение нейрона.
Функционально в нейроне выделяют следу­ющие части: воспринимающую — дендриты, мембрана сомы нейрона; интегративную — сома с аксонным холмиком; передающую — аксонный холмик с аксоном.


Тело нейрона (с ом а), помимо информационной, выполняет трофическую функцию относительно своих отростков и их синапсов. Перерезка аксона или дендрита ведет к гибели отростков, лежащих дистальней перерезки, а следовательно, и синапсов этих отростков. Сома обеспечивает также рост дендритов и аксона.


Сома нейрона заключена в многослойную мембрану, обеспечи­вающую формирование и распространение электротонического по­тенциала к аксонному холмику.


Нейроны способны выполнять свою информационную функцию в основном благодаря тому, что их мембрана обладает особыми свойствами. Мембрана нейрона
имеет толщину 6 нм и состоит из двух слоев липидных молекул,
которые своими гидрофильными кон­цами обращены в сторону водной фазы: один слой молекул обращен внутрь, другой — кнаружи клетки. Гидрофобные концы повернуты друг к другу — внутрь мембраны. Белки мембраны
встроены в двойной липидный слой и выполняют несколько функций: белки-"насосы" обеспечивают перемещение ионов и молекул против гра­диента концентрации в клетке; белки, встроенные в каналы, обес-


печивают избирательную проницаемость мембраны; рецепторные белки распознают нужные молекулы и фиксируют их на мембране; ферменты, располагаясь на мембране, облегчают протекание хими­ческих реакций на поверхности нейрона. В ряде случаев один и тот же белок может быть и рецептором, и ферментом, и «насосом».


Рибосомы
располагаются, как правило, вблизи ядра и осущест­вляют синтез белка на матрицах тРНК. Рибосомы нейронов вступают в контакт с эндоплазматической сетью пластинчатого комплекса и образуют базофильное вещество.


Базофильное вещество
(вещество Ниссля, тигроидное вещество, тигроид) — трубчатая структура, покрытая мелкими зернами, со­держит РНК и участвует в синтезе белковых компонентов клетки. Длительное возбуждение нейрона приводит к исчезновению в клетке базофильного вещества, а значит, и к прекращению синтеза спе­цифического белка. У новорожденных нейроны лобной доли коры большого мозга не имеют базофильного вещества. В то же время в структурах, обеспечивающих жизненно важные рефлексы — спин­ном мозге, стволе мозга, нейроны содержат большое количество базофильного вещества. Оно аксоплазматическим током из сомы клетки перемещается в аксон.


Пластинчатый комплекс
(аппарат Гольджи) — органелла ней­рона, окружающая ядро в виде сети. Пластинчатый комплекс уча­ствует в синтезе нейросекреторных и других биологически активных соединений клетки.


Лизосомы
и их ферменты
обеспечивают в нейроне гидролиз ряда веществ.


Пигменты нейронов
— меланин и липофусцин находятся в нейронах черного вещества среднего мозга, в ядрах блуждающего нерва, клетках симпатической системы.


Митохондрии
— органеллы, обеспечивающие энергетические по­требности нейрона. Они играют важную роль в клеточном дыхании. Их больше всего у наиболее активных частей нейрона: аксонного холмика, в области синапсов. При активной деятельности нейрона количество митохондрий возрастает.


Нейротрубочки
пронизывают сому нейрона и принимают участие в хранении и передаче информации.


Ядро нейрона окружено пористой двухслойной мембраной. Через поры происходит обмен между нуклеоплазмой и цитоплазмой. При активации нейрона ядро за счет выпячиваний увеличивает свою поверхность, что усиливает ядерно-плазматические отношения, сти­мулирующие функции нервной клетки. Ядро нейрона содержит гене­тический материал. Генетический аппарат обеспечивает дифферен-цировку, конечную форму клетки, а также типичные для данной клетки связи. Другой существенной функцией ядра является регуля­ция синтеза белка нейрона в течение всей его жизни.


Ядрышко
содержит большое количество РНК, покрыто тонким слоем ДНК.


Существует определенная зависимость между развитием в онто­генезе ядрышка и базофильного вещества и формированием пер-


вичных поведенческих реакций у человека. Это обусловлено тем, что активность нейронов, установление контактов с другими ней­ронами зависят от накопления в них базофильного вещества.


Дендриты — основное воспринимающее поле нейрона. Мем­брана дендрита и синаптической части тела клетки способна реа­гировать на медиаторы, выделяемые аксонными окончаниями из­менением электрического потенциала.


Обычно нейрон имеет несколько ветвящихся дендритов. Необ­ходимость такого ветвления обусловлена тем, что нейрон как ин­формационная структура должен иметь большое количество входов. Информация к нему поступает от других нейронов через специа­лизированные контакты, так называемые шипики.


«Шипики» имеют сложную структуру и обеспечивают восприятие сигналов нейроном. Чем сложнее функция нервной системы, чем больше разных анализаторов посылают информацию к данной струк­туре, тем больше «шипиков» на дендритах нейронов. Максимальное количество их содержится на пирамидных нейронах двигательной зо­ны коры большого мозга и достигает нескольких тысяч. Они занимают до 43% поверхности мембраны сомы и дендритов. За счет «шипиков» воспринимающая поверхность нейрона значительно возрастает и мо­жет достигать, например у клеток Пуркинье, 250 000 мкм .


Напомним, что двигательные пирамидные нейроны получают информацию практически от всех сенсорных систем, ряда подкор­ковых образований, от ассоциативных систем мозга. Если данный «шипик» или группа «шипиков» длительное время перестает полу­чать информацию, то эти «шипики» исчезают.


Аксон представляет собой вырост цитоплазмы, приспособлен­ный для проведения информации, собранной дендритами, перера­ботанной в нейроне и переданной аксону через аксонный холмик — место выхода аксона из нейрона. Аксон данной клетки имеет постоянный диаметр, в большинстве случаев одет в миелиновую оболочку, образованную из глии. Аксон имеет разветвленные окон­чания. В окончаниях находятся митохондрии и секреторные об­разования.


Типы нейронов. Строение нейронов в значительной мере со­ответствует их функциональному назначению. По строению ней­роны делят на три типа: униполярные, биполярные и мультипо-лярные.


Истинно униполярные нейроны находятся только в мезэнцефалическом ядре тройничного нерва. Эти нейроны обеспе­чивают проприоцептивную чувствительность жевательных мышц.


Другие униполярные нейроны называют псевдоуниполяр­ными, на самом деле они имеют два отростка (один идет с пери­ферии от рецепторов, другой — в структуры центральной нервной системы). Оба отростка сливаются вблизи тела клетки в единый отросток. Все эти клетки располагаются в сенсорных узлах: спи-нальных, тройничном и т. д. Они обеспечивают восприятие болевой, температурной, тактильной, проприоцептивной, бароцептивной, вибрационной сигнализации.


Биполярные нейроны имеют один аксон и один дендрит. Нейроны этого типа встречаются в основном в периферических частях зрительной, слуховой и обонятельной систем. Биполярные нейроны дендритом связаны с рецептором, аксоном — с нейроном следующего уровня организации соответствующей сенсорной системы.


Мультиполярные нейроны имеют несколько дендритов и один аксон. В настоящее время насчитывают до 60 различных вариантов строения мультиполярных нейронов, однако все они пред­ставляют разновидности веретенообразных, звездчатых, корзинча-тых и пирамидных клеток.


Обмен веществ в нейроне.
Необходимые питательные вещества и соли доставляются в нервную клетку в виде водных растворов. Продукты метаболизма также удаляются из нейрона в виде водных растворов.


Белки нейронов
служат для пластических и информационных целей. В ядре нейрона содержится ДНК, в цитоплазме преобладает РНК. РНК сосредоточена преимущественно в базофильном веществе. Интенсивность обмена белков в ядре выше, чем в цитоплазме. Скорость обновления белков в филогенетически более новых струк­турах нервной системы выше, чем в более старых. Наибольшая скорость обмена белков в сером веществе коры большого мозга. Меньше — в мозжечке, наименьшая — в спинном мозге.


Липиды нейронов
служат энергетическим и пластическим мате­риалом. Присутствие в миелиновой оболочке липидов обусловливает их высокое электрическое сопротивление, достигающее у некоторых нейронов 1000 Ом/см2
поверхности. Обмен липидов в нервной клетке происходит медленно; возбуждение нейрона приводит к уменьшению количества липидов. Обычно после длительной умственной работы, при утомлении количество фосфолипидов в клетке уменьшается.


Углеводы нейронов
являются основным источником энергии для них. Глюкоза, поступая в нервную клетку, превращается в гликоген, который при необходимости под влиянием ферментов самой клетки превращается вновь в глюкозу. Вследствие того что запасы гликогена при работе нейрона не обеспечивают полностью его энергетические траты, источником энергии для нервной клетки служит глюкоза крови.


Глюкоза расщепляется в нейроне аэробным и анаэробным путем. Расщепление идет преимущественно аэробным путем, этим объяс­няется высокая чувствительность нервных клеток к недостатку кис­лорода. Увеличение в крови адреналина, активная деятельность организма приводят к увеличению потребления углеводов. При нар­козе потребление углеводов снижается.


В нервной ткани содержатся соли калия, натрия, каль­ция, магния и др. Среди катионов преобладают К+
, Na+
, Mg+
, Са2+; из анионов — СГ, НСОз. Кроме того, в нейроне имеются различные микроэлементы (например, медь и марганец). Благодаря высокой биологической активности они активируют ферменты. Ко­личество микроэлементов в нейроне зависит от его функционального состояния. Так, при рефлекторном или кофеиновом возбуждении содержание меди, марганца в нейроне резко снижается.


Обмен энергии в нейроне
в состоянии покоя и возбуждения различен. Об этом свидетельствует значение дыхательного коэффи­циента в клетке. В состоянии покоя он равен 0,8, а при возбуж­дении — 1,0. При возбуждении потребление кислорода возрастает на 100%. После возбуждения количество нуклеиновых кислот в цитоплазме нейронов иногда уменьшается в 5 раз.


Собственные энергетические процессы нейрона (его сомы) тесно связаны с трофическими влияниями нейронов, что сказывается преж­де всего на аксонах и дендритах. В то же время нервные окончания аксонов оказывают трофические влияния на мышцу или клетки других органов. Так, нарушение иннервации мышцы приводит к ее атрофии, усилению распада белков, гибели мышечных волокон.


Классификация нейронов. Существует классификация нейронов, учитывающая химическую структуру выделяемых в оконча­ниях их аксонов веществ: холинергические, пептидергические, норад-реналинергические, дофаминергические, серотонинергические и др.


По чувствительности к действию раздражите­лей нейроны делят на моно-, би-, полисенсорные.


Моносенсорные нейроны.
Располагаются чаще в первичных про­екционных зонах коры и реагируют только на сигналы своей сен-сорности. Например, значительная часть нейронов первичной зоны зрительной области коры большого мозга реагирует только на све­товое раздражение сетчатки глаза.


Моносенсорные нейроны подразделяют функционально по их чувствительности к разным качествам одного раздражителя. Так, отдельные нейроны слуховой зоны коры большого мозга могут ре­агировать на предъявления тона 1000 Гц и не реагировать на тоны другой частоты. Они называются мономодальными.
Нейроны, реа­гирующие на два разных тона, называются бимодальными,
на три и более — полимодальными.


Бисенсорные нейроны.
Чаще располагаются во вторичных зонах коры какого-либо анализатора и могут реагировать на сигналы как своей, так и другой сенсорности. Например, нейроны вторичной зоны зрительной области коры большого мозга реагируют на зри­тельные и слуховые раздражения.


Полисенсорные нейроны.
Это чаще всего нейроны ассоциативных зон мозга; они способны реагировать на раздражение слуховой, зрительной, кожной и других рецептивных систем.


Нервные клетки разных отделов нервной системы могут быть активными вне воздействия — фоновые, или фоновоактив-н ы е (рис. 2.16). Другие нейроны проявляют импульсную активность только в ответ на какое-либо раздражение.


Фоновоактивные нейроны делятся на тормозящиеся — урежаю-щие частоту разрядов и возбуждающиеся — учащающие частоту разрядов в ответ на какое-либо раздражение. Фоновоактивные ней­роны могут генерировать импульсы непрерывно с некоторым замед­лением или увеличением частоты разрядов — это первый тип ак­тивности — непрерывно-аритмичный.
Такие нейроны обеспечивают тонус нервных центров. Фоновоактивные нейроны имеют большое


значение в поддержании уровня возбуждения коры и других структур мозга. Число фоновоактивных нейронов увеличивается в состоянии бодрствования.


Нейроны второго типа выдают группу импульсов с коротким меж­импульсным интервалом, после этого наступает период молчания и вновь возникает группа, или пачка, импульсов. Этот тип активности называется пачечным.
Значение пачечного типа активности заключа­ется в создании условий проведения сигналов при снижении функци­ональных возможностей проводящих или воспринимающих структур мозга. Межимпульсные интервалы в пачке равны приблизительно 1— 3 мс, между пачками этот интервал составляет 15—120 мс.


Третья форма фоновой активности — групповая.
Групповой тип активности характеризуется апериодическим появлением в фоне группы импульсов (межимпульсные интервалы составляют от 3 до 30 мс), сменяющихся периодом молчания.


Функционально нейроны можно также разделить на три типа: афферентные, интернейроны (вставочные), эфферентные.
Первые выполняют функцию получения и передачи информации в вышележащие структуры ЦНС, вторые — обеспечивают взаимодей­ствие между нейронами ЦНС, третьи — передают информацию в нижележащие структуры ЦНС, в нервные узлы, лежащие за пре­делами ЦНС, и в органы организма.


Функции афферентных нейронов тесно связаны с функциями рецепторов.


2.2.2. Рецепторы. Рецепторный и генераторный потенциалы


Рецепторы представляют собой специализированные образо­вания, воспринимающие определенные виды раздражений.


Рецепторы обладают наибольшей чувствительностью к адекват­ным для них раздражениям. Рецепторы делят на четыре группы: механо-, термо-, хемо- и фоторецепторы. Каждую группу подраз­деляют на более узкие диапазоны рецепции. Например, зрительные рецепторы делятся на воспринимающие освещенность, цвет, слухо­вые — определенный тон, вкусовые — определенные вкусовые раздражения (соленое, сладкое, горькое) и т. д.


Рецепторный потенциал
возникает при раздражении рецептора как результат деполяризации и повышения проводимости участка его мембраны, который называется рецептивным.
Рецептивный уча­сток мембраны имеет специфические свойства, в том числе биохи­мические, отличающие его от мембраны тела и аксона.


Возникший в рецептивных участках мембраны рецепторный по­тенциал электротонически распространяется на аксонный холмик рецепторного нейрона, где возникает генераторный потенциал.
Возникновение генераторного потенциала в области аксонного хол­мика объясняется тем, что этот участок нейрона имеет более низкие пороги возбуждения и потенциал действия в нем развивается раньше, чем в других частях мембраны нейрона. Чем выше генераторный потенциал, тем интенсивнее частота разрядов распространяющегося


потенциала действия от аксона к другим отделам нервной системы. Следовательно, частота разрядов рецепторного нейрона зависит от амплитуды генераторного потенциала.


Рецепторные нейроны различаются по скорости уменьшения их реакции (адаптации) на длящуюся стимуляцию. Рецепторные ней­роны, медленно адаптирующиеся к раздражению, т. е. длительное время генерирующие потенциалы действия, называются тонически­ми.
Рецепторы, быстро и коротко реагирующие на стимуляцию группой импульсов, называются физическими.


Таким образом, реакция рецепторного нейрона, предназначен­ного для передачи информации из области восприятия, имеет 5 ста­дий: 1) преобразование сигнала внешнего раздражения; 2) генерация рецепторного потенциала; 3) распространение рецепторного потен­циала по нейрону; 4) возникновение генераторного потенциала; 5) генерация нервного импульса.


2.2.3. Афферентные нейроны,
их функции


Афферентныенейроны — нейроны, воспринимающие информацию. Как правило, афферентные нейроны имеют большую разветвленную сеть. Это характерно для всех уровней ЦНС. В зад­них рогах спинного мозга афферентными являются чувствительные нейроны малых размеров с большим числом дендритных отростков, в то время как в передних рогах спинного мозга эфферентные нейроны имеют тело большого размера, более грубые, менее вет­вящиеся отростки. Эти различия нарастают по мере изменения уровня ЦНС к продолговатому, среднему, промежуточному, конеч­ному мозгу. Наибольшие различия афферентных и эфферентных нейронов отмечаются в коре большого мозга.


2.2.4. Вставочные нейроны, их роль в формировании нейронных сетей


Вставочные нейроны, или интернейроны, обрабатывают информацию, получаемую от афферентных нейронов, и передают ее на другие вставочные или на эфферентные нейроны.


Область влияния вставочных нейронов определяется их собст­венным строением (длина аксона, число коллатералей аксонов). Вставочные нейроны, как правило, имеют аксоны, терминал и ко­торых заканчиваются на нейронах своего же центра, обеспечивая прежде всего их интеграцию. Одни вставочные нейроны получают активацию от нейронов других центров и затем распространяют эту информацию на нейроны своего центра. Это обеспечивает усиление влияния сигнала за счет его повторения в параллельных путях и удлиняет время сохранения информации в центре. В итоге центр, куда пришел сигнал, повышает надежность воздействия на испол­нительную структуру.


Другие вставочные нейроны получают активацию от коллатера-


лей эфферентных нейронов своего же центра и затем передают эту информацию назад в свой же центр, образуя обратные связи. Так организуются реверберирующие сети, позволяющие длительно со­хранять информацию в нервном центре.


Вставочные нейроны могут быть возбуждающими или тормоз­ными.


Активация возбуждающих вставочных нейронов
в новой коре облегчает передачу информации с одной группы нейронов в другую. Причем это происходит за счет «медленных» пирамидных нейронов, способных к длительной тонической активации и поэтому переда­ющих сигналы достаточно медленно и длительно. Одновременно эти же вставочные нейроны своими коллатералями активируют и «бы­стрые» пирамидные нейроны, которые разряжаются физически-ко­ротким залпом. Усиление активности «медленных» нейронов уси­ливает реакцию «быстрых», в то же время «быстрые» нейроны тормозят работу «медленных».


Тормозные вставочные нейроны
возбуждаются прямыми сигна­лами, идущими в их собственный центр, или сигналами, идущими из того же центра, но по обратным связям. Прямое возбуждение тормозящих вставочных нейронов характерно для промежуточных центров афферентных спиноцеребральных путей.


Для двигательных центров коры и спинного мозга характерно возбуждение вставочных нейронов за счет обратных связей.


2.2.5. Эфферентные нейроны


Эфферентные нейроны нервной системы — это нейроны, передающие информацию от нервного центра к исполнительным органам или другим центрам нервной системы. Например, эффе­рентные нейроны двигательной зоны коры большого мозга — пи­рамидные клетки, посылают импульсы к мотонейронам передних рогов спинного мозга, т. е. они являются эфферентными для этого отдела коры большого мозга. В свою очередь мотонейроны спинного мозга являются эфферентными для его передних рогов и посылают сигналы к мышцам. Основной особенностью эфферентных нейронов является наличие длинного аксона, обладающего большой скоростью проведения возбуждения.


Эфферентные нейроны разных отделов коры больших полуша­рий связывают между собой эти отделы по аркуатным связям. Такие связи обеспечивают внутриполушарные и межполушарные отношения, формирующие функциональное состояние мозга в ди­намике обучения, утомления, при распознавании образов и т. д. Все нисходящие пути спинного мозга (пирамидный, руброспиналь-ный, ретикулоспинальный и т. д.) образованы аксонами эфферен­тных нейронов соответствующих отделов центральной нервной сис­темы.


Нейроны автономной нервной системы, например ядер блужда­ющего нерва, боковых рогов спинного мозга, также относятся к эфферентным.


2.2.6. Неироглия


Нейроглия, или глия, — совокупность клеточных элементов нервной ткани, образованная специализированными клетками раз­личной формы. Она обнаружена Р. Вирховым и названа им нейрог-лией, что означает «нервный клей». Клетки нейроглии заполняют пространства между нейронами, составляя 40% от объема мозга. Глиальные клетки по размеру в 3—4 раза меньше, чем нервные; число их в ЦНС млекопитающих достигает 140 млрд. С возрастом у человека в мозге число нейронов уменьшается, а число глиальных клеток увеличивается.


Различают несколько видов нейроглии, каждая из которых об­разована клетками определенного типа: астроциты, олигодендроци-ты, микроглиоциты (табл. 2.3).


Таблица
2.3. Количество глиальных элементов в структурах мозга, %












Виды глиальных клеток
Кора большого мозга
Мозолистое тело
Ствол мозга

Астроциты


Олигодендроциты


Микроциты


61,5 29 9,5

54


40


6


30


62


8



Астроциты представляют собой многоотростчатые клетки с ядрами овальной формы и небольшим количеством хроматина. Раз­меры астроцитов 7—25 мкм. Астроциты располагаются главным образом в сером веществе мозга. Ядра астроцитов содержат ДНК, протоплазма имеет пластинчатый комплекс, центрисому, митохон­дрии. Считают, что астроциты служат опорой нейронов, обеспечи­вают репаративные процессы нервных стволов, изолируют нервное волокно, участвуют в метаболизме нейронов. Отростки астроцитов образуют «ножки», окутывающие капилляры, практически полно­стью покрывая их. В итоге между нейронами и капиллярами рас­полагаются только астроциты. Видимо, они обеспечивают транспорт веществ из крови в нейрон и обратно. Астроциты образуют мостики между капиллярами и эпендимой, выстилающей полости желудочков мозга. Считают, что таким образом обеспечивается обмен между кровью и цереброспинальной жидкостью желудочков мозга, т. е. астроциты выполняют транспортную функцию.


Олигодендроциты — клетки, имеющие малое количество отростков. Они меньше по размеру, чем астроциты. В коре большого мозга количество олигодендроцитов возрастает от верхних слоев к нижним. В подкорковых структурах, в стволе мозга олигодендро­цитов больше, чем в коре. Олигодендроциты участвуют в миели-низации аксонов (поэтому их больше в белом веществе мозга), в метаболизме нейронов, а также трофике нейронов.


Микроглия представлена самыми мелкими многоотростча-тыми клетками глии, относящимися к блуждающим клеткам. Ис-


точником микроглии служит мезодерма. Микроглиальные клетки способны к фагоцитозу.


Одной из особенностей глиальных клеток является их способность к изменению размеров. Это свойство было обнаружено в культуре ткани при помощи киносъемки. Изменение размера глиальных кле­ток носит ритмический характер: фаза сокращения составляет 90 с, расслабления — 240 с, т. е. это очень медленный процесс. Частота «пульсации» варьирует от 2 до 20 в час. «Пульсация» происходит в виде ритмического уменьшения объема клетки. Отростки клетки набухают, но не укорачиваются. «Пульсация» усиливается при элек­трической стимуляции глии; латентный период в этом случае весьма большой — около 4 мин.


Глиальная активность изменяется под влиянием различных би­ологически активных веществ: серотонин вызывает уменьшение «пульсации» олигодендроглиоцитов, норадреналин — усиление. Фи­зиологическая роль «пульсации» глиальных клеток мало изучена, но считают, что она проталкивает аксоплазму нейрона и влияет на ток жидкости в межклеточном пространстве.


Нормальные физиологические процессы в нервной системе во многом зависят от степени миелинизации волокон нервных клеток. В центральной нервной системе миелинизация обеспечивается оли-годендроцитами, а в периферической — леммоцитами (шванновские клетки).


Глиальные клетки не обладают импульсной активностью, по­добно нервным, однако мембрана глиальных клеток имеет заряд, формирующий мембранный потенциал, который отличается боль­шой инертностью. Изменения мембранного потенциала медленны, зависят от активности нервной системы, обусловлены не синап-тическими влияниями, а изменениями химического состава меж­клеточной среды. Мембранный потенциал нейроглии равен 70— 90 мВ.


Глиальные клетки способны к передаче возбуждения, распрост­ранение которого от одной клетки к другой идет с декрементом. При расстоянии между раздражающим и регистрирующим электро­дами 50 мкм распространение возбуждения достигает точки реги­страции за 30—60 мс. Распространению возбуждения между гли-альными клетками способствуют специальные щелевые контакты их мембран. Эти контакты обладают пониженным сопротивлением и создают условия для электротонического распространения тока от одной глиальной клетки к другой.


Вследствие того что нейроглия очень тесно контактирует с нейронами, процессы возбуждения нервных элементов сказываются на электрических явлениях глиальных элементов. Это влияние может быть обусловлено тем, что мембранный потенциал нейрог­лии зависит от концентрации ионов К+
в окружающей среде. Во время возбуждения нейрона и реполяризации его мембраны вход ионов К+
в нейрон усиливается, что значительно изменяет его концентрацию вокруг нейроглии и приводит к деполяризации ее клеточных мембран.


2.2.7. Проведение возбуждения по нервам


Основной функцией аксонов является проведение импульсов, возникающих в нейроне. Аксоны могут быть покрыты миелиновой оболочкой (миелиновые волокна) или лишены ее (безмиелиновые волокна). Миелиновые волокна чаще встречаются в двигательных нервах, безмиелиновые преобладают в автономной (вегетативной) нервной системе.


Отдельное миелиновоенервноеволокно состоит из осевого цилиндра, покрытого миелиновой оболочкой, образован­ной шванновскими клетками. Осевой цилиндр имеет мембрану и аксоплазму. Миелиновая оболочка является продуктом деятельности шванновской клетки и состоит на 80% из липидов, обладающих высоким омическим сопротивлением, и на 20% из белка.


Миелиновая оболочка не покрывает сплошным покровом осевой цилиндр, а прерывается, оставляя открытые участки осевого ци-


линдра, называемые узловыми перехватами (перехваты Ранвье). Длина участков между этими перехватами различна и зависит от толщины нервного волокна: чем оно толще, тем длиннее расстояние между перехватами (рис. 2.17).


Безмиелиновые нервные волокна покрыты только шванновской оболочкой.


Проведение возбуждения в безмиелиновых волокнах отличается от такового в миелиновых волокнах благодаря разному строению оболочек. В безмиелиновых волокнах возбуждение постепенно ох­ватывает соседние участки мембраны осевого цилиндра и так рас­пространяется до конца аксона. Скорость распространения возбуж­дения по волокну определяется его диаметром.


В нервных безмиелиновых волокнах, где процессы метаболизма не обеспечивают быструю компенсацию расхода энергии на возбуж­дение, распространение этого возбуждения идет с постепенным ос­лаблением — с декрементом. Декрементное проведение возбуждения характерно для низкоорганизованной нервной системы.


У высших животных благодаря прежде всего наличию миелиновой оболочки и совершенства метаболизма в нервном волокне возбуж­дение проходит, не затухая, бездекрементно. Этому способствуют наличие на всем протяжении мембраны волокна равного заряда и быстрое его восстановление после прохождения возбуждения.


В миелиновых волокнах возбуждение охватывает только участки узловых перехватов, т. е. минует зоны, покрытые миелином. Такое проведение возбуждения по волокну называется сальтаторным
(скачкообразным). В узловых перехватах количество натриевых ка­налов достигает 12 000 на 1 мкм , что значительно больше, чем в лю­бом другом участке волокна. В результате узловые перехваты являют­ся наиболее возбудимыми и обеспечивают большую скорость проведе­ния возбуждения. Время проведения возбуждения по миелиновому волокну обратно пропорционально длине между перехватами.


Проведение возбуждения по нервному волокну не нарушается в течение длительного (многочасового) времени. Это свидетельствует о малой утомляемости нервного волокна. Считают, что нервное волокно относительно неутомляемо вследствие того, что процессы ресинтеза энергии в нем идут с достаточно большой скоростью и успевают восстановить траты энергии, происходящие при прохож­дении возбуждения.


В момент возбуждения энергия нервного волокна тратится на работу натрий-калиевого насоса. Особенно большие траты энергии происходят в перехватах Ранвье вследствие большой плотности здесь натрий-калиевых каналов.


Дж. Эрлангер и X. Гассер (1937) впервые классифицировали нер­вные волокна по скорости проведения возбуждения. Различная ско­рость проведения возбуждения по волокнам смешанного нерва вы­является при использовании внеклеточного электрода. Потенциалы волокон, проводящих возбуждение с неодинаковой скоростью, ре­гистрируются раздельно (рис. 2.18).


В зависимости от скорости проведения возбуждения нервные


волокна делят на три типа: А, В, С. В свою очередь волокна типа А подразделяют на четыре группы: Ааlfa, Abeta,
Agama
, Аdelta. Наибольшей скоростью проведения (до 120 м/с) обладают волокна группы Аа, которую составляют волокна диаметром 12—22 мкм. Другие волокна имеют меньший диаметр и соответственно проведение возбуждения по ним происходит с меньшей скоростью (табл. 2.4).


Нервный ствол образован большим числом волокон, однако воз­буждение, идущее по каждому из них, не передается на соседние. Эта особенность проведения возбуждения по нерву носит название закона изолированного проведения возбуждения
по отдельному нер­вному волокну. Возможность такого проведения имеет большое фи­зиологическое значение, так как обеспечивает, например, изолиро­ванность сокращения каждой нейромоторной единицы.


Таблица
2.4. Скорость проведения возбуждения по нервным волокнам
































Группа волоком
Диаметр волокна, мкм
Скорость проведения, м/с
А
Аа
12—22
70—120
А
b
8—12
40—70
Ar

4—8
15—40
Ad

1—4
5—15
В
1—3
3—14
С
0,5—1,0
0,5—2

Способность нервного волокна к изолированному проведению возбуждения обусловлена наличием оболочек, а также тем, что сопротивление жидкости, заполняющей межволоконные простран­ства, значительно ниже, чем сопротивления мембраны волокна. Поэтому ток, выйдя из возбужденного волокна, шунтируется в жидкости и оказывается слабым для возбуждения соседних волокон. Необходимым условием проведения возбуждения в нерве является не просто его анатомическая непрерывность, но и физиологическая


целостность. В любом металлическом проводнике электрический ток будет течь до тех пор, пока проводник сохраняет физическую не­прерывность. Для нервного «проводника» этого условия недостаточ­но: нервное волокно должно сохранять также физиологическую целостность. Если нарушить свойства мембраны волокна (перевязка, блокада новокаином, аммиаком и др.), проведение возбуждения по волокну прекращается. Другим свойством, характерным для прове­дения возбуждения по нервному волокну, является способность к двустороннему проведению. Нанесение раздражения между двумя отводящими электродами на поверхности волокна вызовет электри­ческие потенциалы под каждым из них.


2.3. ФИЗИОЛОГИЯ
СИНАПСОВ


Синапсами называются контакты, которые устанавливают нейроны как самостоятельные образования. Синапс представляет собой сложную структуру и состоит из пресинаптической части (окончание аксона, передающее сигнал), синаптической щели и постсинаптической части (структура воспринимающей клетки).


Классификация синапсов.
Синапсы классифицируются по мес­тоположению, характеру действия, способу передачи сигнала.


По местоположению выделяют нервно-мышечные синапсы и нейронейрональные, последние в свою очередь делятся на аксо-соматические, аксоаксональные, аксодендритические, дендросомати-ческие.


По -характеру действия на воспринимающую структуру синапсы могут быть возбуждающими и тормозящими.


Поспособу передачи с и г н а л а синапсы делятся на элек­трические, химические, смешанные.


Характер взаимодействия нейронов. Определяется способом это­го взаимодействия: дистантное, смежное, контактное.


Дистантное взаимодействие может быть обеспечено двумя нейронами, расположенными в разных структурах организма. Например, в клетках ряда структур мозга образуются нейрогормоны, нейропептиды, которые способны воздействовать гуморально на ней­роны других отделов.


Смежное взаимодействие нейронов осуществляется в случае, когда мембраны нейронов разделены только межклеточным пространством. Обычно такое взаимодействие имеется там, где меж­ду мембранами нейронов нет глиальных клеток. Такая смежность характерна для аксонов обонятельного нерва, параллельных волокон мозжечка и т. д. Считают, что смежное взаимодействие обеспечивает участие соседних нейронов в выполнении единой функции. Это происходит, в частности, потому, что метаболиты, продукты актив­ности нейрона, попадая в межклеточное пространство, влияют на соседние нейроны. Смежное взаимодействие может в ряде случаев обеспечивать передачу электрической информации от нейрона к нейрону.


Контактное взаимодействие обусловлено специфиче­скими контактами мембран нейронов, которые образуют так назы­ваемые электрические и химические синапсы.


Электрические синапсы.
Морфологически представляют собой слияние, или сближение, участков мембран. В последнем случае синаптическая щель не сплошная, а прерывается мостиками полного контакта. Эти мостики образуют повторяющуюся ячеистую струк­туру синапса, причем ячейки ограничены участками сближенных мембран, расстояние между которыми в синапсах млекопитающих 0,15—0,20 нм. В участках слияния мембран находятся каналы, через которые клетки могут обмениваться некоторыми продуктами. Кроме описанных ячеистых синапсов, среди электрических синапсов различают другие — в форме сплошной щели; площадь каждого из них достигает 1000 мкм , как, например, между нейронами реснич­ного ганглия.


Электрические синапсы обладают односторонним проведением возбуждения. Это легко доказать при регистрировании электриче­ского потенциала на синапсе: при раздражении афферентных путей мембрана синапса деполяризуется, а при раздражении эфферентных волокон — гиперполяризуется. Оказалось, что синапсы нейронов с одинаковой функцией обладают двусторонним проведением возбуж­дения (например, синапсы между двумя чувствительными клетка­ми), а синапсы между разнофункциональными нейронами (сенсор­ные и моторные) обладают односторонним проведением. Функции электрических синапсов заключаются прежде всего в обеспечении срочных реакций организма. Этим, видимо, объясняется располо­жение их у животных в структурах, обеспечивающих реакцию бегства, спасения от опасности и т. д.


Электрический синапс сравнительно мало утомляем, устойчив к изменениям внешней и внутренней среды. Видимо, эти качества наряду с быстродействием обеспечивают высокую надежность его работы.


Химические синапсы.
Структурно представлены пресинаптиче-ской частью, синаптической щелью и постсинаптической частью. Пресинаптическая часть химического синапса образуется расшире­нием аксона по его ходу или окончания (рис. 2.19). В пресинапти-ческой части имеются агранулярные и гранулярные пузырьки. Пу­зырьки (кванты) содержат медиатор. В пресинаптическом расшире­нии находятся митохондрии, обеспечивающие синтез медиатора, гранулы гликогена и др. При многократном раздражении пресинап-тического окончания запасы медиатора в синаптических пузырьках истощаются. Считают, что мелкие гранулярные пузырьки содержат норадреналин, крупные — другие катехоламины. Агранулярные пу­зырьки содержат ацетилхолин. Медиаторами возбуждения могут быть также производные глутаминовой и аспарагиновой кислот.


Синаптические контакты могут быть между аксоном и дендритом (аксодендритические), аксоном и сомой клетки (аксосоматические), аксонами (аксоаксональные), дендритами (дендродендритические), дендритами и сомой клетки.


Действие медиатора на постсинаптическую мембрану заключа­ется в повышении ее проницаемости для ионов Na+
. Возникновение потока ионов Na+
из синаптической щели через постсинаптическую мембрану ведет к ее деполяризации и вызывает генерацию возбуж­дающего постсинаптического потенциала
(ВПСП) (см. рис. 2.19).


Для синапсов с химическим способом передачи возбуждения характерны синоптическая задержка проведения возбуждения,
для­щаяся около 0,5 мс, и развитие постсинаптического потенциала
(ПСП) в ответ на пресинаптический импульс. Этот потенциал при возбуждении проявляется в деполяризации постсинаптической мем­браны, а при торможении — в гиперполяризации ее, в результате чего развивается тормозной постсинаптический потенциал
(ТПСП). При возбуждении проводимость постсинаптической мем­браны увеличивается.


ВПСП возникает в нейронах при действии в синапсах ацетил-холина, норадреналина, дофамина, серотонина, глутаминовой кис­лоты, вещества Р.


ТПСП возникает при действии в синапсах глицина, гамма-амино-масляной кислоты. ТПСП может развиваться и под действием медиа­торов, вызывающих ВПСП, но в этих случаях медиатор вызывает пе­реход постсинаптической мембраны в состояние гиперполяризации.


Для распространения возбуждения через химический синапс важ­но, что нервный импульс, идущий по пресинаптической части, полностью гасится в синаптической щели. Однако нервный импульс вызывает физиологические изменения в пресинаптической части мембраны. В результате у ее поверхности скапливаются синапти-ческие пузырьки, изливающие медиатор в синаптическую щель.


Переход медиатора в синаптическую щель осуществляется путем экзоцитоза: пузырек с медиатором соприкасается и сливается с пресинаптической мембраной, затем открывается выход в синапти­ческую щель и в нее попадает медиатор. В покое медиатор попадает в синаптическую щель постоянно, но в малом количестве. Под влиянием пришедшего возбуждения количество медиатора резко возрастает. Затем медиатор перемещается к постсинаптической мем­бране, действует на специфические для него рецепторы и образует на мембране комплекс медиатор—рецептор. Данный комплекс из­меняет проницаемость мембраны для ионов К+
и Na+
, в результате чего изменяется ее потенциал покоя.


В зависимости от природы медиатора потенциал покоя мембраны может снижаться (деполяризация), что характерно для возбуждения, или повышаться (гиперполяризация), что типично для торможения. Величина ВПСП зависит от количества выделившегося медиатора и может составлять 0,12—5,0 мВ. Под влиянием ВПСП деполяри­зуются соседние с синапсом участки мембраны, затем деполяризация достигает аксонного холмика нейрона, где возникает возбуждение, распространяющееся на аксон.


В тормозных синапсах этот процесс развивается следующим обра­зом: аксонное окончание синапса деполяризуется, что приводит к по­явлению слабых электрических токов, вызывающих мобилизацию и


выделение в синаптическую щель специфического тормозного медиа­тора. Он изменяет ионную проницаемость постсинаптической мемб­раны таким образом, что в ней открываются поры диаметром около 0,5 нм. Эти поры не пропускают ионы Na(что вызвало бы деполяриза­цию мембраны), но пропускают ионы К из клетки наружу, в резуль­тате чего происходит гиперполяризация постсинаптической мембраны.


Такое изменение потенциала мембраны вызывает развитие ТПСП. Его появление связывают с выделением в синаптическую щель специфического медиатора. В синапсах разных нервных структур роль тормозного медиатора могут выполнять различные вещества. В ганг­лиях моллюсков роль тормозного медиатора выполняет ацетилхолин, в ЦНС высших животных — гамма-аминомасляная кислота, глицин.


Нервно-мышечные синапсы
обеспечивают проведение возбужде­ния с нервного волокна на мышечное благодаря медиатору ацетил-холину, который при возбуждении нервного окончания переходит в синаптическую щель и действует на концевую пластинку мышеч­ного волокна. Следовательно, как и межнейронный синапс,
нерв­но-мышечный синапс имеет пресинаптическую часть, принадлежа­щую нервному окончанию, синаптическую щель, постсинаптическую часть (концевая пластинка), принадлежащую мышечному волокну.


В пресинаптической терминали образуется и скапливается в виде пузырьков ацетилхолин. При возбуждении электрическим импуль­сом, идущим по аксону, пресинаптической части синапса ее мемб­рана становится проницаемой для ацетилхолина.


Эта проницаемость возможна благодаря тому, что в результате деполяризации пресинаптической мембраны открываются ее каль­циевые каналы. Ион Са2+
входит в пресинаптическую часть синапса из синаптической щели. Ацетилхолин высвобождается и проникает в синаптическую щель. Здесь он взаимодействует со своими рецеп­торами постсинаптической мембраны, принадлежащей мышечному волокну. Рецепторы, возбуждаясь, открывают белковый канал, встроенный в липидный слой мембраны. Через открытый канал внутрь мышечной клетки проникают ионы Na+
, что приводит к деполяризации мембраны мышечной клетки, в результате развива­ется так называемый потенциал концевой пластинки (ПКП). Он вызывает генерацию потенциала действия мышечного волокна.


Нервно-мышечный синапс передает возбуждение в одном на­правлении: от нервного окончания к постсинаптической мембране мышечного волокна, что обусловлено наличием химического звена в механизме нервно-мышечной передачи.


Скорость проведения возбуждения через синапс намного меньше, чем по нервному волокну, так как здесь тратится время на активацию пресинаптической мембраны, переход через нее кальция, выделение ацетилхолина в синаптическую щель, деполяризацию постсинапти­ческой мембраны, развитие ПКП.


Синаптическая передача возбуждения имеет ряд свойств:


1) наличие медиатора в пресинаптической части синапса;


2) относительная медиаторная специфичность синапса, т. е. каж­ дый синапс имеет свой доминирующий медиатор;


3) переход постсинаптической мембраны под влиянием медиа­торов в состояние де- или гиперполяризации;


4) возможность действия специфических блокирующих агентов на рецептирующие структуры постсинаптической мембраны;


5) увеличение длительности постсинаптического потенциала мембраны при подавлении действия ферментов, разрушающих си-наптической медиатор;


6) развитие в постсинаптической мембране ПСП из миниатюр­ных потенциалов, обусловленных квантами медиатора;


7) зависимость длительности активной фазы действия медиатора в синапсе от свойств медиатора;


8) односторонность проведения возбуждения;


9) наличие хемочувствительных рецепторуправляемых каналов постсинаптической мембраны;


10) увеличение выделения квантов медиатора в синаптичес­кую щель пропорционально частоте приходящих по аксону им­пульсов;


11) зависимость увеличения эффективности синаптической передачи от частоты использования синапса («эффект трениров­ки»);


12) утомляемость синапса, развивающаяся в результате длитель­ного высокочастотного его стимулирования. В этом случае утомление может быть обусловлено истощением и несвоевременным синтезом медиатора в пресинаптической части синапса или глубокой, стойкой деполяризацией постсинаптической мембраны (пессимальное тормо­жение) .


Перечисленные свойства относятся к химическим синапсам. Элек­трические синапсы имеют некоторые особенности, а именно: малую задержку проведения возбуждения; возникновение деполяризации как в пре-, так и в постсинаптической частях синапса; наличие большей площади синаптической щели в электрическом синапсе, чем в химическом.


Синаптические медиаторы являются веществами, которые имеют специфические инактиваторы. Например, ацетилхолин инактивиру-ется ацетилхолинэстеразой, норадреналин — моноаминоксидазой, катехолометилтрансферазой.


Неиспользованный медиатор и его фрагменты всасываются об­ратно в пресинаптическую часть синапса.


Ряд химических веществ крови и постсинаптической мембраны изменяет состояние синапса, делает его неактивным. Так, простаг-ландины тормозят секрецию медиатора в синапсе. Другие вещества, называемые блокаторами хеморецепторных каналов, прекращают передачу в синапсах. Например, ботулинический токсин, марганец блокируют секрецию медиатора в нервно-мышечном синапсе, в тор­мозящих синапсах ЦНС. Тубокурарин, атропин, стрихнин, пени­циллин, пикротоксин и др. блокируют рецепторы в синапсе, в результате чего медиатор, попав в синаптическую щель, не находит своего рецептора.


В то же время выделены вещества, которые блокируют системы,


разрушающие медиаторы. К ним относят эзерин, фосфорорганиче-ские соединения.


В нервно-мышечном синапсе в норме ацетилхолин действует на синаптическую мембрану короткое время (1—2 мс), так как сразу же начинает разрушаться ацетилхолинэстеразой. В случаях, когда этого не происходит и ацетилхолин не разрушается на протяжении сотни миллисекунд, его действие на мембрану прекращается и воз­буждение через этот синапс блокируется.


Блокада нервно-мышечной передачи может быть вызвана следу­ющими способами:


1) действие местноанестезирующих веществ, которые блокируют возбуждение в пресинаптической части;


2) блокада высвобождения медиатора в пресинаптической части (например, ботулинический токсин);


3) нарушение синтеза медиатора, например при действии геми-холиния;


4) блокада рецепторов ацетилхолина, например при действии бунгаротоксина;


5) вытеснение ацетилхолина из рецепторов, например действие кураре;


6) инактивация постсинаптической мембраны сукцинилхолином, декаметонием и др.;


7) угнетение холинэстеразы, что приводит к длительному сохра­нению ацетилхолина и вызывает глубокую деполяризацию и инак­тивацию рецепторов синапсов. Такой эффект наблюдается при дей­ствии фосфорорганических соединений.


Специально для снижения тонуса мышц, особенно при опера­циях, используют блокаду нервно-мышечной передачи миорелак-сантами; деполяризующие мышечные релаксанты действуют на рецепторы субсинаптической мембраны (сукцинилхолин и др.), недеполяризующие мышечные релаксанты, устраняющие действие ацетилхолина на мембрану по конкуренции (препараты группы кураре).


2.4. ФИЗИОЛОГИЯ МЫШЕЧНОЙ ТКАНИ1


Перемещение тела в пространстве, поддержание определенной позы, работа сердца и сосудов и пищеварительного тракта у человека и позвоночных животных осуществляются мышцами двух основных типов: поперечнополосатыми (скелетной, сердечной) и гладкими, которые отличаются друг от друга клеточной и тканевой организацией, иннервацией и в определенной степени механизмами функционирования. В то же время в молекулярных механизмах мышечного сокращения между этими типами мышц есть много общего.


2.4.1.
Скелетные мышцы


2.4.1.1. Классификация скелетных мышечных волокон


Скелетная мускулатура человека и позвоночных животных со­стоит из мышечных волокон нескольких типов, отличающихся друг от друга структурно-функциональными характеристиками. В насто­ящее время выделяют четыре основных типа мышечных волокон.


Медленные фазические волокна окислительного типа.
Волокна этого типа характеризуются большим содержанием белка миогло-бина, который способен связывать O2
(близок по своим свойствам к гемоглобину). Мышцы, которые преимущественно состоят из во­локон этого типа, за их темно-красный цвет называют красными. Они выполняют очень важную функцию поддержания позы человека и животных. Предельное утомление у волокон данного типа и, следовательно, мышц наступает очень медленно, что обусловлено наличием миоглобина и большого числа митохондрий. Восстанов­ление функции после утомления происходит быстро. Нейромоторные единицы этих мышц состоят из большого числа мышечных волокон.


Быстрые фазические волокна окислительного типа.
Мышцы, которые преимущественно состоят из волокон этого типа, выполняют быстрые сокращения без заметного утомления, что объясняется боль­шим количеством митохондрий в этих волокнах и способностью образовывать АТФ путем окислительного фосфорилирования. Как правило, число волокон, входящих в состав нейромоторной единицы, в этих мышцах меньше, чем в предыдущей группе. Основное на­значение мышечных волокон данного типа заключается в выпол­нении быстрых, энергичных движений.


Быстрые фазические волокна с гликолитическим типом окис­ления.
Волокна данного типа характеризуются тем, что АТФ в них образуется за счет гликолиза. Волокна этой группы содержат ми­тохондрий меньше, чем волокна предыдущей группы. Мышцы, со­держащие эти волокна, развивают быстрое и сильное сокращение, но сравнительно быстро утомляются. Миоглобин в данной группе мышечных волокон отсутствует, вследствие чего мышцы, состоящие из волокон этого типа, называют белыми.


Для мышечных волокон всех перечисленных групп характерно наличие одной, в крайнем случае нескольких концевых пластинок, образованных одним двигательным аксоном.


Тонические волокна.
В отличие от предыдущих мышечных волокон в тонических волокнах двигательный аксон образует множество си-наптических контактов с мембраной мышечного волокна. Развитие со­кращения происходит медленно, что обусловлено низкой активностью ми-озиновой АТФазы. Также медленно происходит и расслабление. Мы­шечные волокна данного типа эффективно работают в изометрическом режиме. Эти мышечные волокна не генерируют потенциал действия и не подчиняются закону «все или ничего». Одиночный пресинаптиче-ский импульс вызывает незначительное сокращение. Серия импуль­сов вызовет суммацию постсинаптического потенциала и плавно воз-


растающую деполяризацию мышечного волокна. У человека мышеч­ные волокна этого типа входят в состав наружных мышц глаза.


Между структурой и функцией мышечных волокон существует тесная связь. Показано, что быстрые фазические волокна имеют вы­соко развитую саркоплазматическую сеть и обширную сеть Т-систе-мы, в то же время медленные волокна имеют менее развитые саркоп­лазматическую сеть и сеть Т-системы. Кроме того, существует разли­чие в активности кальциевых насосов саркоплазматической сети: в быстрых волокнах она значительно выше, что позволяет этим мышеч­ным волокнам быстро расслабляться. Большинство скелетных мышц человека состоит из мышечных волокон различных типов с преобла­данием одного из типов в зависимости от функций, которые выполня­ет та или иная мышцы.


Мышечные волокна не являются функциональной единицей ске­летной мускулатуры. Эту роль выполняет нейромоторная,
или двигательная, единица,
которая включает мотонейрон и группу мышечных волокон, иннервируемых разветвлениями аксона этого мотонейрона, расположенного в ЦНС. Число мышечных волокон, входящих в состав двигательной единицы, различно (табл. 2.5) и зависит от функции, которую выполняет мышца в целом.


В мышцах, обеспечивающих наиболее точные и быстрые движе­ния, двигательная единица состоит из нескольких мышечных воло­кон, в то время как в мышцах, участвующих в поддержании позы, двигательные единицы включают несколько сотен и даже тысяч мышечных волокон.


Величина потенциала покоя мышечных волокон составляет при­мерно — 90 мВ, потенциала действия — 120—130 мВ. Длительность потенциала действия 1 —3 мс, величина критического потенциала — 50 мВ.


2.4.1.2. Функции и свойства скелетных мышц


Скелетная мускулатура является составной частью опорно-дви­гательного аппарата человека. При этом мышцы выполняют следу­ющие функции:


1) обеспечивают определенную позу тела человека;


2) перемещают тело в пространстве;


3) перемещают отдельные части тела относительно друг друга;


4) являются источником тепла, выполняя терморегуляционную функцию.


В настоящей главе мы рассмотрим функциональные свойства мышц, связанные с участием в работе опорно-двигательного аппарата. Скелетная мышца обладает следующими важнейшими свойствами:


1) возбудимостью
— способностью отвечать на действие раз­дражителя изменением ионной проводимости и мембранного потен­циала. В естественных условиях этим раздражителем является ме­диатор ацетилхолин, который выделяется в пресинаптических окон­чаниях аксонов мотонейронов. В лабораторных условиях часто используют электрическую стимуляцию мышцы. При электрической стимуляции мышцы первоначально возбуждаются нервные волокна, которые выделяют ацетилхолин, т. е. в данном случае наблюдается непрямое раздражение мышцы. Это обусловлено тем, что возбуди­мость нервных волокон выше мышечных. Для прямого раздражения мышцы необходимо применять миорелаксанты — вещества, блоки­рующие передачу нервного импульса через нервно-мышечный си­напс;


2) проводимостью
— способностью проводить потенциал дейст­вия вдоль и в глубь мышечного волокна по Т-системе;


3) сократимостью
— способностью укорачиваться или разви­вать напряжение при возбуждении;


4) эластичностью
— способностью развивать напряжение при растягивании.


2.4.1.3. Механизм мышечного сокращения


Скелетная мышца представляет собой сложную систему, преоб­разующую химическую энергию в механическую работу и тепло. В настоящее время хорошо исследованы молекулярные механизмы этого преобразования.


Структурная организация мышечного волокна. Мышечное во­локно является многоядерной структурой, окруженной мембраной и содержащей специализированный сократительный аппарат — ми-офибриллы.
Кроме этого, важнейшими компонентами мышечного волокна являются митохондрии,
системы продольных трубочек — саркоплазматическая сеть
(ретикулум) и система поперечных тру­бочек — Т-система.
Функциональной единицей сократительного аппарата мышечной клетки является саркомер (рис. 2.20,А); из саркомеров состоит миофибрилла. Саркомеры отделяются друг от друга Z-пластинками. Саркомеры в миофибрилле расположены по­следовательно, поэтому сокращение саркомеров вызывает сокраще­ние миофибриллы и общее укорочение мышечного волокна.


Изучение структуры мышечных волокон в световом микроскопе позволило выявить их поперечную исчерченность. Электронно-мик­роскопические исследования показали, что поперечная исчерчен­ность обусловлена особой организацией сократительных белков ми-офибрилл — актина
(молекулярная масса 42 000) и миозина
(мо-


лекулярная масса около 500 000). Актиновые филаменты представ­лены двойной нитью, закрученной в двойную спираль с шагом около 36,5 нм. Эти филаменты длиной 1 мкм и диаметром 6—8 нм, количество которых достигает около 2000, одним концом прикреп­лены к Z-пластинке. В продольных бороздках актиновой спирали располагаются нитевидные молекулы белка тропомиозина. С
шагом, равным 40 нм, к молекуле тропомиозина прикреплена молекула другого белка — тропонина.
Тропонин и тропомиозин играют важ­ную роль в механизмах взаимодействия актина и миозина. В сере­дине саркомера между нитями актина располагаются толстые нити миозина длиной около 1,6 мкм. В поляризационном микроскопе эта область видна в виде полоски темного цвета (вследствие двойного лучепреломления) — анизотропный А-диск. В центре его видна более свеглая полоска Н. В ней в состоянии покоя нет актиновых нитей. По обе стороны А-диска видны светлые изотропные полоски — I-диски, образованные нитями актина. В состоянии покоя нити актина и миозина незначительно перекрывают друг друга таким образом, что общая длина саркомера составляет около 2,5 мкм. При электронной микроскопии в центре Н-полоски обнаружена М-ли-ния — структура, которая удерживает нити миозина. На поперечном срезе мышечного волокна можно увидеть гексагональную органи­зацию миофиламента: каждая нить миозина окружена шестью ни­тями актина (рис. 2.20, Б).


При электронной микроскопии видно, что на боковых сторонах миозиновой нити обнаруживаются выступы, получившие название поперечных мостиков. Они ориентированы по отношению к оси миозиновой нити под углом 120°. Согласно современным представ­лениям, поперечный мостик состоит из головки и шейки. Головка приобретает выраженную АТФазную активность при связывании с актином. Шейка обладает эластическими свойствами и представляет собой шарнирное соединение, поэтому головка поперечного мостика может поворачиваться вокруг своей оси.


Использование микроэлектродной техники в сочетании с интер­ференционной микроскопией позволило установить, что нанесение электрического раздражения на область Z-пластинки приводит к сокращению саркомера, при этом размер зоны диска А не изменяется, а величина полосок Н и Iуменьшается. Эти наблюдения свиде­тельствовали о том, что длина миозиновых нитей не изменяется. Аналогичные результаты были получены при растяжении мышцы — собственная длина актиновых и миозиновых нитей не изменялась. В результате этих экспериментов выяснилось, что изменялась об­ласть взаимного перекрытия актиновых и миозиновых нитей. Эти факты позволили Н. Huxleyи A. Huxleyпредложить независимо друг от друга теорию скольжения нитей
для объяснения механизма мышечного сокращения. Согласно этой теории, при сокращении происходит уменьшение размера саркомера вследствие активного перемещения тонких актиновых нитей относительно толстых мио­зиновых. В настоящее время выяснены многие детали этого меха­низма и теория получила экспериментальное подтверждение.


Механизм мышечного сокращения. В
процессе сокращения мы­шечного волокна в нем происходят следующие преобразования: А. Электрохимическое преобразование:


1. Генерация ПД.


2. Распространение ПД по Т-системе.


3. Электрическая стимуляция зоны контакта Т-системы и сар- коплазматического ретикулума, активация ферментов, образование инозитолтрифосфата, повышение внутриклеточной концентрации ионов Са2+
.


Б. Хемомеханическое преобразование:


4. Взаимодействие ионов Са2+
с тропонином, освобождение ак­тивных центров на актиновых филаментах.


5. Взаимодействие миозиновой головки с актином, вращение го­ловки и развитие эластической тяги.


6. Скольжение нитей актина и миозина относительно друг друга, уменьшение размера саркомера, развитие напряжения или укоро­чение мышечного волокна.


Передача возбуждения с двигательного мотонейрона на мышечное волокно происходит с помощью медиатора ацетилхолина (АХ). Вза­имодействие АХ с холинорецептором концевой пластинки приводит к активации АХ-чувствительных каналов и появлению потенциала концевой пластинки, который может достигать 60 мВ. При этом область концевой пластинки становится источником раздражающего тока для мембраны мышечного волокна и на участках клеточной мембраны, прилегающих к концевой пластинке, возникает ПД, который распространяется в обе стороны со скоростью примерно 3—5 м/с при температуре 36 °С. Таким образом, генерация ПД является первым этапом мышечного сокращения.


Вторым этапом является распространение ПД внутрь мы­шечного волокна по поперечной системе трубочек, которая служит связующим звеном между поверхностной мембраной и сократитель­ным аппаратом мышечного волокна. Т-система тесно контактирует с терминальными цистернами саркоплазматической сети двух со­седних саркомеров. Электрическая стимуляция места контакта при­водит к активации ферментов, расположенных в месте контакта и образованию инозитолтрифосфата. Инозитолтрифосфат активирует кальциевые каналы мембран терминальных цистерн, что приводит к выходу ионов Са2+
из цистерн и повышению внутриклеточной концентрации Са2+
с 10~7
до 10~s
M. Совокупность процессов, при­водящих к повышению внутриклеточной концентрации Са2+
состав­ляет сущность третьего этапа мышечного сокращения. Таким образом, на первых этапах происходит преобразование электриче­ского сигнала ПД в химический — повышение внутриклеточной концентрации Са2+
, т. е. электрохимическое преобразование.


При повышении внутриклеточной концентрации ионов Са2+
тро-помиозин смещается в желобок между нитями актина, при этом на актиновых нитях открываются участки, с которыми могут взаимо­действовать поперечные мостики миозина. Это смещение тропоми-озина обусловлено изменением конформации молекулы белка тро-


понина при связывании Са2+
. Следовательно, участие ионов Са2+
в механизме взаимодействия актина и миозина опосредовано через тропонин и тропомиозин.


Существенная роль кальция в механизме мышечного сокращения была доказана в опытах с применением белка экворина, который при взаимодействии с кальцием излучает свет. После инъекции экворина мышечное волокно подвергали электрической стимуляции и одновременно измеряли мышечное напряжение в изометрическом режиме и люминесценцию экворина. Обе кривые полностью кор­релировали друг с другом (рис. 2.21). Таким образом, четвертым этапом электромеханического сопряжения является взаимодейст­вие кальция с тропонином.


Следующим, пятым, этапом электромеханического сопря­жения является присоединение головки поперечного мостика к ак-тиновому филаменту к первому из нескольких последовательно расположенных стабильных центров. При этом миозиновая головка поворачивается вокруг своей оси, поскольку имеет несколько ак­тивных центров, которые последовательно взаимодействуют с соот­ветствующими центрами на актиновом филаменте. Вращение голов­ки приводит к увеличению упругой эластической тяги шейки по­перечного мостика и увеличению напряжения. В каждый конкретный момент в процессе развития сокращения одна часть головок попе­речных мостиков находится в соединении с актиновым филаментом, другая свободна, т. е. существует последовательность их взаимо­действия с актиновым филаментом. Это обеспечивает плавность процесса сокращения. На четвертом и пятом этапах происходит хемомеханическое преобразование.


Последовательная реакция соединения и разъединения головок поперечных мостиков с актиновым филаментом приводит к сколь­жению тонких и толстых нитей относительно друг друга и умень­шению размеров саркомера и общей длины мышцы, что является


шестым этапом. Совокупность описанных процессов составляет сущность теории скольжения нитей (рис. 2.22).


Первоначально полагали, что ионы Са2+
служат кофактором АТФазной активности миозина. Дальнейшие исследования опровер­гли это предположение. У покоящейся мышцы актин и миозин практически не обладают АТФазной активностью. Присоединение головки миозина к актину приводит к тому, что головка приобретает АТФазную активность.


Гидролиз АТФ в АТФазном центре головки миозина сопро­вождается изменением конформации последней и переводом ее в новое, высокоэнергетическое состояние. Повторное присоединение миозиновой головки к новому центру на актиновом филаменте вновь приводит к вращению головки, которое обеспечивается за­пасенной в ней энергией. В каждом цикле соединения и разъ­единения головки миозина с актином расщепляется одна молекула АТФ на каждый мостик. Быстрота вращения определяется скоро­стью расщепления АТФ. Очевидно, что быстрые фазические во­локна потребляют значительно больше АТФ в единицу времени и сохраняют меньше химической энергии во время тонической нагрузки, чем медленные волокна. Таким образом, в процессе хемомеханического преобразования АТФ обеспечивает разъедине­ние головки миозина и актинового филамента и энергетику для дальнейшего взаимодействия головки миозина с другим участком


актинового филамента. Эти реакции возможны при концентрации кальция выше 10~6
М.


Описанные механизмы укорочения мышечного волокна позволяют предположить, что для расслабления в первую очередь необходимо по­нижение концентрации ионов Са +
. Экспериментально было доказа­но, что саркоплазматическая сеть имеет специальный механизм — кальциевый насос, который активно возвращает кальций в цистерны. Активация кальциевого насоса осуществляется неорганическим фос­фатом, который образуется при гидролизе АТФ, а энергообеспечение работы кальциевого насоса также за счет энергии, образующейся при гидролизе АТФ. Таким образом, АТФ является вторым важнейшим фактором, абсолютно необходимым для процесса расслабления. Неко­торое время после смерти мышцы остаются мягкими вследствие пре­кращения тонического влияния мотонейронов (см. главу 4). Затем концентрация АТФ снижается ниже критического уровня и возмож­ность разъединения головки миозина с актиновым филаментом исче­зает. Возникает явление трупного окоченения с выраженной ригидно­стью скелетных мышц.


2.4.1.4. Режимы мышечного сокращения


Сократительная способность скелетной мышцы харак­теризуется силой сокращения, которую развивает мышца (обычно оценивают общую силу,
которую может развивать мышца, и абсолютную,
т. е. силу, приходящуюся на 1 см2
поперечного сечения).длиной укорочения, степенью напряжения мышечного волокна, скоростью укорочения и раз­вития напряжения, скоростью расслабления. По­скольку эти параметры в большой степени определяются исходной длиной мышечных волокон и нагрузкой на мышцу, исследования сократительной способности мышцы производят в различных режи­мах.


Раздражение мышечного волокна одиночным пороговым или сверхпороговым стимулом приводит к возникновению одиночного со­кращения, которое состоит из нескольких периодов (рис. 2.23). Пер­вый — латентный период представляет собой сумму временных задержек, обусловленных возбуждением мембраны мышечного волок­на, распространением ПД по Т-системе внутрь волокна, образованием


инозитолтрифосфата, повышением концентрации внутриклеточного кальция и активации поперечных мостиков. Для портняжной мышцы лягушки латентный период составляет около 2 мс.


Второй — период укорочения, или развития напря­жения. В случае свободного укорочения мышечного волокна говорят об изотоническом режиме сокращения,
при котором напряжение практически не изменяется, а меняется только длина мышечного во­локна. Если мышечное волокно закреплено с двух сторон и не может свободно укорачиваться, то говорят об изометрическом режиме со­кращения.
Строго говоря, при данном режиме сокращения длина мы­шечного волокна не изменяется, в то время как размеры саркомеров меняются за счет скольжения нитей актина и миозина относительно друг друга. В этом случае возникающее напряжение передается на эластические элементы, расположенные внутри волокна. Эластиче­скими свойствами обладают поперечные мостики миозиновых нитей, актиновые нити, Z-пластинки, продольно расположенная саркоплаз-матическая сеть и сарколемма мышечного волокна.


В опытах на изолированной мышце выявляется растяжение со­единительнотканных элементов мышцы и сухожилий, которым пе­редается напряжение, развиваемое поперечными мостиками.


В организме человека в изолированном виде изотонического или изометрического сокращения не происходит. Как правило, развитие напряжения сопровождается укорочением длины мышцы — ауксо-тонический режим сокращения.


Третий — период расслабления, когда уменьшается кон­центрация ионов Са2+
и отсоединяются головки миозина от акти-новых филаментов.


Полагают, что для одиночного мышечного волокна напряжение, развиваемое любым саркомером, равно напряжению в любом другом саркомере. Поскольку саркомеры соединены последовательно, ско-


рость, с которой происходит сокращение мышечного волокна, про­порциональна числу его саркомеров. Таким образом при одиночном сокращении скорость укорочения длинного мышечного волокна вы­ше, чем у более короткого. Величина усилия, развиваемого мышеч­ным волокном, пропорциональна числу миофибрилл в волокне. При мышечной тренировке число миофибрилл увеличивается, что явля­ется морфологическим субстратом увеличения силы сокращения мышц. Одновременно увеличивается и число митохондрий, повы­шающих выносливость мышечного волокна при физической на­грузке.


В изолированной мышце величина и скорость одиночного сокра­щения определяются рядом дополнительных факторов. Величина одиночного сокращения в первую очередь будет определяться числом двигательных единиц, участвующих в сокращении. Поскольку мыш­цы состоят из мышечных волокон с различным уровнем возбуди­мости, имеется определенная зависимость между величиной стимула и ответной реакцией. Увеличение силы сокращения возможно до определенного предела, после которого амплитуда сокращения ос­тается неизменной при увеличении амплитуды стимула. При этом все мышечные волокна, входящие в состав мышцы, принимают участие в сокращении.


Важность участия всех мышечных волокон в сокращении пока­зана при изучении зависимости скорости укорочения от величины нагрузки. График зависимости скорости сокращения от величины нагрузки приближается к гиперболе (рис. 2.24). Поскольку сила сокращения эквивалентна нагрузке, становится понятным, что мак­симальная сила, которая может быть развита мышцей, приходится на очень малые скорости. Штангист может «взять рекордный вес» только при медленных движениях. Напротив, быстрые движения возможны при слабонагруженных мышцах.


Изменение силы сокращения наблюдают при ритмической сти­муляции скелетных мышц.


На рис. 2.25 показаны варианты стимуляции мышцы двумя стимулами. Если второй стимул действует в период рефрактерности мышечного волокна, то он не вызовет повторного мышечного со­кращения (рис. 2.25, А). Если же второй стимул действует на мышцу после окончания периода расслабления, то вновь возникает одиноч­ное мышечное сокращение (рис. 2.25, Б).


При нанесении второго стимула в период укорочения или раз­вития мышечного напряжения происходит суммация двух следую­щих друг за другом сокращений и результирующий ответ по амп­литуде становится значительно выше, чем при одиночном стимуле; если мышечное волокно или мышцу стимулировать с такой частотой, что повторные стимулы будут приходиться на период укорочения, или развития напряжения, то происходит полная суммация единич­ных сокращений и развивается гладкий тетанус
(рис. 2.25, В). Тетанус — сильное и длительное сокращение мышцы. Полагают, что в основе этого явления лежит повышение концентрации кальция внутри клетки, что позволяет осуществляться реакции взаимодей-


ствия актина и миозина и генерации мышечной силы поперечными мостиками достаточно длительное время. При уменьшении частоты стимуляции возможен вариант, когда повторный стимул наносят в период расслабления. В этом случае также возникнет суммация мышечных сокращений, однако будет наблюдаться характерное за-падение на кривой мышечного сокращения (рис. 2.25, Г) — неполная суммация, или зубчатый тетанус.


При тетанусе происходит суммация мышечных сокращений, в то время как ПД мышечных волокон не суммируются.


В естественных условиях одиночные сокращения скелетных мышц не встречаются. Происходит сложение, или суперпозиция,
сокраще­ний отдельных нейромоторных единиц. При этом сила сокращения может увеличиваться как за счет изменения числа двигательных единиц, участвующих в сокращении, так и за счет изменения частоты импульсации мотонейронов. В случае увеличения частоты импульсации будет наблюдаться суммация сокращений отдельных двигательных единиц.


Одной из причин увеличения силы сокращения в естественных условиях является частота импульсов, генерируемых мотонейрона­ми. Второй причиной этого служат увеличение числа возбуждаю­щихся мотонейронов и синхронизация частоты их возбуждения. Рост числа мотонейронов соответствует увеличению количества дви­гательных единиц, участвующих в сокращении, а возрастание сте­пени синхронизации их возбуждения способствует увеличению ам­плитуды при суперпозиции максимального сокращения, развивае­мого каждой двигательной единицей в отдельности.


Сила сокращения изолированной скелетной мышцы при прочих равных условиях зависит от исходной длины мышцы. Умеренное растяжение мышцы приводит к тому, что развиваемая ею сила возрастает по сравнению с силой, развиваемой нерастянутой мыш­цей. Происходит суммирование пассивного напряжения, обуслов­ленного наличием эластических компонентов мышцы, и активного сокращения. Максимальная сила сокращения достигается при раз­мере саркомера 2—2,2 мкм (рис. 2.26). Увеличение длины саркомера приводит к уменьшению силы сокращения, поскольку уменьшается область взаимного перекрытия актиновых и миозиновых нитей. При


длине саркомера 2,9 мкм мышца может развивать силу, равную только 50% от максимально возможной.


В естественных условиях сила сокращения скелетных мышц при их растяжении, например при массаже, увеличивается вследствие работы гамма-эфферентов.


2.4.1.5. Работа и мощность мышцы


Поскольку основной задачей скелетной мускулатуры является совершение мышечной работы, в экспериментальной и клинической физиологии оценивают величину работы, которую совершает мыш­ца, и мощность, развиваемую ею при работе.


Согласно законам физики, работа есть энергия, затрачиваемая на перемещение тела с определенной силой на определенное рас­стояние: А = F*S. Если сокращение мышцы совершается без нагрузки (в изотоническом режиме), то механическая работа равна нулю. Если при максимальной нагрузке не происходит укорочения мышцы (изометрический режим), то работа также равна нулю. В этом случае химическая энергия полностью переходит в тепловую.


Согласно закону средних нагрузок, мышца может совершать максимальную работу при нагрузках средней величины.


При сокращении скелетной мускулатуры в естественных условиях преимущественно в режиме изометрического сокращения, например при фиксированной позе, говорят о статической работе,
при со­вершении движений — о динамической.


Сила сокращения и работа, совершаемая мышцей в единицу вре­мени (мощность), не остаются постоянными при статической и дина­мической работе. В результате продолжительной деятельности рабо­тоспособность скелетной мускулатуры понижается. Это явление назы­вается утомлением.
При этом снижается сила сокращений, увеличиваются латентный период сокращения и период расслабления.


Статический режим работы более утомителен, чем динамический. Утомление изолированной скелетной мышцы обусловлено прежде всего тем, что в процессе совершения работы в мышечных волокнах накапливаются продукты процессов окисления — молочная и пирови-ноградная кислоты, которые снижают возможность генерирования ПД. Кроме того, нарушаются процессы ресинтеза АТФ и креатинфос-фата, необходимых для энергообеспечения мышечного сокращения. В естественных условиях мышечное утомление при статической рабо­те в основном определяется неадекватным регионарным кровотоком. Если сила сокращения в изометрическом режиме составляет более 15% от максимально возможной, то возникает кислородное «голода­ние» и мышечное утомление прогрессивно нарастает.


В реальных условиях необходимо учитывать состояние ЦНС — снижение силы сокращений сопровождается уменьшением частоты импульсации нейронов, обусловленное как их прямым угнетением, так и механизмами центрального торможения. Еще в 1903 г. И. М. Сеченов показал, что восстановление работоспособности утомленных мышц одной руки значительно ускоряется при совер-


тении работы другой рукой в период отдыха первой. В отличие от простого отдыха такой отдых называют активным.


Работоспособность скелетной мускулатуры и скорость развития утомления зависят от уровня умственной деятельности: высокий уро­вень умственного напряжения уменьшает мышечную выносливость.


2.4.1.6. Энергетика мышечного сокращения


В динамическом режиме работоспособность мышцы определяется скоростью расщепления и ресинтеза АТФ. При этом скорость рас­щепления АТФ может увеличиваться в 100 раз и более. Ресинтез АТФ может обеспечиваться за счет окислительного расщепления глюкозы. Действительно, при умеренных нагрузках ресинтез АТФ обеспечивается повышенным потреблением мышцами глюкозы и кислорода. Это сопровождается увеличением кровотока через мышцы примерно в 20 раз, увеличением минутного объема сердца и дыхания в 2—3 раза. У тренированных лиц (например, спортсмена) большую роль в обеспечении повышенной потребности организма в энергии играет повышение активности митохондриальных ферментов.


При максимальной физической нагрузке происходит дополнитель­ное расщепление глюкозы путем анаэробного гликолиза. Во время этих процессов ресинтез АТФ осуществляется в несколько раз быстрее и механическая работа, производимая мышцами также больше, чем при аэробном окислении. Предельное время для такого рода работы составляет около 30 с, после чего возникает накопление молочной кис­лоты, т. е. метаболический ацидоз, и развивается утомление.


Анаэробный гликолиз имеет место и в начале длительной фи­зической работы, пока не увеличится скорость окислительного фос-форилирования таким образом, чтобы ресинтез АТФ вновь сравнялся с его распадом. После метаболической перестройки спортсмен об­ретает как бы второе дыхание. Подробные схемы метаболических процессов приведены в руководствах по биохимии.


2.4.1.7. Теплообразование при мышечном сокращении


Согласно первому закону термодинамики, общая энергия системы и ее окружения должна оставаться постоянной.


Скелетная мышца превращает химическую энергию в механиче­скую работу с выделением тепла. А. Хиллом было установлено, что все теплообразование можно разделить на несколько компонентов:


1. Теплота активации
— быстрое выделение тепла на ранних этапах мышечного сокращения, когда отсутствуют видимые призна­ки укорочения или развития напряжения. Теплообразование на этой стадии обусловлено выходом ионов Са2+
из триад и соединением их с тропонином.


2. Теплота укорочения
— выделение тепла при совершении работы, если речь идет не об изометрическом режиме. При этом, чем больше совершается механической работы, тем больше выде­ляется тепла.


3. Теплота расслабления
— выделение тепла упругими элемен­тами мышцы при расслаблении. При этом выделение тепла не связано непосредственно с процессами метаболизма.


Как отмечалось ранее, нагрузка определяет скорость укорочения. Оказалось, что при большой скорости укорочения количество вы­деляющегося тепла мало, а при малой скорости велико, так как количество выделяющегося тепла пропорционально нагрузке (закон Хилла для изотонического режима сокращения).


2.4.1.8. Скелетно-мышечное взаимодействие


При совершении работы развиваемое мышцей усилие передается на внешний объект с помощью сухожилий, прикрепленных к костям скелета. В любом случае нагрузка преодолевается за счет вращения одной части скелета относительно другой вокруг оси вращения.


Передача мышечного сокращения на кости скелета происходит при участии сухожилий, которые обладают высокой эластичностью и растяжимостью. В случае сокращения мышцы происходит растя­жение сухожилий и кинетическая энергия, развиваемая мышцей, переходит в потенциальную энергию растянутого сухожилия. Эта энергия используется при таких формах движения как ходьба, бег, т. е. когда происходит отрыв пятки от поверхности земли.


Скорость и сила, с которой одна часть тела перемещается относительно другой, зависят от длины рычага, т. е. взаимного расположения точек прикрепления мышц и оси вращения, а также от длины, силы мышцы и величины нагрузки. В зависимости от функции, которую выполняет конкретная мышца, возможно пре­валирование скоростных или силовых качеств. Как уже указыва­лось в разделе 2.4.1.4,
чем длиннее мышца, тем выше скорость ее укорочения. При этом большую роль играет параллельное


расположение мышечных волокон относительно друг друга. В этом случае физиологическое поперечное сечение соответствует геомет­рическому (рис. 2.27, А). Примером такой мышцы может служить портняжная мышца. Напротив, силовые характеристики выше у мышц с так называемым перистым расположением мышечных волокон. При таком расположении мышечных волокон физиоло­гическое поперечное сечение больше геометрического поперечного сечения (рис. 2.27, Б). Примером такой мышцы у человека может служить икроножная мышца.


У мышц веретенообразной формы, например у двуглавой мышцы плеча, геометрическое сечение совпадает с физиологическим только в средней части, в других областях физиологическое сечение больше геометрического, поэтому мышцы этого типа по своим характери­стикам занимают промежуточное место (рис. 2.27, В).


При определении абсолютной силы различных мышц максималь­ное усилие, которое развивает мышца, делят на физиологическое по­перечное сечение. Абсолютная сила икроножной мышцы человека со­ставляет 5,9 кг/см , двуглавой мышцы плеча — 11,4 кг/см .


2.4.1.9. Оценка функционального состояния мышечной системы у человека


При оценке функционального состояния мышечной системы у человека используют различные методы.


Эргометрические методы.
Эти методы используют для опреде­ления физической работоспособности. Человек совершает работу в определенных условиях и одновременно регистрируются величины выполняемой работы и различные физиологические параметры: ча­стота дыхания, пульс, артериальное давление, объем циркулирую­щей крови, величина регионарного кровотока, потребляемого O2, выдыхаемого СO2 и т. д. С помощью специальных устройств — велоэргометров
или тредбанов
(бегущая дорожка) — создается возможность дозировать нагрузку на организм человека.


Электромиографические методы.
Эти методы исследования ске­летной мускулатуры человека нашли широкое применение в физи­ологической и клинической практике. В зависимости от задач ис­следования проводят регистрацию и анализ суммарной электромио-граммы
(ЭМГ) или потенциалов отдельных мышечных волокон. При регистрации суммарной ЭМГ чаще используют накожные элект­роды, при регистрации потенциалов отдельных мышечных воло­кон — многоканальные игольчатые электроды.


Преимуществом суммарной электромиографии произвольного усилия является неинвазивность исследования и, как правило, отсутствие электростимуляции мышц и нервов. На рис. 2.28 при­ведена ЭМГ мышцы в покое и при произвольном усилии. Коли­чественный анализ ЭМГ заключается в определении частот волн ЭМГ, проведении спектрального анализа, оценки средней ампли­туды волн ЭМГ. Одним из распространенных методов анализа ЭМГ является ее интегрирование, поскольку известно, что вели-


чина интегрированной ЭМГ пропорциональна величине развивае­мого мышечного усилия.


Используя игольчатые электроды, можно регистрировать как суммарную ЭМГ, так и электрическую активность отдельных мы­шечных волокон. Регистрируемая при этом электрическая актив­ность в большей степени определяется расстоянием между отво­дящим электродом и мышечным волокном. Разработаны критерии оценки параметров отдельных потенциалов здорового и больного человека. На рис. 2.29 приведена запись потенциала двигательной единицы человека.


2.4.2. Гладкие мышцы


Гладкие мышцы находятся в стенке внутренних органов, крове­носных и лимфатических сосудов, в коже и морфологически отли­чаются от скелетной и сердечной мышц отсутствием видимой по­перечной исчерченности.


2.4.2.1. Классификация гладких мышц


Гладкие мышцы подразделяются на висцеральные (унитарные) и мультиунитарные (рис. 2.30). Висцеральные гладкие мышцы
на­ходятся во всех внутренних органах, протоках пищеварительных желез, кровеносных и лимфатических сосудах, коже. К мулыпиуни-тарным
относятся ресничная мышца и мышца радужки глаза. Де­ление гладких мышц на висцеральные и мультиунитарные основано на различной плотности их двигательной иннервации. В висцераль­ных гладких мышцах двигательные нервные окончания имеются на небольшом количестве гладких мышечных клеток. Несмотря на это, возбуждение с нервных окончаний передается на все гладкие мы­шечные клетки пучка благодаря плотным контактам между сосед­ними миоцитами — нексусам. Нексусы позволяют потенциалам


действия и медленным волнам деполяризации распространяться с одной мышечной клетки на другую, поэтому висцеральные гладкие мышцы сокращаются одномоментно с приходом нервного импульса.


2.4.2.2. Строение гладких мышц


Гладкие мышцы состоят из клеток веретенообразной формы, сред­няя длина которых 100 мкм, а диаметр 3 мкм. Клетки располагаются в составе мышечных пучков и тесно прилегают друг к другу. Мембра­ны прилежащих клеток образуют нексусы, которые обеспечивают электрическую связь между клетками и служат для передачи возбуж­дения с клетки на клетку. Гладкие мышечные клетки содержат мио-филаменты актина и миозина, которые располагаются здесь менее упорядоченно, чем в волокнах скелетной мышцы. Саркоплазматиче-ская сеть в гладкой мышце менее развита, чем в скелетной.


2.4.2.3. Иннервация гладких мышц


Висцеральная гладкая мышца имеет двойную иннервацию — симпатическую и парасимпатическую, функция которой заключа­ется в изменении деятельности гладкой мышцы. Раздражение одного из вегетативных нервов обычно увеличивает активность гладкой мышцы, стимуляция другого — уменьшает. В некоторых органах, например кишечнике, стимуляция адренергических нервов умень­шает, а холинергических — увеличивает мышечную активность; в других, например, сосудах, норадреналин усиливает, а АХ снижает мышечный тонус. Строение нервных окончаний в гладкой мышце отличается от строения нервно-мышечного синапса скелетной мыш­цы. В гладкой мышце нет концевых пластинок и отдельных нервных окончаний. По всей длине разветвлений адренергических и холи­нергических нейронов имеются утолщения, называемые варикозами.
Они содержат гранулы с медиатором, который выделяется из каждой варикозы нервных волокон. Таким образом, по ходу следования нервного волокна могут возбуждаться или тормозиться многие глад­кие мышечные клетки. Клетки, лишенные непосредственных кон­тактов с варикозами, активируются потенциалами действия, рас­пространяющимися через нексусы на соседние клетки. Скорость проведения возбуждения в гладкой мышце невелика и составляет несколько сантиметров в секунду.


Нервно-мышечная передача. Возбуждающее влияние адренерги­ческих или холинергических нервов электрически проявляется в виде отдельных волн деполяризации. При повторной стимуляции эти потенциалы суммируются и по достижении пороговой величины возникает ПД.


Тормозящее влияние адренергических или холинергических нер­вов проявляется в виде отдельных волн гиперполяризации, назы­ваемых тормозными постсинаптическими потенциалами (ТПСП). При ритмической стимуляции ТПСП суммируются. Возбуждающие и тормозные постсинаптические потенциалы наблюдаются не только


в мышечных клетках, контактирующих с варикозами, но и на некотором расстоянии от них. Это объясняется тем, что постсинап-тические потенциалы передаются от клетки к клетке через нексусы или посредством диффузии медиатора из мест его выделения.


2.4.2.4. Функции и свойства гладких мышц


Электрическая активность. Висцеральные гладкие мышцы ха­рактеризуются нестабильным мембранным потенциалом. Колебания мембранного потенциала независимо от нервных влияний вызывают нерегулярные сокращения, которые поддерживают мышцу в состо­янии постоянного частичного сокращения — тонуса.
Тонус гладких мышц отчетливо выражен в сфинктерах полых органов: желчном, мочевом пузырях, в месте перехода желудка в двенадцатиперстную кишку и тонкой кишки в толстую, а также в гладких мышцах мелких артерий и артериол. Мембранный потенциал гладкомышеч-ных клеток не является отражением истинной величины потенциала покоя. При уменьшении мембранного потенциала мышца сокраща­ется, при увеличении — расслабляется. В периоды состояния отно­сительного покоя величина мембранного потенциала в среднем рав­на — 50 мВ. В клетках висцеральных гладких мышц наблюдаются медленные волнообразные флюктуации мембранного потенциала ве­личиной в несколько милливольт, а также ПД. Величина ПД может варьировать в широких пределах. В гладких мышцах продолжи­тельность ПД 50—250 мс; встречаются ПД различной формы. В не­которых гладких мышцах, например мочеточника, желудка, лим­фатических сосудов, ПД имеют продолжительное плато во время реполяризации, напоминающее плато потенциала в клетках мио­карда. Платообразные ПД обеспечивают поступление в цитоплазму миоцитов значительного количества внеклеточного кальция, участ­вующего в последующем в активации сократительных белков глад-комышечных клеток. Ионная природа ПД гладкой мышцы опреде­ляется особенностями каналов мембраны гладкой мышечной клетки. Основную роль в механизме возникновения ПД играют ионы Са2+
. Кальциевые каналы мембраны гладких мышечных клеток пропу­скают не только ионы Са2+
, но и другие двухзарядные ионы (Ва , Mg2+
), а также Na+
. Вход Са2+
в клетку во время ПД необходим для поддержания тонуса и развития сокращения, поэтому блокиро­вание кальциевых каналов мембраны гладких мышц, приводящее к ограничению поступления иона Са2+
в цитоплазму миоцитов внутренних органов и сосудов, широко используется в практической медицине для коррекции моторики пищеварительного тракта и то­нуса сосудов при лечении больных гипертонической болезнью.


Автоматия. ПД гладких мышечных клеток имеют авторитмиче­ский (пейсмекерный) характер, подобно потенциалам проводящей системы сердца. Пейсмекерные потенциалы регистрируются в раз­личных участках гладкой мышцы. Это свидетельствует о том, что любые клетки висцеральных гладких мышц способны к самопроиз­вольной автоматической активности. Автоматия гладких мышц, т. е.


способность к автоматической (спонтанной) деятельности, присуща многим внутренним органам и сосудам.


Реакция на растяжение. Уникальной особенностью висцеральной гладкой мышцы является ее реакция на растяжение. В ответ на растяжение гладкая мышца сокращается. Это вызвано тем, что растяжение уменьшает мембранный потенциал клеток, увеличивает частоту ПД и в конечном итоге — тонус гладкой мускулатуры. В организме человека это свойство гладкой мускулатуры служит одним из способов регуляции двигательной деятельности внутренних органов. Например, при наполнении желудка происходит растяжение его стенки. Увеличение тонуса стенки желудка в ответ на его растяжение способствует сохранению объема органа и лучшему контакту его стенок с поступившей пищей. В кровеносных сосудах растяжение, создаваемое колебаниями кровяного давления, является основным фактором миогенной саморегуляции тонуса сосудов. На­конец, растяжение мускулатуры матки растущим плодом служит одной из причин начала родовой деятельности.


Пластичность. Еще одной важной специфической характеристи­кой гладкой мышцы является изменчивость напряжения без зако­номерной связи с ее длиной. Так, если растянуть висцеральную гладкую мышцу, то ее напряжение будет увеличиваться, однако если мышцу удерживать в состоянии удлинения, вызванным рас­тяжением, то напряжение будет постепенно уменьшаться, иногда не только до уровня, существовавшего до растяжения, но и ниже этого уровня. Это свойство называется пластичностью гладкой мышцы.
Таким образом, гладкая мышцы более похожа на тягучую пластичную массу, чем на малоподатливую структурированную ткань. Пластичность гладкой мускулатуры способствует нормально­му функционированию внутренних полых органов.


Связь возбуждения с сокращением. Изучать соотношения между электрическими и механическими проявлениями в висцеральной гладкой мышце труднее, чем в скелетной или сердечной, так как висцеральная гладкая мышца находится в состоянии непрерывной активности. В условиях относительного покоя можно зарегистриро­вать одиночный ПД. В основе сокращения как скелетной, так и гладкой мышцы лежит скольжение актина по отношению к миозину, где ион Са2+
выполняет триггерную функцию (рис. 2.31).


В механизме сокращения гладкой мышцы имеется особенность, отличающая его от механизма сокращения скелетной мышцы. Эта особенность заключается в том, что прежде чем миозин гладкой мышцы сможет проявлять свою АТФазную активность, он должен быть фосфорилирован. Фосфорилирование и дефосфорилирование миозина наблюдается и в скелетной мышце, но в ней процесс фосфорилирования не является обязательным для активации АТ-Фазной активности миозина. Механизм фосфорилирования миозина гладкой мышцы осуществляется следующим образом: ион Са2+
со­единяется с кальмодулином (кальмодулин — рецептивный белок для иона Са2+
). Возникающий комплекс активирует фермент — киназу легкой цепи миозина, который в свою очередь катализирует


процесс фосфорилирования миозина. Затем происходит скольжение актина по отношению к миозину, составляющее основу сокращения. Отметим, что пусковым моментом для сокращения гладкой мышцы является присоединение иона Са2+
к кальмодулину, в то время как в скелетной и сердечной мышце пусковым моментом является при­соединение Са2+
к тропонину.


Химическая чувствительность. Гладкие мышцы обладают высо­кой чувствительностью к различным физиологически активным веще­ствам: адреналину, норадреналину, АХ, гистамину и др. Это обуслов­лено наличием специфических рецепторов мембраны гладкомышеч-ных клеток. Если добавить адреналин или норадреналин к препарату гладкой мышцы кишечника, то увеличивается мембранный потенци­ал, уменьшается частота ПД и мышца расслабляется, т. е. наблюдает­ся тот же эффект, что и при возбуждении симпатических нервов.


Норадреналин действует на а-
и beta-адренорецепторы мембраны гладкомышечных клеток. Взаимодействие норадреналина с
beta
-рецеп­торами уменьшает тонус мышцы в результате активации аденилат-циклазы и образования циклического АМФ и последующего увели­чения связывания внутриклеточного Са2+
. Воздействие норадрена­лина на а-рецепторы тормозит сокращение за счет увеличения выхода ионов Са2+
из мышечных клеток.


АХ оказывает на мембранный потенциал и сокращение гладкой


мускулатуры кишечника действие, противоположное действию нор-адреналина. Добавление АХ к препарату гладкой мышцы кишечника уменьшает мембранный потенциал и увеличивает частоту спонтан­ных ПД. В результате увеличивается тонус и возрастает частота ритмических сокращений, т. е. наблюдается тот же эффект, что и при возбуждении парасимпатических нервов. АХ деполяризует мем­брану, увеличивает ее проницаемость для Na+
и Са .


Гладкие мышцы некоторых органов реагируют на различные гормоны. Так, гладкая мускулатура матки у животных в периоды между овуляцией и при удалении яичников относительно невозбу­дима. Во время течки или у животных, лишенных яичников, которым вводился эстроген, возбудимость гладкой мускулатуры возрастает. Прогестерон увеличивает мембранный потенциал еще больше, чем эстроген, но в этом случае электрическая и сократительная актив­ность мускулатуры матки затормаживается.


2.5. ФИЗИОЛОГИЯ ЖЕЛЕЗИСТОЙ ТКАНИ


Классическими клеточными элементами возбудимых тканей (нер­вной и мышечной) являются нейроны и миоциты. Железистая ткань также относится к возбудимым, но образующие ее гландулоциты обладают существенной морфофункциональной спецификой.


2.5.1. Секреция


Секреция — процесс образования внутри клетки (гландуло-цита) из веществ, поступивших в нее, и выделения из клетки специфического продукта (секрета) определенного функционального назначения. Гландулоциты могут быть представлены отдельными клетками и объединены в составе экзокринных и эндокринных желез.


Функциональное состояние желез определяют по количеству и качеству их экзосекретов (например, пищеварительных, потовых и др.) и содержанию инкретируемых железами продуктов в крови и лимфе. Реже для этого используют методы отведения и регистрации секреторных потенциалов с поверхности тела и слизистых оболочек; применяют также регистрацию потенциалов желез, их фрагментов и отдельных гландулоцитов; кроме того, распространены морфоло­гические, в том числе гисто- и цитохимические методы исследования секреторной функции различных желез.


Гландулоциты выделяют различные по химической природе продукты: белки, липопротеиды, мукополисахариды, растворы со­лей, оснований и кислот. Секреторная клетка может синтезировать и выделять один или несколько секреторных продуктов одной либо разной химической природы. Выделяемый секреторной клет­кой материал может иметь различное отношение к внутриклеточ­ным процессам. Принято считать собственно секретом
продукт метаболизма данной клетки, экскретом
— продукт ее катаболизма, рекретом — поглощенный клеткой из крови и затем в неизме­ненном виде выделенный продукт. Секрет может выводиться из


клетки через ее апикальную мембрану в просвет ацинусов, протоки желез, полость пищеварительного тракта — внешняя секреция,
или экзосекреция.
Выведение секрета из клетки через ее базола-теральную мембрану в интерстициальную жидкость, откуда он поступает в кровь и лимфу, называется внутренней секрецией
— эндосекрецией,
или инкрецией.


Экзо- и эндосекреция имеют много общего на уровне синтеза и выделения секреторного продукта. Выделение секретов из клетки может осуществляться двумя способами, поэтому в крови можно обнаружить продукты экзосекреторных желез (например, ферменты пищеварительных желез), а в экзосекретах — гормоны (в секретах пищеварительных желез находят небольшое количество гормонов). В составе некоторых желез (например, поджелудочной) имеются экзокринные и эндокринные клетки. Эти явления находят объясне­ние в экскреторной теории происхождения секреторных процессов (А. М. Уголев). Согласно этой теории, внешняя и внутренняя сек­реция желез произошла от свойственной всем клеткам неспецифи­ческой функции — экскреции — выделения из них продуктов обмена веществ.


2.5.2. Многофункциональность секреции


В процессе экзо- и эндосекреции реализуется несколько функций. Так, в результате внешней секреции желез пищеварительного тракта в него выделяются растворы ферментов и электролитов, обеспечи­вающие переваривание пищи в созданных ими оптимальных физи­ко-химических условиях. Секреция потовых желез выступает в роли важного механизма терморегуляции (см. главу 11). Секреция мо­лочных желез необходима для лактотрофного питания детей (см. раздел 13.5). Экзосекреция желез играет большую роль в поддер­жании относительного постоянства внутренней среды организма, обеспечивая выделение из организма эндогенных и экзогенных ве­ществ (см. главу 12). Экзосекретируемые в полость пищеваритель­ного тракта продукты (ионы Н+
, ферменты и др.) принимают участие в регуляции пищеварительных функций (см. главу 9). Секретиру-емая мукоцитами слизь выполняет защитную роль, ограждая сли­зистые оболочки от чрезмерных механических и химических раз­дражений. В составе секретов выделяются вещества, необходимые для иммунной защиты'организма.


Продукты внутренней секреции выполняют роль гуморальных регуляторов обмена веществ и функций. Особенно велика в этом роль специфических гормонов (см. главу 5). Ферменты, вырабаты­ваемые и инкретируемые различными железами, участвуют в тка­невом гидролизе питательных веществ, формировании защитных гистогематических барьеров, образовании физиологически активных веществ (например, регуляторных пептидов из белков), в других физиологических процессах (например, свертывании крови и фиб-ринолизе). Примеры функции секретов будут дополнены в соответ­ствующих главах.


2.S.3. Секреторный цикл


Секреторнымциклом называется периодическое изме­нение состояния секреторной клетки, обусловленное образованием, накоплением, выделением секрета и восстановлением ее дальнейшей секреции. В секреторном цикле выделяют несколько фаз: поступление в клетку исходных веществ (ведущее значение в этом имеют диффу­зия, активный транспорт и эндоцитоз), синтез и транспорт исходного секреторного продукта, формирование секреторных гранул, выделе­ние секрета из клетки — экзоцитоз. Из клетки выделяются и негра-нулированные продукты секреции. Существуют клетки с разными ти­пами внутриклеточных процессов и видами выделения секретов. В за­висимости от типа выделения секрета секрецию делят на голокри­новую, апокриновую
(макро- и микро-) и мерокриновую
двух видов в зависимости от механизма выхода секрета через апикальную мембра­ну: секрет покидает гландулоцит через отверстия, образующиеся при контакте с ней секреторной гранулы в апикальной мембране, или че­рез мембрану, не меняющую свою структуру.


2.5.4. Биопотенциалы
гландулоцитов


Биопотенциалы секреторных клеток имеют ряд особенностей в покое и при секреции: низкую величину и скорость изменения, градуальность, различную поляризованность базальной и апикальной мембран, гетерохронность изменения поляризованное™ мембраны при секреции и др.


Мембранный потенциал гландулоцитов различных экзокринных желез в состоянии относительного покоя равен от —30 до —75 мВ. Стимуляция секреции меняет мембранный потенциал. Это измене­ние поляризованности мембраны называется секреторным потен­циалом.
У разных гландулоцитов он имеет существенные различия, характеризует секреторный процесс, влияет на секреторный цикл и сопряжение его фаз, синхронизацию активности гландулоцитов в составе данной железы (это не исключает химического взаимодей­ствия их через межклеточные контакты). Оптимальной для возник­новения секреторных потенциалов считается поляризованность мем­бран, равная —50 мВ.


Для возбуждения большинства видов гландулоцитов характерна деполяризация их мембран, но описаны гландулоциты, при возбуж­дении которых мембраны гиперполяризуются, формируя двухфазные потенциалы. Деполяризация мембраны обусловлена потоком ионов Na+
в клетку и выходом из нее ионов К+
. Гиперполяризация мем­браны обусловлена транспортом в клетку ионов С1~и выходом из нее ионов Na+
и К+
. Различие в поляризованности базальной и апикальной мембран составляет 2—3 мВ, что создает значительное электрическое поле (20—30 В/см). Его напряженность при возбуж­дении секреторной клетки возрастает примерно вдвое, что способ­ствует перемещению секреторных гранул к апикальному полюсу клетки и выходу секреторного материала из клетки.


Физиологические стимуляторы секреции, повышающие концен­трацию Са2+
в гландулоцитах, влияют на калиевые и натриевые каналы и вызывают секреторный потенциал. Ряд стимуляторов сек­реции, действующих через активацию аденилатциклазы и не вли­яющих на обмен ионов Са2+
в гландулоцитах, не вызывает в них электрических эффектов. Следовательно, изменение мембранного потенциала и электрической проводимости гландулоцитов опосре­довано увеличением внутриклеточной концентрации кальция.


2.5.5. Регуляция секреции гландулоцитов


Секреция желез контролируется нервными, гуморальными и па-ракринными механизмами. В результате действия этих механизмов происходят возбуждение, торможение и модуляция секреции глан­дулоцитов. Эффект зависит от типа эфферентных нервов, медиа­торов, гормонов и других физиологически активных веществ, вида гландулоцитов, входящих в состав железистой ткани, мембранных рецепторов на них, механизма действия этих веществ на внутри­клеточные процессы. Для синаптических окончаний на гландуло­цитах характерны незамкнутые относительно широкие синаптиче-ские щели, заполненные интерстициальной жидкостью. Сюда из окончаний нейронов поступают медиаторы, из крови — гормоны, из соседних эндокринных клеток — парагормоны, от самих глан­дулоцитов — продукты их деятельности.


Медиаторы и гормоны (первичные мессснджеры, или передатчи­ки) взаимодействуют с рецепторами базолатеральной мембраны гландулоцита. Возникающий при этом сигнал передается на лока­лизованную на внутренней стороне мембраны аденилатциклазу, в результате чего повышается или понижается ее активность, соот­ветственно увеличивается или уменьшается образование цикличе­ского аденозинмонофосфата цАМФ. Аналогично развивается процесс с гуанилатциклазой и циклическим гуанилмонофосфатом цГМФ. Эти циклические нуклеотиды, выполняя роль вторичных передат­чиков (мессенджеров), влияют на цепь внутриклеточных фермен­тативных реакций, характерных для данного вида гландулоцитов, через взаимодействие с протеинкиназой.


Кроме того, влияния вторичных мессенджеров осуществляются системой кальций — кальмодулин, в которой ионы Са2+
имеют внутри- и внеклеточное происхождение, и активация секреции за­висит от концентрации кальция и кальмодулина.


Гландулоциты в состоянии относительного покоя выделяют не­большое количество секрета, которое может градуально усиливаться и уменьшаться. На мембранах гландулоцитов имеются возбуждаю­щие и тормозные рецепторы, с участием которых секреторная ак­тивность гландулоцитов изменяется в широких пределах.


Некоторые вещества изменяют деятельность гландулоцитов, про­никая в них через базолатеральную мембрану. Таким образом, продукты секреции сами тормозят секреторную активность гланду­лоцитов по принципу отрицательной обратной связи.


Глава 3. ПРИНЦИПЫ ОРГАНИЗАЦИИ УПРАВЛЕНИЯ ФУНКЦИЯМИ


3.1. УПРАВЛЕНИЕ В ЖИВЫХ ОРГАНИЗМАХ


Организм как единое целое может существовать только при условии, когда составляющие его органы и ткани функционируют с такой интенсивностью и в таком объеме, которые обеспечивают адекватное уравновешивание со средой обитания. По словам И. П. Павлова, живой организм — сложная обособленная система, внутренние силы которой постоянно уравновешиваются с внешними силами окружающей среды. В основе уравновешивания лежат про­цессы регуляции, управления физиологическими функциями.


Управление,
или регуляция, в живых организмах пред­ставляет собой совокупность процессов, обеспечивающих необходи­мые режимы функционирования, достижение определенных целей или полезных для организма приспособительных результатов. Уп­равление возможно при наличии взаимосвязи органов и систем организма. Процессы регуляции охватывают все уровни организации системы: молекулярный, субклеточный, клеточный, органный, сис­темный, организменный, надорганизменный (популяционный, эко-системный, биосферный). Законы управления в сложных системах изучает кибернетика — наука об общих принципах управления в машинах, живых системах и обществе. Медицинская, физиологи­ческая кибернетика изучает процессы управления в живых орга­низмах.


Принципы управления.
С позиций медицинской кибернетики, управление в живых организмах осуществляется управляющей си­стемой.
Она включает в себя датчики, воспринимающие информа­цию на входе (сенсорные рецепторы) и выходе (рецепторы испол­нительных структур) системы, входные и выходные каналы связи (жидкие среды организма, нервные проводники), управляющее ус­тройство (центральная нервная система), частью которого является запоминающее устройство (аппараты памяти). Информация, фик­сированная в аппаратах памяти, определяет «настройку» системы управления на переработку определенных сведений, поставляемых через каналы связи.


Управление осуществляется с использованием двух основных принципов: 1) по рассогласованию (отклонению); 2) по возмущению.


Управление по рассогласованию предусматривает на­личие механизмов, способных определить разность между задавае­мым и фактическим значением регулируемой величины или фун-


кции. Эта разность используется для выработки регулирующего воздействия на объект регуляции, которое уменьшает величину отклонения. Примером такого управления является стимуляция об­разования глюкозы при уменьшении ее содержания в крови. Это уменьшение определяется клетками гипоталамуса, которые стиму­лируют выработку адренокортикотропного гормона в гипофизе. По­следний усиливает образование глюкокортикоидов (кортизола) в надпочечниках. Кортизол стимулирует в печени образование глю­козы из аминокислот (глюконеогенез), что приводит к восстанов­лению нормального содержания глюкозы в плазме крови.


Управление по возмущению предусматривает исполь­зование самого возмущения для выработки, компенсирующего воз­действия, в результате которого регулируемый показатель возвра­щается к исходному состоянию. Например, уменьшение парциаль­ного давления 02
в атмосферном воздухе при подъеме на высоту является возмущающим воздействием для системы дыхания, обес­печивающей оптимальное для метаболизма содержание кислорода в крови. Увеличение частоты и глубины дыхания, скорости крово­тока, количества эритроцитов в крови отражает процессы регуляции по возмущению, направленные на восстановление исходных пока­зателей содержания кислорода.


Способы управления в организме.
Основные способы управления в живом организме предусматривают запуск (инициацию), коррек­цию и координацию физиологических процессов.


Запуск представляет собой процесс управления, вызывающий переход функции органа от состояния относительного покоя к де­ятельному состоянию или от активной деятельности к состоянию покоя. Например, при определенных условиях центральная нервная система инициирует работу пищеварительных желез, фазные со­кращения скелетной мускулатуры, процессы мочевыведения, дефе­кации и др.


Коррекция позволяет управлять деятельностью органа, осу­ществляющего физиологическую функцию в автоматическом режиме или инициированную поступлением управляющих сигналов. При­мером может служить коррекция работы сердца центральной нервной системой посредством влияний, передаваемых по блуждающим и симпатическим нервам.


Координация предусматривает согласование работы несколь­ких органов или систем одновременно для получения полезного приспособительного результата. Например, для осуществления акта прямохождения необходима координация работы мышц и центров, обеспечивающих перемещение нижних конечностей в пространстве, смещение центра тяжести тела, изменение тонуса скелетных мышц.


Механизмы управления. Условно можно разделить на гумораль­ный и нервный.


Гуморальный механизм управления предусматривает из­менение физиологической активности органов и систем под влиянием химических веществ, доставляемых через жидкие среды организма (интерстициальная жидкость, лимфа, кровь, цереброспинальная


жидкость и др.). Гуморальный механизм управления является древ­нейшей формой взаимодействия клеток, органов и систем, поэтому в организме человека и высших животных можно найти различные варианты гуморального механизма регуляции, отражающие в изве­стной мере его эволюцию. Одним из простейших вариантов является изменение деятельности клеток под влиянием продуктов обмена веществ. Последние могут изменять работу клетки, из которой происходит выделение этих продуктов, и других органов, располо­женных на достаточном удалении. Например, под влиянием ССЬ, образующегося в тканях в результате утилизации кислорода, изме­няется активность центра дыхания и как следствие — глубина и частота дыхания. Под влиянием адреналина, выделяемого в кровь из надпочечников, изменяются частота и сила сердечных сокраще­ний, тонус периферических сосудов, ряд функций центральной нер­вной системы, интенсивность обменных процессов в скелетных мыш­цах, увеличиваются коагуляционные свойства крови.


Для гуморального механизма управления характерны относи­тельно медленное распространение и диффузный характер управ­ляющих воздействий, низкая надежность осуществления связи.


Нервный механизм управления предусматривает измене­ние физиологических функций под влиянием управляющих воздей­ствий, передаваемых из центральной нервной системы по нервным волокнам к органам и системам организма. Нервный механизм является более поздним продуктом эволюции по сравнению с гу­моральным, он более сложен и более совершенен. Для него харак­терна высокая скорость распространения и точная передача объекту регулирования управляющих воздействий, высокая надежность осу­ществления связи.


В естественных условиях нервный и гуморальный механизмы работают как единый нейрогуморальный механизм управления. ,


Нейрогуморальный механизм управления представля­ет собой комбинированную форму, в которой одновременно исполь­зуются гуморальный и нервный механизмы; оба взаимосвязаны и взаимообусловлены. Так, передача управляющих воздействий с нер­ва на иннервируемые структуры осуществляется с помощью хими­ческих посредников — медиаторов, действующих на специфические рецепторы. Еще более тесная и сложная связь обнаружена в неко­торых ядрах гипоталамуса. Нервные клетки этих ядер приходят в активное состояние при изменении химических и физико-химиче­ских показателей крови. Активность этих клеток вызывает образо­вание и выделение химических факторов, стимулирующих восста­новление исходных характеристик крови. Так, на повышение осмо­тического давления плазмы крови реагируют специальные нервные клетки супраоптического ядра гипоталамуса, активность которых приводит к выделению в кровь антидиуретического гормона, уси­ливающего реабсорбцию воды в почках, что обусловливает снижение осмотического давления.


Взаимодействие гуморального и нервного механизмов создает интегративный вариант управления, способный обеспечить адекват-


ное изменение функций от клеточного до организменного уровней при изменении внешней и внутренней среды.


Средства управления.
Управление физиологическими функция­ми осуществляется посредством передачи информации. Информация может содержать сообщение о наличии возмущающих воздействий, отклонение функций. Она передается по афферентным (чувстви­тельным) каналам связи. Информация, передаваемая по эфферен­тным (исполнительным) каналам связи, содержит сообщение о том, какие функции и в каком направлении следует изменять.


Гуморальный механизм в качестве средств управления и передачи информации использует химические вещества — продукты обмена веществ, простагландины, регуляторные пептиды, гормоны и др. Так, накопление молочной кислоты в мышцах при физической нагрузке является источником информации о недостатке кислорода.


Нервный механизм в качестве средства управления, передачи информации использует п о т е н ц и а л ы возбуждения (ПД, им­пульсы), которые объединяются в определенные паттерны («рисун­ки» возбуждения) по частоте, набору в «пачках», характеристикам межимпульсных интервалов и кодируют необходимую информацию. Показано, что паттерны возбуждений гипоталамических нейронов при формировании мотивации голода специфичны и существенно отличаются от столь же специфичных паттернов возбуждений ней­ронов, ответственных за формирование мотивации жажды.


Формы управления.
Гуморальный и нервный механизмы пре­дусматривают использование нескольких форм управления. Ауток-ринная, паракринная и гуморальная формы характерны для эволю-ционно более древнего механизма.


Аутокринная форма управления предполагает изменение функции клетки химическими субстратами, выделяемыми в меж­клеточную среду самой клеткой.


Паракринная форма управления основана на выделении клетками химических средств управления в межтканевую жидкость. Химические субстраты, распространяясь по межтканевым простран­ствам, могут управлять функцией клеток, расположенных на неко­тором удалении от источника управляющих воздействий.


Гуморальная форма управления реализуется при выделе­нии биологических веществ в кровь. С током крови эти вещества достигают всех органов и тканей.


В основе нервного механизма управления лежит рефлекс
— ответная реакция организма на изменения внутренней и внешней среды, осуществляемая при участии центральной нервной системы. Управление посредством рефлексов предусматривает использование двух форм.


Местные рефлексы
осуществляются через ганглии автономной нервной системы, которые рассматриваются как нервные центры, вынесенные на периферию. За счет местных рефлексов происходит управление, например моторной и секреторной функциями тонкой и толстой кишки.


Центральные рефлексы
протекают с обязательным вовлечением


различных уровней центральной нервной системы (от спинного мозга до коры большого мозга). Примером таких рефлексов является выделение слюны при раздражении рецепторов полости рта, опу­скание века при раздражении склеры глаза, отдергивание руки при раздражении кожи пальцев и др.


В естественных условиях нервный и гуморальный механизмы едины и, образуя нейрогуморальный механизм, реализуются в раз­нообразных комбинациях, наиболее полно обеспечивающих адек­ватное уравновешивание организма со средой обитания. Например, физиологически активные вещества, поступая в кровь, несут ин­формацию в ЦНС об отклонении какой-либо функции. Под влиянием этой информации формируется поток управляющих нервных им­пульсов к эффекторам для коррекции отклонения.


В других случаях поступление информации в ЦНС по нервным каналам приводит к выделению гормонов, корригирующих возник­шие отклонения. Нейрогуморальный механизм создает в процессах управления многозвенные кольцевые связи, где различные формы гуморального механизма сменяются и дополняются нервными, а последние обеспечивают включение гуморальных.


3.2. САМОРЕГУЛЯЦИЯ ФИЗИОЛОГИЧЕСКИХ ФУНКЦИЙ


В процессе эволюции живых организмов внутренняя среда была отделена от внешней и приобрела устойчивый, консервативный ха­рактер.


Французский исследователь К. Бернар писал, что условием сво­бодного поведения живого организма является постоянство внутрен­ней среды. По его мнению, все жизненные процессы имеют одну цель — поддержание постоянства условий жизни во внутренней среде организма. Позднее эта мысль нашла воплощение в трудах американского физиолога У. Кеннона в форме учения о гомеостазе.


Гомеостаз — относительное динамическое постоянство внут­ренней среды и устойчивость физиологических функций организма. Основным механизмом поддержания гомеостаза является саморегу­ляция.


Саморегуляция представляет собой такой вариант управ­ления, при котором отклонение какой-либо физиологической фун­кции или характеристик (констант) внутренней среды от уровня, обеспечивающего нормальную жизнедеятельность, является причи­ной возвращения этой функции (константы) к исходному уровню. В ходе естественного отбора живыми организмами выработаны общие механизмы управления процессами приспособления к среде обитания различной физиологической природы (эндокринные, нейрогумораль-ные, иммунологические и др.), направленные на обеспечение отно­сительного постоянства внутренней среды. У человека и высших животных гомеостатические механизмы достигли совершенства.


Практически все характеристики внутренней среды (константы) организма непрерывно колеблются относительно средних уровней,


оптимальных для протекания устойчивого обмена веществ. Эти уров­ни отражают потребность клеток в необходимом количестве исход­ных продуктов обмена. Допустимый диапазон колебаний для разных констант различен. Незначительные отклонения одних констант могут приводить к существенным нарушениям обменных процес­сов — это так называемые жесткие константы.
К ним относятся, например, осмотическое давление, величина водородного показателя (рН), содержание глюкозы, O2, С02
в крови.


Другие константы могут варьировать в довольно широком диа­пазоне без существенных нарушений физиологических функций — это так называемые пластичные константы.
К их числу относят количество и соотношение форменных элементов крови, объем цир­кулирующей крови, скорость оседания эритроцитов.


Процессы саморегуляции основаны на использовании прямых и обратных связей. Прямаясвязь предусматривает выработку управляющих воздействий на основании информации об отклонении константы или действии возмущающих факторов. Например, раз­дражение холодным воздухом терморецепторов кожи приводит к увеличению процессов теплопродукции.


Обратные связи заключаются в том, что выходной, регу­лируемый сигнал о состоянии объекта управления (константы или функции) передается на вход системы. Различают положительные и отрицательные обратные связи. Положительная обратная связь
усиливает управляющее воздействие, позволяет управлять значи­тельными потоками энергии, потребляя незначительные энергети­ческие ресурсы. Примером может служить увеличение скорости образования тромбина при появлении некоторого его количества на начальных этапах коагуляционного гемостаза.


Отрицательная обратная связь
ослабляет управляющее воз­действие, уменьшает влияние возмущающих факторов на работу управляющих объектов, способствует возвращению измененного по­казателя к стационарному уровню. Например, информация о степени натяжения сухожилия скелетной мышцы, поступающая в центр управления функций этой мышцы от рецепторов Гольджи, ослабляет степень возбуждения центра, чем предохраняет мышцу от развития избыточной силы сокращения. Отрицательные обратные связи по­вышают устойчивость биологической системы — способность воз­вращаться к первоначальному состоянию после прекращения воз­мущающего воздействия.


В организме обратные связи построены по принципу иерархии (подчиненности) и дублирования. Например, саморегуляция работы сердечной мышцы предусматривает наличие обратных связей от рецепторов самой сердечной мышцы, рецепторных полей магист­ральных сосудов, рецепторов, контролирующих уровень тканевого дыхания, и др.


Гомеостаз организма в целом обеспечивается согласованной со­дружественной работой различных органов и систем, функции ко­торых поддерживаются на относительно постоянном уровне процес­сами саморегуляции.


3.3. СИСТЕМНАЯ ОРГАНИЗАЦИЯ УПРАВЛЕНИЯ. ФУНКЦИОНАЛЬНЫЕ СИСТЕМЫ И ИХ ВЗАИМОДЕЙСТВИЕ


Представление о саморегуляции физиологических функций на­шло наиболее полное отражение в теории функциональных систем, разработанной академиком П. К. Анохиным. Согласно этой теории, уравновешивание организма со средой обитания осуществляется са­моорганизующимися функциональными системами.


Функциональные системы (ФС) представляют собой ди­намически складывающийся саморегулирующийся комплекс цент­ральных и периферических образований, обеспечивающий достиже­ние полезных приспособительных результатов.


Результат действия любой ФС представляет собой жизненно важный адаптивный показатель, необходимый для нормального фун­кционирования организма в биологическом и социальном плане. Отсюда вытекает системообразующая роль результата действия. Именно для достижения определенного адаптивного результата скла­дываются ФС, сложность организации которых определяется харак­тером этого результата.


Многообразие полезных для организма приспособительных ре­зультатов может быть сведено к нескольким группам: 1) метабо­лические результаты, являющиеся следствием обменных процессов на молекулярном (биохимическом) уровне, создающими необхо­димые для жизнедеятельности субстраты или конечные продукты; 2) гомеостатические результаты, представляющие собой ведущие показатели жидких сред организма: крови, лимфы, интерстици-альной жидкости (осмотическое давление, рН, содержание пита­тельных веществ, кислорода, гормонов и т. д.), обеспечивающие различные стороны нормального обмена веществ; 3) результаты поведенческой деятельности животных и человека, удовлетворяю­щие основные метаболические, биологические потребности: пище­вые, питьевые, половые и др.; 4) результаты социальной деятель­ности человека, удовлетворяющие социальные (создание обще­ственного продукта труда, охрана окружающей среды, защита отечества, обустройство быта) и духовные (приобретение знаний, творчество) потребности.


В состав каждой ФС включаются различные органы и ткани. Объединение последних в ФС осуществляется результатом, ради достижения которого создается ФС. Этот принцип организации ФС получил название принципа избирательной мобилизации деятель­ности органов и тканей в целостную систему. Например, для обес­печения оптимального для метаболизма газового состава крови про­исходит избирательная мобилизация в ФС дыхания деятельности легких, сердца, сосудов, почек, кроветворных органов, крови.


Включение отдельных органов и тканей в ФС осуществляется по принципу взаимодействия, который предусматривает активное участие каждого элемента системы в достижении полезного при­способительного результата.


В приведенном примере каждый элемент активно способствует


поддержанию газового состава крови: легкие обеспечивают газооб­мен, кровь связывает и транспортирует 02
и СO2, сердце и сосуды обеспечивают необходимую скорость движения крови и величину.


Для достижения результатов различного уровня формируются и разноуровневые ФС. ФС любого уровня организации имеет прин­ципиально однотипную структуру, которая включает в себя 5 ос­новных компонентов: 1) полезный приспособительный результат; 2) акцепторы результата (аппараты контроля); 3) обратную афферен-тацию, поставляющую информацию от рецепторов в центральное звено ФС; 4) центральную архитектонику — избирательное объ­единение нервных элементов различных уровней в специальные узловые механизмы (аппараты управления); 5) исполнительные ком­поненты (аппараты реакции) — соматические, вегетативные, эн­докринные, поведенческие. Схема функциональной системы по П. К. Анохину представлена на рис. 3.1.


Состояние внутренней среды постоянно контролируется соответ­ствующими рецепторами. Источником изменения параметров внут­ренней среды организма является непрерывно текущий в клетках процесс обмена веществ (метаболизм), сопровождающийся потреб­лением исходных и образованием конечных продуктов. Любое от­клонение параметров от показателей, оптимальных для метаболизма, равно как и изменение результатов иного уровня, воспринимается рецепторами. От последних информация передается звеном обратной связи в соответствующие нервные центры. На основе поступающей информации происходит избирательное вовлечение в данную ФС структур различных уровней центральной нервной системы для мобилизации исполнительных органов и систем (аппаратов реакции).


Деятельность последних приводит к восстановлению необходимого для метаболизма или социальной адаптации результата.


Организация различных ФС в организме принципиально одина­кова. В этом заключается принцип изоморфизма
ФС.


Вместе с тем в их организации есть и отличия, которые обусловле­ны характером результата. ФС, определяющие различные показатели внутренней среды организма, генетически детерминированы, часто включают в себя только внутренние (вегетативные, гуморальные) ме­ханизмы саморегуляции. К их числу можно отнести ФС, определяю­щие оптимальный для метаболизма тканей уровень массы крови, фор­менных элементов, реакции среды (рН), кровяного давления. Другие ФС гомеостатического уровня включают в себя и внешнее звено само­регуляции, предусматривающее взаимодействие организма с внешней средой. В работе некоторых ФС внешнее звено играет относительно пассивную роль источника необходимых субстратов (например, кис­лорода для ФС дыхания), в других внешнее звено саморегуляции ак­тивно и включает целенаправленное поведение человека в среде оби­тания, направленное на ее преобразование. К их числу относится ФС, обеспечивающая оптимальный для организма уровень питательных веществ, осмотического давления, температуры тела.


ФС поведенческого и социального уровня чрезвычайно динамичны по своей организации и формируются по мере возникновения соответ­ствующих потребностей. В таких ФС внешнее звено саморегуляции играет ведущую роль. Вместе с тем поведение человека определяется и корригируется генетически, индивидуально приобретенным опы­том, а также многочисленными возмущающими воздействиями. При­мером таких ФС является производственная деятельность человека по достижению социально значимого для общества и индивида результа­та: творчество ученых, художников, писателей.


Аппараты управления ФС. По принципу изоморфизма построена и центральная архитектоника (аппараты управления) ФС, складыва­ющаяся из нескольких стадий (см. рис. 3.1). Исходной является ста­дия афферентного с и н т е з а. В ее основе лежит доминирую­щая мотивация,
возникающая на базе наиболее значимой в данный момент потребности организма. Возбуждение, создаваемое доминиру­ющей мотивацией, мобилизует генетический и индивидуально приоб­ретенный опыт (память)
по удовлетворению данной потребности. Информация о состоянии среды обитания, поставляемая обстановоч­ной афферентацией,
позволяет в конкретной обстановке оценить воз­можность и при необходимости скорректировать прошлый опыт удов­летворения потребности. Взаимодействие возбуждений, создаваемых доминирующей мотивацией, механизмами памяти и обстановочной афферентацией, создает состояние готовности (предпусковой интег­рации) , необходимое для получения адаптивного результата. Пуско­вая афферентация
переводит систему из состояния готовности в со­стояние деятельности. В стадии афферентного синтеза доминирующая мотивация определяет, что делать, память — как делать, обстановоч­ная и пусковая афферентация — когда делать, чтобы достичь необхо­димого результата.


Стадия афферентного синтеза завершается принятием ре­шения. В этой стадии из многих возможных избирается единст­венный путь для удовлетворения ведущей потребности организма. Происходит ограничение степеней свободы деятельности ФС.


Вслед за принятием решения формируются акцептор результа­та действия и программа действия. В акцепторе результатов дейст­вия
программируются все основные черты будущего результата дей­ствия. Это программирование происходит на основе доминирующей мотивации, которая извлекает из механизмов памяти необходимую информацию о характеристиках результата и путях его достижения. Таким образом, акцептор результатов действия представляет собой аппарат предвидения, прогнозирования, моделирования итогов дея­тельности ФС, где моделируются и сопоставляются параметры резуль­тата с афферентной моделью. Информация о параметрах результата поставляется с помощью обратной афферентации.


Программа действия (эфферентный синтез) представляет собой согласованное взаимодействие соматических, вегетативных и гуморальных компонентов в целях успешного достижения полезного приспособительного результата. Программа действия формирует не­обходимый приспособительный акт в виде определенного комплекса возбуждений в ЦНС до начала его реализации в виде конкретных действий. Эта программа определяет включение эфферентных струк­тур, необходимых для получения полезного результата.


Необходимое звено в работе ФС — обратная афферентация. С
ее помощью оцениваются отдельные этапы и конечный результат деятельности систем. Информация от рецепторов поступает по афферентным нервам и гуморальным каналам связи к структурам, составляющим акцептор результата действия. Совпадение пара­метров реального результата и свойств заготовленной в акцепторе его модели означает удовлетворение исходной потребности орга­низма. Деятельность ФС на этом заканчивается. Ее компоненты могут быть использованы в других ФС. При несовпадении пара­метров результата и свойств модели, заготовленной на основании афферентного синтеза в акцепторе результатов действия, возникает ориентировочно-исследовательская реакция. Она приводит к пере­стройке афферентного синтеза, принятию нового решения, уточ1
нению характеристик модели в акцепторе результатов действия и программы по их достижению. Деятельность ФС осуществляется в новом, необходимом для удовлетворения ведущей потребности направлении.


Принципы взаимодействия ФС. В организме работает одновре­менно несколько функциональных систем, что предусматривает их взаимодействие, которое строится на определенных принципах.


Принцип системогенеза
предполагает избирательное созревание и инволюцию функциональных систем. Так, ФС кровообращения, дыхания, питания и их отдельные компоненты в процессе онтогенеза созревают и развиваются раньше других ФС.


Принцип мультипараметрического
(многосвязного) взаимодей­ствия
определяет обобщенную деятельность различных ФС, на-


правленную на достижение многокомпонентного результата. Напри­мер, параметры гомеостаза (осмотическое давление, КОС и др.) обеспечиваются самостоятельными ФС, которые объединяются в единую обобщенную ФС гомеостаза. Она и определяет единство внутренней среды организма, а также ее изменения вследствие процессов обмена веществ и активной деятельности организма во внешней среде. При этом отклонение одного показателя внутренней среды вызывает перераспределение в определенных соотношениях других параметров результата обобщенной ФС гомеостаза.


Принцип иерархии
предполагает, что ФС организма выстраива­ются в определенный ряд в соответствии с биологической или со­циальной значимостью. Например, в биологическом плане домини­рующее положение занимает ФС, обеспечивающая сохранение це­лостности тканей, затем — ФС питания, воспроизведения и др. Деятельность организма в каждый временной период определяется доминирующей ФС в плане выживания или адаптации организма к условиям существования. После удовлетворения одной ведущей потребности доминирующее положение занимает другая наиважней­шая по социальной или биологической значимости потребность.


Принцип последовательного динамического взаимодействия
предусматривает четкую последовательность смены деятельности нескольких взаимосвязанных ФС. Фактором, определяющим начало деятельности каждой последующей ФС, является результат деятель­ности предыдущей системы. Еще одним принципом организации взаимодействия ФС является принцип системного квантования жизнедеятельности.
Например, в процесе дыхания можно выделить следующие системные «кванты» с их конечными результатами: вдох и поступление некоторого количества воздуха в альвеолы; диффузия O2 из альвеол в легочные капилляры и связывание O2
с гемоглобином; транспорт O2 к тканям; диффузия 02
из крови в ткани и С02
в обратном направлении; транспорт СO2 к легким; диффузия СO2 из крови в альвеолярный воздух; выдох. Принцип системного кванто­вания распространяется на поведение человека.


Таким образом, управление жизнедеятельностью организма пу­тем организации ФС гомеостатического и поведенческого уровней обладает рядом свойств, позволяющих адекватно адаптировать ор­ганизм к изменяющейся внешней среде. ФС позволяет реагировать на возмущающие воздействия внешней среды и на основе обратной аффектации перестраивать деятельность организма при отклонении параметров внутренней среды. Помимо этого, в центральных меха­низмах ФС формируется аппарат предвидения будущих результа­тов — акцептор результата действия, на основе которого происходит организация и инициация опережающих действительные события адаптивных актов, что существенно расширяет приспособительные возможности организма. Сравнение параметров достигнутого резуль­тата с афферентной моделью в акцепторе результатов действия служит основой для коррекции деятельности организма в плане получения именно тех результатов, которые наилучшим образом обеспечивают процесс адаптации.


Глава 4. НЕРВНАЯ РЕГУЛЯЦИЯ


ФИЗИОЛОГИЧЕСКИХ ФУНКЦИЙ


4.1. МЕХАНИЗМЫ ДЕЯТЕЛЬНОСТИ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ


4.1.1. Методы исследования функций центральной нервной системы


Функции нервной системы изучают с использованием традици­онных классических для общей физиологии методов и специальных методических подходов, призванных выявить специфические фун­кции нервных образований, выполняющих роль главной управля­ющей и информационной системы в организме. В соответствии с двумя принципиально различными методическими подходами к изу­чению физиологических функций организма различают методы экс­периментальной и теоретической нейрофизиологии.


К числу экспериментальных методов классиче­ской физиологии относятся приемы, направленные на акти­вацию, или стимуляцию, подавление, или угнетение, функции дан­ного нервного образования. Способы активированияизуча­емого органа сводятся к раздражению его адекватными (или неадекватными) стимулами. Адекватное раздражение
достигается специфическим раздражением соответствующих рецептивных входов рефлексов либо электрическим раздражением проводникового или центрального отдела рефлекторной дуги, имитирующим нервные импульсы. Среди неадекватных стимулов
наиболее распространен­ными являются раздражение различными химическими веществами и градуируемое раздражение электрическим током.


Подавление функции вплоть до полного выключения достигается частичным или полным удалением (экстирпация), раз­рушением
изучаемого нервного образования, кратковременным бло­кированием передачи возбуждения
под действием химического ве­щества, холодового фактора или анода постоянного тока (анэлект-ротон, распространяющаяся депрессия), денервацией
органа.


Развитие и совершенствование электронной и усилительной тех­ники значительно повышают возможности метода регистрации и анализа электрических проявлений деятельности нервных структур. Регистрация электрических потенциалов
головного мозга (элект­роэнцефалография) с последующим автоматизированным анализом с помощью средств вычислительной техники становится одним из важнейших методов исследования в нейрофизиологии мозга. Раз-


витие микротехники отведения электрических потенциалов отдель­ных нервных клеток или даже частей клетки (микроэлектродная техника) за последние два-три десятилетия существенно обогатило ценными экспериментальными фактами физиологию мозга.


При изучении биофизических аспектов деятельности нервных клеток и исследовании нейрогуморальных регуляторных систем, включая гематоэнцефалический барьер, цереброспинальную жид­кость, широко используются радиоизотопные методы.


Классический условнорефлекторный метод
изучения функции коры большого мозга в современной нейрофизиологии успешно при­меняется в комплексном анализе механизмов обучения, становления и развития адаптивного поведения в сочетании с методами элект­роэнцефалографии, электронейронографии, нейро-
и гистохимии, психофизиологии,
способствуя более полному представлению физи­ологической сущности протекающих в мозге процессов.


В познании механизмов работы мозга в последнее время возра­стает роль методов теоретической физиологии, в час­тности методов моделирования (физического, математиче­ского, концептуального). Под моделью
обычно понимают искусст­венно созданный механизм, имеющий определенное подобие с данным рассматриваемым механизмом. Модель как исследователь­ский инструмент отражает наиболее существенные черты модели­руемого объекта, не перегружая его подробными деталями, тем самым несколько упрощая объект исследования. Одним из постулатов теоретической нейрофизиологии является утверждение о сходстве по аналогии. Два механизма считаются аналогичными, если органы, соответствующие один другому, выполняют одну и ту же функцию. Из аналогии двух механизмов делается заключение о том, что функции одного механизма присущи и другому, у которого наличие таких функций экспериментально еще не установлено.


В системе научного познания психофизиологической сущности деятельности мозга трудно переоценить роль такого метода теоре­тической нейрофизиологии, как выдвижение, обоснование и проверка, верификация рабочей гипотезы. Прак­тически использование любого метода физиологического исследова­ния неразрывно связано с выдвижением и разработкой гипотезы — некоторого предположения, являющегося логическим развитием си­стемы суждений и умозаключений, призванных объяснить имею­щийся материал наблюдений и экспериментов. С учетом трудности, порой и недопустимости прямых экспериментальных вмешательств в структуры мозга человека, становится понятной чрезвычайно важ­ная роль теоретического метода в физиологии мозга.


4.1.2. Рефлекторный принцип регуляции функций


Основное положение рефлекторной теории заключается в утвер­ждении, что деятельность организма есть закономерная рефлектор­ная реакция на стимул. Узловым моментом развития рефлекторной теории следует считать классический труд И. М. Сеченова (1863)


«Рефлексы головного мозга», в котором впервые был провозглашен тезис о том, что все виды сознательной и бессознательной жизни человека представляют собой рефлекторные реакции. Рефлекс как универсальная форма взаимодействия организма и среды есть реакция организма, возникающая на раздражение рецепторов и осуществляемая с участием центральной нервной системы.


В естественных условиях рефлекторная реакция происходит при пороговом, надпороговом раздражении входа рефлекторной дуги — рецептивного поля данного рефлекса. Рецептивным полем называется определенный участок воспринимающей чувствительной поверхности организма с расположенными здесь рецепторными клет­ками, раздражение которых инициирует, запускает рефлекторную реакцию. Рецептивные поля разных рефлексов имеют определенную локализацию, рецепторные клетки — соответствующую специали­зацию для оптимального восприятия адекватных раздражителей (на­пример, фоторецепторы располагаются в сетчатке; волосковые слу­ховые рецепторы — в спиральном (кортиевом) органе; проприоре-цепторы — в мыщцах, в сухожилиях, в суставных полостях; вкусовые рецепторы на поверхности языка; обонятельные — в сли­зистой оболочке носовых ходов; болевые, температурные, тактиль­ные рецепторы в коже и т. д.


Структурной основой рефлекса является рефлекторная ду­га — последовательно соединенная цепочка нервных клеток, обес­печивающая осуществление реакции, или ответа, на раздражение. Рефлекторная дуга состоит из афферентного, центрального
и эф­ферентного звеньев,
связанных между собой синаптическими со­единениями (рис. 4.1). Афферентная часть дуги начинается рецеп­торными образованиями, назначение которых заключается в транс­формации энергии внешних раздражений в энергию нервного импульса, поступающего по афферентному звену дуги рефлекса в центральную нервную систему.


В зависимости от сложности структуры рефлекторной дуги раз­личают моно- и полисинаптические рефлексы. В простейшем случае импульсы, поступающие в центральные нервные структуры по аф­ферентным путям, переключаются непосредственно на эфферентную нервную клетку, т. е. в системе рефлекторной дуги имеется одно синаптическое соединение. Такая рефлекторная дуга называется моносинаптической
(например, рефлекторная дуга сухожильного рефлекса в ответ на растяжение). Наличие в структуре рефлекторной дуги двух и более синаптических переключений (т. е. три и более нейронов), позволяет характеризовать ее как полисинаптическую.


Объяснение физиологических механизмов обучения, приобретен­ного навыка, коррекции выполненного ответа на основе принципа рефлекторной реакции неверно, неточно и потребовало существен­ного пересмотра классической схемы рефлекторной реакции, опре­деляемой простой прямой связью: стимул -> нервный центр -> реакция.


Представление о рефлекторной реакции как о целесообразном ответе организма диктует необходимость дополнить рефлекторную


дугу еще одним звеном — петлей обратной связи,
призванной установить связь между реализованным результатом рефлекторной реакции и нервным центром, выдающим исполнительные команды. Обратная связь трансформирует открытую рефлекторную дугу в закрытую. Она может быть реализована разными способами: от исполнительной структуры к нервному центру (промежуточному или эфферентному двигательному нейрону), например, через воз­вратную аксонную коллатераль пирамидного нейрона коры больших полушарий или двигательной моторной клетки переднего рога спин­ного мозга. Обратная связь может обеспечиваться и нервными во­локнами, поступающими к рецепторным структурам и управляю­щими чувствительностью рецепторных афферентных структур ана­лизатора. Такая структура рефлекторной дуги превращает ее в самонастраивающийся нервный контур регуляции физиологической функции, совершенствуя рефлекторную реакцию и, в целом, опти­мизируя поведение организма.


Классификации рефлексов. Существуют различные классифи­кации рефлексов: по способам их вызывания, особенностям рецеп­торов, центральным нервным структурам их обеспечения, биологи­ческому значению, сложности нейронной структуры рефлекторной дуги и т. д.


По способу вызывания различают безусловные рефлексы
(кате­гория рефлекторных реакций, передаваемых по наследству) и ус-


ловные рефлексы
(рефлекторные реакции, приобретаемые на про­тяжении индивидуальной жизни организма).


Различают экстероцептивные рефлексы
— рефлекторные реак­ции, инициируемые раздражением многочисленных экстерорецеп-торов (болевые, температурные, тактильные и т.д.), интероцеп-тивные рефлексы
(рефлекторные реакции, запускаемые раздраже­нием интероцепторов: хемо-, баро-, осморецепторов и т.д.), проприоцептивные рефлексы
(рефлекторные реакции, осуществля­емые в ответ на раздражение проприорецепторов мышц, сухожилий, суставных поверхностей и т.д.).


В зависимости от уровняактивациичасти мозга диф­ференцируют спинномозговые, бульварные, мезенцефальные, диэн-цефальные, кортикальные рефлекторные реакции.


По биологическому назначению рефлексы делят на пищевые, оборонительные, половые
и т. д.


С учетом уровня эволюционного развития, совер­шенствования сложности нервного субстрата, обеспечивающего со­ответствующую рефлекторную реакцию, физиологического значе­ния, уровня интегративной деятельностиорганиз-м а выделяют шесть основных видов рефлексов, или уровней ре­флекторных реакций (А. Б. Коган):


Элементарные безусловные рефлексы
представлены простыми рефлекторными реакциями, осуществляемыми на уровне отдельных сегментов спинного мозга. Они имеют местное значение, вызываются локальным раздражением рецепторов данного сегмента тела и про­являются в виде локальных сегментарных сокращений поперечно­полосатой мускулатуры. Элементарные безусловные рефлексы осу­ществляются по жестко детерминированным программам и имеют четкую определенную структурную основу в виде сегментарного аппарата спинного мозга. В результате такие рефлекторные реакции отличаются высокой степенью автоматизма и стереотипности. Фун­кциональная роль этой категории рефлексов заключается в обеспе­чении простейших приспособительных реакций к внешним воздей­ствиям местного значения, а также в приспособительных изменениях отдельных внутренних органов.


Координационные безусловные рефлексы
представляют собой со­гласованные акты локомоторной деятельности или комплексные ре­акции вегетативных функциональных объединений внутренних ор­ганов. Эти рефлексы также вызываются раздражением определенных групп внешних или внутренних рецепторов, однако их эффект не ограничивается локальной реакцией путем последующей активации широкого класса экстеро-, интеро- и проприорецепторов, а форми­рует сложные координационные акты сокращения и расслабления, возбуждения или торможения деятельности ряда внутренних орга­нов.


В физиологических механизмах реализации рефлекторных ре­акций этого типа значительное место занимает принцип обратной связи, обеспечиваемый соответствующими спинномозговыми струк­турами и осуществляющий антагонистическую, реципрокную ин-


нервацию мышц-синергистов и антагонистов. Функциональное на­значение координационных безусловных рефлексов — формирование на базе локальных элементарных безусловных рефлексов целостных, целенаправленных локомоторных актов или гомеостатических сис­тем организма.


Интегративные безусловные рефлексы
представляют собой даль­нейший шаг в интеграции отдельных безусловных рефлексов, осу­ществляющих сложные двигательные локомоторные акты организма в тесной связи с вегетативным обеспечением, формируя тем самым комплексные поведенческие акты, имеющие определенное биологи­ческое значение. Рефлекторные реакции этого типа инициируются такими биологически важными стимулами, как пищевые, болевые раздражители. Определяющим на входе этих рефлекторных актов становятся не физико-химические свойства стимулов, а в первую очередь их биологическое значение. Интегративные безусловные рефлексы всегда носят целостный системный характер, включая достаточно выраженные соматические и вегетативные компоненты. Их реализация оказывается весьма пластичной, тесно связанной со многими сильно развитыми проприоцептивными обратными связями, обеспечивающими точную коррекцию выполняемого сложного по­веденческого акта в соответствии с изменениями в состоянии орга­низма. Пример такой реакции — ориентировочная реакция. Био­логическое значение последней заключается в перестройке организ­ма, которая обеспечивает оптимальную подготовку к восприятию и быстрому анализу нового неизвестного сигнала в целях организации рационального ответа. Интегративные безусловные рефлексы тре­буют для своей реализации надсегментарных механизмов нервно-рефлекторной регуляции поведения организма. Эти рефлексы озна­чают переход от сравнительно простых безусловных рефлексов к поведенческим актам.


Сложнейшие безусловные рефлексы (инстинкты)
представляют собой видовые стереотипы поведения, организующиеся на базе ин-тегративных рефлексов по генетически заданной программе. В ка­честве запускающих стереотипные поведенческие реакции раздра­жений выступают стимулы, имеющие отношение к питанию, защите, размножению и другим биологически важным потребностям орга­низма.


Сложнейшие безусловные рефлексы образованы последователь­ными интегративными реакциями, построенными таким образом, что завершение одной реакции становится началом следующей. Адаптивность инстинктов усиливается благодаря наслоению на слож­нейшие безусловные рефлексы условных, приобретаемых на ранних этапах онтогенеза. Нервный субстрат, ответственный за физиоло­гические механизмы инстинктивного поведения, представляет иерар­хическую систему соподчиненных центров интегративных, коорди­национных и элементарных безусловных рефлексов. Жесткая пред­определенность инстинктивных реакций обусловлена этапной последовательностью актов инстинктивного поведения, ограничива­ющей сферу функционирования обратной связи от последующего


этапа к предыдущему, уже реализованному. Инстинктивные реакции отражают исторический опыт вида. В субъективной сфере человека сложнейшие безусловные рефлексы проявляются в виде последова­тельных влечений и желаний, в сложной игре эмоций.


Элементарные условные рефлексы
проявляются в интегративных реакциях, вызываемых ранее индифферентными раздражителями, приобретающими сигнальное значение в результате жизненного опы­та или подкрепления их безусловными стимулами (сигналами), имеющими биологическое значение. Основным принципиальным от­личием этой категории рефлекторных реакций является то, что они образуются в процессе индивидуальной жизни. Условнорефлектор-ные реакции образуются, усложняются, видоизменяются на протя­жении всей жизни; наиболее простые из них формируются в раннем возрасте. Нервным субстратом, отвечающим за осуществление ус-ловнорефлекторных реакций, является филогенетически наиболее молодая структура головного мозга — кора больших полушарий. Многоканальность и взаимозаменяемость путей реализации услов-норефлекторного механизма лежат в основе высокой пластичности и надежности условнорефлекторных реакций. В системе рефлектор­ных реакций появление условного рефлекса означает качественно новый скачок в приспособительном поведении высших животных и человека. Условнорефлекторные реакции дают возможность орга­низму заблаговременно отвечать на приближающиеся жизненно важ­ные ситуации. В психической сфере деятельности человека условные рефлексы закладывают начало ассоциативному способу мышления.


Сложные формы высшей нервной деятельности
представлены психическими реакциями, возникающими на основе интеграции эле­ментарных условных рефлексов и аналитико-синтетических меха­низмов абстрагирования. Абстрагирование от конкретного содержа­ния безусловных подкрепляющих раздражителей обеспечивает воз­можность более полного и целостного восприятия окружающего мира, адекватного прогнозирования и программирования поведения. В качестве вызывающих подобные реакции стимулов обычно вы­ступают сложные комплексные раздражители. Часто такие рефлек­торные реакции имеют усеченную рефлекторную дугу (отсутствует эфферентное звено рефлекторной дуги). Сложные формы высшей нервной деятельности оказываются связанными с синтетическими процессами, обеспечивающими целостные субъективные образы внешнего мира, целенаправленные программы поведения, различные проявления абстрактной мыслительной деятельности человека (пси­хонервная деятельность, рассудочное мышление, функции второй сигнальной системы).


4.1.3. Торможение
в центральной нервной системе


Интегративная и координационная деятельность центральных нервных образований осуществляется при обязательном участии тормозных процессов.


Торможение в центральной нервной системе — активный


процесс, проявляющийся внешне в подавлении или в ослаблении процесса возбуждения и характеризующийся определенной интен­сивностью и длительностью.


Торможение в норме неразрывно связано с возбуждением, яв­ляется его производным, сопутствует возбудительному процессу, » ограничивая и препятствуя чрезмерному распространению послед­него. При этом торможение часто ограничивает возбуждение и вместе с ним формирует сложную мозаику активированных и за­торможенных зон в центральных нервных структурах. Формирую­щий эффект тормозного процесса развивается в пространстве и во времени. Торможение — врожденный процесс, постоянно совершен­ствующийся в течение индивидуальной жизни организма.


При значительной силе фактора, вызвавшего торможение, оно может распространяться на значительное пространство, вовлекая в тормозной процесс большие популяции нервных клеток.


История развития учения о тормозных процессах в центральной нервной системе начинается с открытия И. М. Сеченовым эффекта центрального торможения
(химическое раздражение зрительных бугров тормозит простые спинномозговые безусловные реакции). Вначале предположение о существовании специфических тормозных нейронов, обладающих способностью оказывать тормозные влияния на другие нейроны, с которыми имеются синаптические контакты, диктовалось логической необходимостью для объяснения сложных форм координационной деятельности центральных нервных образо­ваний. Впоследствии это предположение нашло прямое эксперимен­тальное подтверждение (Экклс, Реншоу), когда было показано су­ществование специальных вставочных нейронов, имеющих синап­тические контакты с двигательными нейронами. Активация этих вставочных нейронов закономерно приводила к торможению двига­тельных нейронов. В зависимости от нейронного механизма, способа вызывания тормозного процесса в ЦНС различают несколько видов торможения: постсинаптическое, пресинаптическое, пессимальное.


Постсинаптическое торможение
— основной вид торможения, развивающийся в постсинаптической мембране аксосоматических и аксодендритических синапсов под влиянием активации тормозных нейронов, в концевых разветвлениях аксонных отростков которых освобождается и поступает в синаптйческую щель тормозной меди­атор. Тормозной эффект таких нейронов обусловливается специфи­ческой природой медиатора — химического переносчика сигнала с одной клетки на другую. Наиболее распространенным тормозным медиатором является гамма-аминомасляная кислота (ГАМК). Хи­мическое действие ГАМК вызывает в постсинаптической мембране эффект гиперполяризации в виде тормозных постсинаптических по­тенциалов (ТПСП), пространственно-временная суммация которых повышает уровень мембранного потенциала (гиперполяризация), приводит к урежению или полному прекращению генерации рас­пространяющихся ПД.


Возвратным торможением
называется угнетение (подавление) активности нейрона, вызываемое возвратной коллатералыо аксона


нервной клетки. Так, мотонейрон переднего рога спинного мозга прежде чем покинуть спинной мозг дает боковую (возвратную) ветвь, которая возвращается назад и заканчивается на тормозных нейронах (клетки Реншоу). Аксон последней заканчивается на мо­тонейронах, оказывая на них тормозное действие.


Пресинаптическое торможение
развертывается в аксоаксональ-ных синапсах, блокируя распространение возбуждения по аксону. Пресинаптическое торможение часто выявляется в структурах моз­гового ствола, в спинном мозге (рис. 4.2).


Пессимальное торможение
представляет собой вид торможения центральных нейронов. Оно наступает при высокой частоте раздра­жения. В первый момент возникает высокая частота ответного воз­буждения. Через некоторое время стимулируемый центральный ней­рон, работая в таком режиме, переходит в состояние торможения.


4.1.4. Свойства нервных центров


Рефлекторная деятельность организма во многом определяется общими свойствами нервных центров.


Нервныйцентр — совокупность структур центральной нервной системы, координированная деятельность которых обес­печивает регуляцию отдельных функций организма или опреде­ленный рефлекторный акт. Представление о структурно-функци­ональной основе нервного центра обусловлено историей развития учения о локализации функций в центральной нервной системе. На смену старым теориям об узкой локализации, или эквипотен-циальности, высших отделов головного мозга, в частности коры большого мозга, пришло современное представление о динамиче-


ской локализации функций,
основанное на признании существо­вания четко локализованных ядерных структур нервных центров и менее определенных рассеянных элементов анализаторных си­стем мозга. При этом с цефализацией нервной системы растут удельный вес и значимость рассеянных элементов нервного центра, внося существенные различия в анатомических и физиологических границах нервного центра. В результате функциональный нервный центр может быть локализован в разных анатомических структу­рах. Например, дыхательный центр представлен нервными клет­ками, расположенными в спинном, продолговатом, промежуточном мозге, в коре большого мозга.


Нервные центры имеют ряд общих свойств, что во многом определяется структурой и функцией синаптических образований.


1. Односторонность проведения возбуждения. В рефлекторной дуге, включающей нервные центры, процесс возбуждения распро­страняется в одном направлении (от входа, афферентных путей к выходу, эфферентным путям).


2. Иррадиация возбуждения. Особенности структурной органи­зации центральных нейронов, огромное число межнейронных со­единений в нервных центрах существенно модифицируют (изменя­ют) направление распространения процесса возбуждения в зависи­мости от силы раздражителя и функционального состояния центральных нейронов. Значительное увеличение силы раздражи­теля приводит к расширению области вовлекаемых в процесс воз­буждения центральных нейронов — иррадиации возбуждения.


3. Суммация возбуждения. В работе нервных центров значи­тельное место занимают процессы пространственной и временной суммации возбуждения, основным нервным субстратом которой яв­ляется постсинаптическая мембрана. Процесс пространственной суммации
афферентных потоков возбуждения облегчается наличием на мембране нервной клетки сотен и тысяч синаптических контактов. Процессы временной суммации
обусловлены суммацией ВПСП на постсинаптической мембране.


4. Наличие синаптической задержки. Время рефлекторной ре­акции зависит в основном от двух факторов: скорости движения возбуждения по нервным проводникам и времени распространения возбуждения с одной клетки на другую через синапс. При относи­тельно высокой скорости распространения импульса по нервному проводнику основное время рефлекса приходится на синаптическую передачу возбуждения (синаптическая задержка). В нервных клетках высших животных и человека одна синаптическая задержка при­мерно равна 1 мс. Если учесть, что в реальных рефлекторных дугах имеются десятки последовательных синаптических контактов, ста­новится понятной длительность большинства рефлекторных реак­ций — десятки миллисекунд.


5. Высокая утомляемость. Длительное повторное раздражение рецептивного поля рефлекса приводит к ослаблению рефлекторной реакции вплоть до полного исчезновения, что называется утомле­нием. Этот процесс связан с деятельностью синапсов — в последних


наступает истощение запасов медиатора, уменьшаются энергетиче­ские ресурсы, происходит адаптация постсинаптического рецептора к медиатору.


6. Тонус. Тонус, или наличие определенной фоновой активности нервного центра, определяется тем, что в покое в отсутствие спе­циальных внешних раздражений определенное количество нервных клеток находится в состоянии постоянного возбуждения, генерирует фоновые импульсные потоки. Даже во сне в высших отделах мозга остается некоторое количество фоновоактивных нервных клеток, формирующих «сторожевые пункты» и определяющих некоторый тонус соответствующего нервного центра.


7. Пластичность. Функциональная возможность нервного центра существенно модифицировать картину осуществляемых рефлектор­ных реакций. Поэтому пластичность нервных центров тесно связана с изменением эффективности или направленности связей между нейронами.


8. Конвергенция. Нервные центры высших отделов мозга яв­ляются мощными коллекторами, собирающими разнородную аф­ферентную информацию. Количественное соотношение перифери­ческих рецепторных и промежуточных центральных нейронов (10:1) предполагает значительную конвергенцию («сходимость») разномодальных сенсорных посылок на одни и те же центральные нейроны. На это указывают прямые исследования центральных нейронов: в нервном центре имеется значительное количество поливалентных, полисенсорных нервных клеток, реагирующих на разномодальные стимулы (свет, звук, механические раздражения и т. д.). Конвергенция на клетках нервного центра разных аффе­рентных входов предопределяет важные интегративные, перераба­тывающие информацию функции центральных нейронов, т. е. вы­сокий уровень интеграционных функций. Конвергенция нервных сигналов на уровне эфферентного звена рефлекторной дуги опре­деляет физиологический механизм принципа «общего конечного пути» по Ч. Шеррингтону.


9. Интеграция в нервных центрах. Важные интегративные фун­кции клеток нервных центров ассоциируются с интегративными процессами на системном уровне в плане образования функцио­нальных объединений отдельных нервных центров в целях осу­ществления сложных координированных приспособительных цело­стных реакций организма (сложные адаптивные поведенческие акты).


10. Свойство доминанты. Доминантным
называется временно господствующий в нервных центрах очаг (или доминантный центр)
повышенной возбудимости в центральной нервной системе. По А. А. Ухтомскому, доминантный нервный очаг характеризуется та­ кими свойствами, как повышенная возбудимость, стойкость и инер­ тность возбуждения, способность к суммированию возбуждения. В доминантном очаге устанавливается определенный уровень ста­ ционарного возбуждения, способствующий суммированию ранее под- пороговых возбуждений и переводу на оптимальный для данных


условий ритм работы, когда этот очаг становится наиболее чувст­вительным. Доминирующее значение такого очага (нервного центра) определяет его угнетающее влияние на другие соседние очаги воз­буждения. Доминантный очаг возбуждения «притягивает» к себе возбуждение других возбужденных зон (нервных центров). Принцип доминанты определяет формирование главенствующего (активиру­ющего) возбужденного нервного центра в тесном соответствии с ведущими мотивами, потребностями организма в конкретный момент времени.


11. Цефализация нервной системы. Основная тенденция в эво­люционном развитии нервной системы проявляется в перемещении, сосредоточении функции регуляции и координации деятельности организма в головных отделах ЦНС. Этот процесс называется цефализацией
управляющей функции нервной системы. При всей сложности складывающихся отношений между старыми, древними и эволюционно новыми нервными образованиями стволовой части мозга общая схема взаимных влияний может быть представлена следующим образом: восходящие влияния (от нижележащих «ста­рых» нервных структур к вышележащим «новым» образованиям) преимущественно носят возбуждающий стимулирующий характер, нисходящие (от вышележащих «новых» нервных образований к нижележащим «старым» нервным структурам) носят угнетающий тормозной характер. Эта схема согласуется с представлением о росте в процессе эволюции роли и значения тормозных процессов в осуществлении сложных интегративных рефлекторных ре­акций.


4.1.5. Принципы интеграции и координации в деятельности центральной нервной системы


В реализации информационно-управляющей функции нервной системы значительная роль принадлежит процессам интеграции и координации деятельности отдельных нервных клеток и нейронных ансамблей, которые основаны на особенностях взаимо­действия информационных потоков на уровне нервных клеток и рефлекторных дуг. Конструктивные особенности афферентных, промежуточных (центральных) и эфферентных нейронов обеспе­чивают широкий диапазон иррадиации
и концентрации возбужде­ния
на основе двух кардинальных принципов: дивергенции и конвергенции. Дивергенцией называется способность нервной клетки устанавливать многочисленные синаптические связи с раз­личными нервными клетками. Благодаря этому одна нервная клет­ка может участвовать в нескольких различных реакциях, пере­давать возбуждение значительному числу других нейронов, кото­рые могут возбудить большее количество нейронов, обеспечивая широкую иррадиацию возбудительного процесса
в центральных нервных образованиях.


Процессы конвергенции заключаются в схождении различ­ных импульсных потоков от нескольких нервных клеток к одному


и тому*/же нейрону (см. раздел 4.1.4). Процесс конвергенции ха­рактерен не только для однотипных нервных клеток. Например, на мотонейронах спинного мозга, кроме первичных афферентных во­локон, конвергируют волокна различных нисходящих трактов от супраспинальных и собственно спинальных центров, а также от возбуждающих и тормозных вставочных промежуточных нейронов. В результате мотонейроны спинного мозга выполняют функцию общего конечного пути для многочисленных нервных образований, включая и надсегментный аппарат головного мозга, имеющих от­ношение к регуляции двигательной функции.


В координационной деятельности центральных нервных образо­ваний значительная роль взаимодействиярефлексов, ко­торая проявляется в различных эффектах (в облегчении, или сум-мации, и в угнетении, или подавлении, возбуждения).


Примером координационного взаимодействия рефлексов явля­ется реципрокная иннервация мышц-антагонистов.
Известно, что сгибание или разгибание конечностей осуществляется благодаря согласованной работе двух функционально антагонистических мышц: сгибателей и разгибателей. Координация обеспечивается организацией антагонистических отношений между мотонейронами сгибателей и разгибателей, иннервирующих соответствующие мыш­цы. Реципрокные функциональные отношения складываются в сег­ментарных структурах спинного мозга благодаря включению в дугу спинномозгового рефлекса дополнительного элемента — спе­циального тормозного нейрона (клетка Реншоу). Схематически в общем виде этот механизм выглядит следующим образом: сигнал от афферентного звена через обычную вставочную (промежуточ­ную) нервную клетку вызывает возбуждение мотонейрона, иннер-вирующего мышцу-сгибатель, а через дополнительную клетку Ре­ншоу тормозит мотонейрон, иннервирующий мышцу-разгибатель. Так происходит координированное сгибание конечности; напротив, при выполнении разгибания конечности возбуждается мотонейрон мышцы-разгибателя, а через вставочную клетку Реншоу тормо­зится, угнетается мотонейрон мышцы-сгибателя (рис. 4.3). Таким образом акт сгибания конечности, представляющий собой работу мышц-антагонистов, обеспечивается формированием реципрокных антагонистических отношений между нервными центрами соответ­ствующих мышц благодаря наличию специальных тормозных ней­ронов — клеток Реншоу.


В центральной нервной системе весьма распространены интег-ративные феномены — посттетаническая потенциация, окклюзия, облегчение.


Феномен посттетанической потенциации
проявляется следу­ющим образом. Раздражая стимулами редкой частоты афферентный нерв, можно получить некоторый рефлекс определенной интенсив­ности. Если затем этот нерв в течение некоторого времени подвергать высокочастотному ритмическому раздражению (300—400 стимулов в секунду), то повторное редкое ритмическое раздражение приведет к резкому усилению реакции (рис. 4.4).


Если два нервных центра рефлекторных реакций имеют частично перекрываемые рецептивные поля, то при совместном раздражении обоих рецептивных полей реакция будет меньше, чем арифметиче­ская сумма реакций при изолированном раздражении каждого из рецептивных полей — феномен окклюзии
(рис. 4.5). В раде случаев вместо такого ослабления реакции при совместном раздражении рецептивных полей двух рефлексов можно наблюдать феномен об­легчения (т. е. суммарная реакция выше суммы реакции при изо­лированном раздражении этих рецептивных полей). Это результат того, что часть общих для обоих рефлексов нейронов при изолиро-


ванном раздражении оказывает подпороговый эффект для вызывания рефлекторных реакций. При совместном раздражении они сумми­руются и достигают пороговой силы, в результате конечная реакция оказывается больше суммы изолированных реакций.


4.1.6. Нейронные комплексы и их роль в деятельности центральной нервной системы


Концепция организации и самоорганизации в строении и фун­кции нервной системы получила наибольшее развитие в представ­лениях о модульной (ансамблевой) конструкции нервной системы как принципиальной основы построения функциональных систем мозга. Хотя простейшей структурной и функциональной единицей нервной системы является нервная клетка, многочисленные данные современной нейрофизиологии подтверждают тот факт, что сложные функциональные «узоры» в центральных нервных образованиях оп­ределяются эффектами скоординированной активности в отдельных популяциях (ансамблях) нервных клеток.


Образования головного мозга состоят из повторяющихся локаль­ных нейронных сетей модулей, которые варьируют от структуры к структуре по числу клеток, внутренним связям и способу обработки информации. Каждый модуль, или нейронный ансамбль, представ­ляет собой совокупность локальных нейронных сетей, которая об­рабатывает информацию, передает ее со своего входа на выход, подвергает трансформации, определяемой общими свойствами струк­туры и ее внешними связями. Один модуль может входить в состав различных функциональных образований.


Группирование нейронов в ансамбли нервных клеток для совме­стного выполнения функций следует рассматривать как проявление кооперативного способа деятельности. Основным функциональным признаком ансамблевой организации является локальный синергизм реакций нейронов центральной ядерной структуры ансамбля, окру­женной зоной заторможенных и нереагирующих нейронов (А. Б. Ко­ган, О. Г. Чораян). Размеры группировок нейронов в горизонтальной


плоскости в среднем достигают диаметра 100—150 мкм, что соот­ветствует размерам клеточных объединений, выявляемых по фун­кциональным показателям синергичности возбудительных реакций на адекватное раздражение их рецептивных полей. Размеры зоны синаптических окончаний вторичного специфического афферентного волокна в корковых структурах (100—150 мкм) близок к простран­ственным характеристикам элементарного нейронного ансамбля. Примерно такие же размеры имеет и сфера терминальных развет­влений отдельного неспецифического волокна, но общая зона всех ветвей неспецифического волокна образует сферу диаметром 600— 700 мкм, что соответствует размерам зоны ветвления первичного специфического афферентного волокна.


Схема активации нейронного ансамбля может быть представлена следующим образом. Сигналы, поступающие по первичным специ­фическим и неспецифическим афферентам, активируют вначале обширную зону, вовлекая в процесс возбуждения группу нейронных ансамблей. Более дробная конфигурация нейронных группировок в зоне диаметром 100—150 мкм формируется под влиянием вторичных афферентных волокон, несущих сигналы внутрицентрального вза­имодействия (рис. 4.6). Из множества элементарных нейронных ансамблей образуется центральная мозаика активности, определя­ющая постоянно меняющийся «узор» возбуждения и торможения в нервном центре. Таким образом, ансамблевая конструкция цент-


ральных проекционных зон анализатора в коре большого мозга представляется как результат двух физиологических механизмов: 1) мощной активации большой зоны центральных нейронов, свя­занных с терминалями афферентных волокон; 2) центральными нейронами, в функциональном отношении аналогичными клеткам Реншоу в спинном мозге, препятствующими широкому растеканию центрального возбуждения путем формирования тормозной каемки вокруг возбужденных нервных клеток. Разнообразие «узоров» воз­буждения и торможения в центральной мозаике нейрональной ак­тивности формируется из элементарных микроочагов возбуждения, которые образуют фундамент иерархической конструкции клеточных систем мозга.


Принципиальным моментом ансамблевой концепции работы моз­га является утверждение, что на каждом этапе переработки инфор­мации в качестве функциональной единицы выступает не отдельно взятая нервная клетка, а внутренне интегрированное клеточное объединение — нейронныйансамбль, основными характе­ристиками которого является: а) локальный синергизм реакции ней­ронов центральной зоны; б) наличие тормозной окантовки, образо­ванной клетками с тормозными реакциями на данное раздражение, окружающими центральную зону клеток с возбудительными реак­циями; в) наличие определенного числа нейронов со стабильными ответами (обычно они расположены в центральной ядерной зоне ансамбля) при значительно большем числе клеток с вариабельными параметрами импульсного ответа на адекватное афферентное раз­дражение. Элементарные нейронные ансамбли как функциональные единицы рабочих механизмов мозга играют роль своего рода «кир­пичиков», из которых формируются более сложные блоки и конст­рукции мозга.


Наблюдающаяся структурная и функциональная избыточность ансамблевой модульной конструкции центральных нервных образо­ваний как следствие ансамблевой организации ассоциируется со значительной информационной избыточностью сенсорных посылок, распространяющихся по нейронным системам мозга. Избыточность нейронных элементов и межнейронных связей в ансамбле — ха­рактерная черта структурно-функциональной организации цент­ральных нервных образований — приводит к мультифункциональ-ности, которой обусловлены пластичность и высокие компенсаторные способности нервных механизмов.


Когда индивидуальное участие нейрона в данной реакции ста­новится не обязательным, а вероятностным и возможна относитель­ная взаимозаменяемость элементов, повышаются надежность нерв­ного механизма управления и связи в организме. Подвижная ди­намическая структура нейронных ансамблей, формируемая вероятностным участием в них отдельных нервных клеток, обус­ловливает большую гибкость и легкость перестроек межнейронных связей; эти перестройки объясняют высокую пластичность, харак­терную для нервных механизмов высших отделов мозга.


Вероятностные нейронные ансамбли образуются структурно-функ-


циональными блоками нервных клеток, воспринимающих и пере­рабатывающих идентичную афферентную информацию. Эти ансам­бли составляют основу функциональной мозаики процессов цент­рального возбуждения и торможения. Мозаика вероятностных ней­ронных ансамблей на всех уровнях конструкции нервного контура управления, обеспечивающего разные формы целенаправленного по­ведения, образует функциональную систему мозга.


4.1.7. Гематоэнцефалический барьер и его функции


Организм человека и высших животных обладает рядом специ­фических физиологических систем, обеспечивающих приспособление (адаптацию) к постоянно изменяющимся условиям существования. Этот процесс тесно связан с необходимостью обязательного сохра­нения постоянства существенных физиологических параметров, внутренней среды организма, физико-химического состава тканевой жидкости межклеточного пространства.


Среди гомеостатических приспособительных механизмов, при­званных защитить органы и ткани от чужеродных веществ и регули­ровать постоянство состава тканевой межклеточной жидкости, веду­щее место занимает гематоэнцефалический барьер. По определению Л. С. Штерн, гематоэнцефалический барьер объединяет совокупность физиологических механизмов и соответствующих ана­томических образований в центральной нервной системе, участвую­щих в регулировании состава цереброспинальной жидкости (ЦСЖ).


В представлениях о гематоэнцефалическом барьере в качестве основных положений подчеркивается следующее: 1) проникновение веществ в мозг осуществляется главным образом не через ликворные пути, а через кровеносную систему на уровне капилляр — нервная клетка; 2) гематоэнцефалический барьер является в большей степени не анатомическим образованием, а функциональным понятием, ха­рактеризующим определенный физиологический механизм. Как лю­бой существующий в организме физиологический механизм, гема­тоэнцефалический барьер находится под регулирующим влиянием нервной и гуморальной систем; 3) среди управляющих гематоэнце-фалическим барьером факторов ведущим является уровень деятель­ности и метаболизма нервной ткани.


Гематоэнцефалический барьер регулирует проникновение из кро­ви в мозг биологически активных веществ, метаболитов, химических веществ, воздействующих на чувствительные структуры мозга, пре­пятствует поступлению в мозг чужеродных веществ, микроорганиз­мов, токсинов.


Основной функцией, характеризующей гематоэнцефалический барьер, является проницаемость клеточной стенки. Необходимый уровень физиологической проницаемости, адекватный функциональ­ному состоянию организма, обусловливает динамику поступления в нервные клетки мозга физиологически активных веществ. Струк­тура гистогематических барьеров — основного звена гематоэнцефа-лического барьера, представлена на рис. 4.7.


Функциональная схема гематоэнцефалического барьера включает в себя наряду с гистогематическим барьером нейроглию и систему ликворных пространств (Я. А. Росин) (схема 4.1). Гистогематический барьер имеет двойную функцию: регуляторную и защитную. Регу-ляторная функция обеспечивает относительное постоянство физи­ческих и физико-химических свойств, химического состава, физи­ологической активности межклеточной среды органа в зависимости от его функционального состояния. Защитная функция гистогема-тического барьера заключается в защите органов от поступления чужеродных или токсичных веществ эндо- и экзогенной природы.


Ведущим компонентом морфологического субстрата гематоэнце­фалического барьера, обеспечивающим его функции, является стенка капилляра мозга. Существуют два механизма проникновения веще­ства в клетки мозга: через цереброспинальную жидкость, которая служит промежуточным звеном между кровью и нервной или гли-альной клеткой, которая выполняет питательную функцию (так называемый ликворный путь), и через стенку капилляра. У взрослого организма основным путем движения вещества в нервные клетки


является гематогенный (через стенки капилляров); ликворныи путь становится вспомогательным, дополнительным.


Проницаемость гематоэнцефалического барьера зависит от фун­кционального состояния организма, содержания в крови медиаторов, гормонов, ионов. Повышение их концентрации в крови приводит к снижению проницаемости гематоэнцефалического барьера для этих веществ.


Функциональная система гематоэнцефалического барьера пред­ставляется важным компонентом нейрогуморальной регуляции. В частности, через гематоэнцефалический барьер реализуется прин­цип обратной химической связи в организме. Именно таким образом осуществляется механизм гомеостатической регуляции состава внут­ренней среды организма.


Регуляция функций гематоэнцефалического барьера осуществ­ляется высшими отделами ЦНС и гуморальными факторами. Зна­чительная роль в регуляции отводится гипоталамо-гипофизарной адреналовой системе. В нейрогуморальной регуляции гематоэнце­фалического барьера важное значение имеют обменные процессы, в частности в ткани мозга. При различных видах церебральной патологии, например травмах, различных воспалительных пораже­ниях ткани мозга, возникает необходимость искусственного сниже­ния уровня проницаемости гематоэнцефалического барьера. Фарма­кологическими воздействиями можно увеличить или уменьшить про­никновение в мозг различных веществ, вводимых извне или циркулирующих в крови.


4.1.8. Цереброспинальная жидкость


Цереброспинальная жидкость (син.: ликвор, спинно­мозговая жидкость) — прозрачная бесцветная жидкость, заполня­ющая полости желудочков мозга, субарахноидальное пространство головного мозга и спинномозговой канал, периваскулярные и пери-целлюлярные пространства в ткани мозга. Цереброспинальная жид­кость выполняет питательные функции, а также определяет вели­чину внутримозгового давления. Состав цереброспинальной жидко­сти формируется в процессе обмена веществ между мозгом, кровью и тканевой жидкостью, включая все компоненты ткани мозга. В це­реброспинальной жидкости содержится ряд биологически активных соединений: гормоны гипофиза и гипоталамуса, ГАМ К, АХ, норад-реналин, дофамин, серотонин, малатонин, продукты их метаболизма.


Среди клеток цереброспинальной жидкости преобладают лимфо­циты (более 60% от общего числа клеток) — в норме в 1 мкл спинномозговой жидкости содержится 1,5 клетки. Химический состав цереброспинальной жидкости очень близок к таковому крови: 89— 90% воды, 10—11% сухого остатка, содержащего органические и неорганические вещества, участвующие в метаболизме мозговой ткани. Общий белок цереброспинальной жидкости содержит до 30 различных фракций; основную часть его формируют миелин и образующиеся при его распаде промежуточные продукты, глико-пептиды, липопротеины, полиамины, белок S-100. Цереброспиналь­ная жидкость содержит лизоцим, ферменты (кислая и щелочная фосфатазы, рибонуклеазы, лактатдегидрогеназа, ацетилхолинэсте-раза, пептидазы и др.).


В клинической практике важную диагностическую значимость имеет белковый коэффициент Кафки цереброспинальной жидко­сти — отношение количества глобулинов к альбуминам. В норме он составляет 0,2—0,3.


К основным ликвороносным путям относятся боковые желудочки, IIIи IVжелудочки головного мозга, водопровод среднего мозга, сильвиев водопровод, цистерны головного и спинного мозга. Система ликворообращения мозга включает три основных звена: ликворо-продукцию, ликвороциркуляцию и отток ликвора.


Продукция цереброспинальной жидкости осуществляется в ос­новном сосудистыми сплетениями желудочков мозга путем фильт­рации из плазмы крови. В образовании цереброспинальной жидкости принимают участие структурные элементы мозга благодаря возмож­ности диффузии межклеточной жидкости через эпендиму в желу­дочки головного мозга и через межклеточные пространства к по­верхности мозга. В продукции цереброспинальной жидкости прини­мают участие и клетки мозговой ткани (нейроны и глия). В нормальных условиях экстраваскулярная продукция цереброспи­нальной жидкости весьма незначительна.


Путь постоянной циркуляции цереброспинальной жидкости схе­матически выглядит следующим образом: из боковых желудочков мозга через межжелудочковое отверстие (отверстие Монро) она


поступает в IIIжелудочек, затем через водопровод среднего мозга — в IVжелудочек, откуда большая часть жидкости через срединную апертуру (отверстие Мажанди) и латеральные апертуры (отверстия Лушки) переходит в цистерны основания мозга, достигает борозды среднего мозга (сильвиева борозда) и поднимается в субарахнои-дальное пространство полушарий большого мозга. Циркуляция це­реброспинальной жидкости определяется градиентом гидростатиче­ского давления в ликворных путях, пространствах мозга, обуслов­ленного пульсацией внутричерепных кровеносных сосудов, изменениями венозного давления и положения тела в пространстве.


Отток цереброспинальной жидкости преимущественно (на 30— 40%) происходит через арахноидальное пространство в продольный синус (часть венозной системы головного мозга). Движущим фак­тором такого перемещения цереброспинальной жидкости является градиент гидростатического давления ее и венозной крови. Давление цереброспинальной жидкости в норме превышает венозное в верхнем продольном синусе на 15—20 мм вод. ст. Около 10% жидкости оттекает через сосудистое сплетение желудочков мозга, от 5 до 30% — в лимфатическую систему через периневральные простран­ства черепных и спинномозговых нервов. Некоторое количество жидкости резорбируется эпендимой желудочков мозга и сосудистыми сплетениями.


Общий объем циркуляции цереброспинальной жидкости у взрос­лого человека в норме составляет 90—200 мл, в среднем 140 мл. В сутки вырабатывается около 500 мл цереброспинальной жидкости, обновление ее происходит примерно 4—8 раз в сутки. Значительные колебания в скорости обновления цереброспинальной жидкости за­висят от суточного режима питания, водного режима, колебаний активности физиологических процессов в организме, физиологиче­ской нагрузки на ЦНС и др.


Скорость образования цереброспинальной жидкости может зна­чительно возрастать при развитии патологических процессов (вос­палительные процессы, черепномозговые травмы, субарахноидаль-ные кровоизлияния, операции по поводу опухоли мозга и т.д.).


4.1.9. Элементы кибернетики нервной системы


Нейрокибернетика (кибернетика нервной системы) — наука, изучающая процессы управления и связи в нервной системе. Такое определение предмета и задач кибернетики нервной системы позволяет выделить три составных компонента (раздела) ее: орга­низация, управление и информационная деятельность.


В сложных полифункциональных интегративных системах мозга невозможно раздельное функционирование элементов организации, управления и информационной деятельности, они тесно связаны и взаимообусловлены. Организация нервной системы во многом пред­определяет механизмы управления и эффективности передачи и переработки информации. Управление модифицирует механизмы организации и самоорганизации, обеспечивает эффективность и на-


дежность информационной функции системы. Информационная де­ятельность является обязательным условием совершенствования про­цесса организации, управления как оперативный прием эффектив­ного воздействия и целенаправленного видоизменения.


Организация. В центре внимания теории организации и само­организации в нейрокибернетике лежит представление о системных свойствах конструкций мозга на разных морфологических и эволю­ционных уровнях конструкции нервной системы. Ведущим свойством системы является организация. Система — совокупность элементов, где конечный результат кооперации проявляется не в виде суммы эффектов составляющих элементы, а в виде произведения эффектов, т. е. системность как характерное свойство организованной сложно­сти предполагает неаддитивное сложение функций отдельных ком­понентов. Объединение двух и более элементов в системе рождает новое качество, которое не может быть выражено через качество составляющих компонентов.


Отдельный нейрон является носителем свойств, позволяющих ему интегрировать влияние других нейронов, строить свою актив­ность на основании оценки результатов интеграции. С другой сто­роны, на основе таких свойств происходит объединение индивиду­альных нейронов в системы, обладающие новыми свойствами, от­сутствующими у входящих в их состав единиц. Характерной чертой таких систем является то, что активность каждого составного эле­мента в них определяется не только влияниями, поступающими по прямым афферентным путям каждого элемента, но и состоянием других элементов системы. Свойство системности в нервных обра­зованиях возникает тогда, когда деятельность каждой нервной клет­ки оказывается функцией не только непосредственно поступившего к ней сигнала, но и функцией тех процессов, которые происходят в остальных клетках нервного центра (П. Г. Костюк).


Оптимальная организация нервных конструкций обычно сочета­ется со значительной структурой или функциональной избыточно­стью, которой принадлежит решающая роль в обеспечении пластич­ности и надежности биологической системы.


Нервная система животных и человека — самая совершенная по структуре система, разнообразие форм и размеров клеток которой не имеет аналога ни в какой другой физиологической системе биологического организма. Все многообразие и сложность форм нер­вных клеток в разных структурах и органах есть результат и основа богатого разнообразия функций элементов ведущей регуляторной системы организма. Часто наблюдаемые петлеобразные структуры в архитектонике волокнистых структур мозга (боковые и возвратные ветви аксонных отростков), обеспечивающих возможность цирку-ляторного прохождения информации, очевидно, выполняют функции механизма обратной связи, играющей столь важную роль в кибер­нетике нервной системы.


Важным моментом организации и самоорганизации служит си­стемообразующий фактор — результат действия (П.К.Анохин). Реальной физиологической системой нейронов является комплекс


нервных клеток, у которых взаимодействие и взаимоотношения приобретают характер взаимодействия элементов на получение фик­сированного полезного результата (см. раздел 3.3).


Управление.
Суть процесса управления заключается в том, что из множества возможных воздействий отбираются и реализуются те, которые направлены на поддержание, обеспечение рассматри­ваемой функции органа. Управление представляет собой информа­ционный процесс, предусматривающий обязательность контроля за поведением объекта благодаря кольцевой, или круговой, передаче сигналов. Это предусматривает два вида передачи информации: по цепи управления от регулятора к объекту и в обратном направле­нии — от объекта к регулятору, при помощи обратной связи, по которой поступает информация о фактическом состоянии управля­емого объекта.


Обратнаясвязь бывает двух видов: положительной и
отрицательной. В случае положительной обратной связи
сигналы, поступающие на вход системы по цепи обратной связи, действуют в том же направлении, что и основные сигналы (воздействие среды). Положительная обратная связь ведет не к устранению, а к усилению рассогласования в системе. Отрицательная обратная связь
обес­печивает выдачу управляемому объекту со стороны управляющего устройства команд, направленных на ликвидацию рассогласования действия системы (отклонений параметров системы от заданной программы). Стабилизирующая роль отрицательной обратной связи проявляется в том, что дополнительные сигналы, поступающие на вход системы по цепи обратной связи, действуют на систему в направлении, противоположном основному воздействию на объект.


В нейронных системах мозга встречаются два типа регулирования: управление по отклонению и управление по возмущению.


При управлении по отклонению,
или по рассогласованию
(ве­личина ошибки), в качестве запускающего воздействия служит само отклонение регулируемой величины. В этом случае независимо от причины рассогласования возникшее отклонение вызывает регуля-торные воздействия, направленные на его ликвидацию. Если этого окажется недостаточным для устранения эффекта возмущающего стимула, система мобилизует дополнительные механизмы обеспе­чения гомеостаза. Такой способ регулирования является наиболее простым и встречается в основном в примитивных формах органи­зации нервной системы, на низших уровнях ее конструкции.


При управлении по возмущению
регулирование осуществляется в ответ на внешний возмущающий сигнал до возникновения суще­ственных отклонений в системе. Это более прогрессивный эконо­мичный способ регуляции, свойственный высоким формам органи­зации нервной системы.


Информационная функция.
Ведущая роль нервной системы в организме определяется ее управляющей функцией по отношению к другим органам и тканям, обеспечиваемой благодаря способности воспринимать и перерабатывать информацию в целях оптимального приспособления организма к стохастической внешней среде. В про-


цессе эволюционного филогенетического совершенствования нерв­ных структур как ведущей информационной системы организма конструктивные особенности мозга определяют высокую адекват­ность (оптимальность) его коммуникационных систем: на мульти-клеточном уровне центральные нервные образования вместе с ре­цепторами и эффекторами составляют информационное поле с бо­гатейшими возможностями для обработки сигналов.


Основным носителем информации в нервных клетках являются импульсные потоки, состоящие из отдельных импульсных сигналов стандартной амплитуды — распространяющихся потенциалов действия.


Центральным моментом в информационной деятельности нерв­ных структур является кодирование, суть которого составляет процесс преобразования сообщения из одной формы в другую. Транс­формированная в рецепторах информация подвергается в организме многократным дальнейшим превращениям на разных стадиях и уровнях организации нервной системы. Тонкая электрохимическая физиология рецепторов и синаптических соединений характеризует физический субстрат элементарных информационных превращений. В качестве кодирующих информацию элементов в самом импульсном потоке может быть любое статистическое измерение, характеризу­емое определенным законом изменения в связи с различной интен­сивностью раздражения.


В деятельности нервной системы значительное место занимают способы, методы пространственного кодирования информации, обес­печивающие высокую экономичность передачи информации о про­странственном расположении, характеристике стимулов. Формы про­странственного кодирования информации в дополнение к различным видам временного кодирования
(интервальное, частотное и др.) существенно повышают информационную емкость нервных структур.


Сравнение суммарного информационного потока, поступающего в живой организм через органы чувств (3»109
бит/с) с количеством информации, необходимой для принятия целесообразного решения (20—25 бит/с), указывает на высокую избыточность входной ин­формации, наличие специфических механизмов, уменьшающих ко­личество информации по мере ее продвижения в структурах ана­лизатора (от рецепторов к центральному отделу анализатора).


Из окружающей среды в организм в среднем поступает до 10 бит информации в секунду, но благодаря селективным свойствам сенсорных систем в мозг поступает лишь 10 бит информации. В процессе адаптивного приспособительного поведения
животного организма значительная роль принадлежит сенсорным реле — промежуточным узловым структурам сенсорных систем. Они вы­полняют функции выявления во входных посылках физиологически важной информации. В результате в сенсорных реле, образующих фильтрующие (перекодирующие) центры, происходит регулирова­ние суммарного входного информационного потока в соответствии с требованиями других отделов нервной системы и всего организма в целом.


4.2. ФИЗИОЛОГИЯ ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ 4.2.1. Спинной мозг


4.2.1.1. Морфофункциональная организация спинного мозга


Спинной мозг — наиболее древнее образование центральной нервной системы; он впервые появляется у ланцетника.


Приобретая новые связи и функции в ходе эволюции, спинной мозг высших организмов сохраняет старые связи и функции, которые у него возникли на всех предыдущих этапах развития.


Характерной чертой организации спинного мозга является пери­одичность его структуры в форме сегментов, имеющих входы в виде задних корешков, клеточную массу нейронов (серое вещество) и выходы в виде передних корешков (рис. 4.8).


Спинной мозг человека имеет 31—33 сегмента: 8 шейных (C1— Cvm). 12 грудных (Ti—Txii), 5 поясничных (I_I—Iv), 5 крестцовых (S_I—Sv), 1—3 копчиковых (Coi—Сощ).


Морфологических границ между сегментами спинного мозга не существует, поэтому деление на сегменты является функциональ­ным и определяется зоной распределения в нем волокон заднего корешка и зоной клеток, которые образуют выход передних ко­решков. Каждый сегмент через свои корешки иннервирует три метамера тела и получает информацию также от трех метамеров тела. В итоге перекрытия каждый метамер тела иннервируется тремя сегментами и передает сигналы в три сегмента спинного мозга.


Спинной мозг человека имеет два утолщения: шейное и пояс­ничное — в них содержится большее число нейронов, чем в ос­тальных его участках.


Волокна, поступающие по задним корешкам спинного мозга, выполняют функции, которые определяются тем, где и на каких нейронах заканчиваются данные волокна.


В опытах с перерезкой и раздражением корешков спинного мозга показано, что задние корешки являются афферентными, чувстви­тельными, центростремительными, а передние — эфферентными, двигательными, центробежными (закон Белла—Мажанди).


Афферентные входы в спинной мозг организованы аксо­нами спинальных ганглиев, лежащих вне спинного мозга, и аксонами экстра- и интрамуральных ганглиев симпатического и парасимпа­тического отделов автономной нервной системы.


Первая группа афферентных входов спинного мозга образована чувствительными волокнами, идущими от мышечных рецепторов, рецепторов сухожилий, надкостницы, оболочек суставов. Эта группа рецепторов образует начало так называемой проприоцептивной чув­ствительности.
Проприоцептивные волокна по толщине и скорости проведения возбуждения делятся на 3 группы (табл. 4.1). Волокна каждой группы имеют свои пороги возникновения возбуждения.


Вторая группа афферентных входов спинного мозга начинается от кожных рецепторов: болевых, температурных, тактильных, давления — и представляет собой кожную рецептирующую сис­тему.


Третья группа афферентных входов спинного мозга представлена рецептирующими входами от висцеральных органов; это висцеро-рецептивная система.


Эфферентные (двигательные) нейроны расположены в передних рогах спинного мозга, и их волокна иннервируют всю скелетную мускулатуру.


4.2.1.2. Особенности нейронной организации спинного мозга


Нейроны спинного мозга образуют его серое вещество в виде симметрично расположенных двух передних и двух задних рогов в шейном, поясничном и крестцовом отделах. Серое вещество рас­пределено на ядра, вытянутые по длине спинного мозга, и на поперечном разрезе располагается в форме буквы Н. В грудном отделе спинной мозг имеет, помимо названных, еще и боковые рога (рис. 4.9).


Задние рога выполняют главным образом сенсорные фун­кции и содержат нейроны, передающие сигналы в вышележащие центры, в симметричные структуры противоположной стороны либо к передним рогам спинного мозга.


В переднихрогах находятся нейроны, дающие свои ак­соны к мышцам. Все нисходящие пути центральной нервной системы, вызывающие двигательные реакции, заканчиваются на нейронах передних рогов. В связи с этим Шеррингтон назвал их «общим конечным путем».


Начиная с Iгрудного сегмента спинного мозга и до первых поясничных сегментов, в боковыхрогах серого вещества располагаются нейроны симпатического, а в крестцовых — пара­симпатического отдела автономной (вегетативной) нервной систе­мы.


Спинной мозг человека содержит около 13 млн нейронов, из них 3%
— мотонейроны, а 97% — вставочные. Функциональ­но нейроны спинного мозга можно разделить на 4 основные группы:


1) мотонейроны, или двигательные, — клетки передних рогов, аксоны которых образуют передние корешки;


2) интернейроны — нейроны, получающие информацию от спи-нальных ганглиев и располагающиеся в задних рогах. Эти нейроны реагируют на болевые, температурные, тактильные, вибрационные, проприоцептивные раздражения;


3) симпатические, парасимпатические нейроны расположены преимущественно в боковых рогах. Аксоны этих нейронов выходят из спинного мозга в составе передних корешков;


4) ассоциативные клетки — нейроны собственного аппарата спинного мозга, устанавливающие связи внутри и между сегмен­тами.


В средней зоне серого вещества (между задним и передним рогами) спинного мозга имеется промежуточное ядро (ядро Кахаля) с клетками, аксоны которых идут вверх или вниз на 1—2 сегмента и дают коллатерали на нейроны ипси- и контралатеральной стороны, образуя сеть. Подобная сеть имеется и на верхушке заднего рога спинного мозга — эта сеть образует так называемое студенистое вещество (желатинозная субстанция Роланда) и выполняет функции ретикулярной формации спинного мозга.


Средняя часть серого вещества спинного мозга содержит пре­имущественно короткоаксонные веретенообразные клетки (проме­жуточные нейроны), выполняющие связующую функцию между симметричными отделами сегмента, между клетками его передних и задних рогов.


Мотонейроны.
Аксон мотонейрона своими терминалами иннер-вирует сотни мышечных волокон, образуя мотонейронную единицу. Чем меньше мышечных волокон иннервирует один аксон (т. е. чем меньше количественно мотонейронная единица), тем более дифференцированные, точные движения выполняет мышца (см. раздел 2.4).


Несколько мотонейронов могут иннервировать одну мышцу, в этом случае они образуют так называемый мотонейронный пул. Возбудимость мотонейронов одного пула различна, поэтому при разной интенсивности раздражения в сокращение вовлекается разное количество волокон одной мышцы. При оптимальной силе раздра­жения сокращаются все волокна данной мышцы; в этом случае развивается максимальное сокращение мышцы.


Мотонейроны спинного мозга функционально делят на а-
и у-
нейроны.


а-Мотонейроны образуют прямые связи с чувствительными пу­тями, идущими от экстрафузальных волокон мышечного веретена, имеют до 20 000 синапсов на своих дендритах и характеризуются низкой частотой импульсации (10—20 в секунду), у-Мотонейроны, иннервирующие интрафузальные мышечные волокна мышечного веретена, получают информацию о его состоянии через промежу­точные нейроны. Сокращение интрафузального мышечного волокна не приводит к сокращению мышцы, но повышает частоту разрядов импульсов, идущих от рецепторов волокна в спинной мозг. Эти нейроны обладают высокой частотой импульсации (до 200 в се­кунду).


Интернейроны.
Эти промежуточные нейроны, генерирующие им­пульсы с частота до 1000 в секунду, являются фоновоактивными и имеют на своих дендритах до 500 синапсов. Функция интернейронов заключается в организации связей между структурами спинного мозга и обеспечении влияния восходящих и нисходящих путей на клетки отдельных сегментов спинного мозга. Очень важной функ­цией интернейронов является торможение активности нейронов, что


обеспечивает сохранение направленности пути возбуждения. Воз­буждение интернейронов, связанных с моторными клетками, ока­зывает тормозящее влияние на мышцы-антагонисты.


Нейроны симпатического отдела автономной системы.
Распо­ложены в боковых рогах сегментов грудного отдела спинного мозга. Эти нейроны являются фоновоактивными, но имеют редкую частоту импульсации (3—5 в секунду).


Нейроны парасимпатического отдела автономной системы.
Локализуются в сакральном отделе спинного мозга и являются фоновоактивными.


В случаях раздражения и поражения задних корешков спинного мозга наблюдаются «стреляющие», опоясывающие боли на уровне метамера пораженного сегмента, снижение чувствительности всех видов, утрата или снижение рефлексов, вызываемых с метамера тела, который передает информацию в пораженный корешок.


В случаях изолированного поражения заднего рога утрачивается болевая и температурная чувствительность на стороне повреждения, а тактильная и проприоцептивная сохраняется, так как из заднего корешка аксоны температурной и болевой чувствительности идут в задний рог, а аксоны тактильной и проприоцептивной — прямо в задний столб и по проводящим путям поднимаются вверх.


Вследствие того что аксоны вторых нейронов болевой и темпе­ратурной чувствительности идут на противоположную сторону через переднюю серую спайку спинного мозга, при повреждении этой спайки на теле симметрично утрачивается болевая и температурная чувствительность.


Поражение переднего рога и переднего корешка спинного моз­га приводит к параличу мышц, которые теряют тонус, атрофи­руются, при этом исчезают рефлексы, связанные с пораженным сегментом.


В случае поражения боковых рогов спинного мозга исчезают кожные сосудистые рефлексы, нарушается потоотделение, наблю­даются трофические изменения кожи, ногтей. При одностороннем поражении парасимпатического отдела автономной нервной системы на уровне крестцовых отделов спинного мозга нарушений дефекации и мочеиспускания не наблюдается, так как корковая иннервация этих центров является двусторонней.


4.2.1.3. Проводящие пути спинного мозга


Белое вещество спинного мозга состоит из миелиновых волокон, которые собраны в пучки. Эти волокна могут быть короткими (межсегментарные) и длинными — соединяющими разные отделы головного мозга со спинным и наоборот. Короткие волокна (их называют ассоциативными) связывают нейроны разных сегмен­тов или симметричные нейроны противоположных сторон спинного мозга.


Длинные волокна (их называют проекционными) делятся на восходящие, идущие к головному мозгу, и нисходящие — идущие


от головного мозга к спинному. Эти волокна образуют проводящие пути спинного мозга.


Пучки аксонов образуют вокруг серого вещества так называемые канатики: передние — расположенные кнутри от передних рогов, задние — расположенные между задними рогами серого вещества, и боковые — расположенные на латеральной стороне спинного мозга между передними и задними корешками.


Аксоны спинальных ганглиев и серого вещества спинного мозга идут в его белое вещество, а затем в другие структуры ЦНС, создавая тем самым восходящие и нисходящие проводящие пути.


В передних канатиках
расположены нисходящие пути:


1) передний корково-спинномозговой, или пирамидный, путь (tractuscorticospinalisventralis, s.anterior), являющийся прямым не-перекрещенным;


2) заднийпродольныйпучок(fasciculus longitudinalis dorsalis, s.posterior);


3) покрышечно-спинномозговой, или тектоспинальный, путь (tractustectospinalis);


4) преддверно-спинномозговой, или вестибулоспинальный, путь (tractusvestibulospinalis).


В задних канатиках
проходят восходящие пути:


1) тонкий пучок, или пучок Голля (fasciculusgracilis);


2) клиновидный пучок, или пучок Бурдаха (fasciculuscuneatus). В боковых канатиках
проходят нисходящие и восходящие пути. К нисходящим
путям относятся:


1) латеральный корково-спинномозговой, или пирамидный, путь (tractuscorticospinalislateralis), является перекрещенным;


2) красноядерно-спинномозговой, или руброспинальный, путь (tractusrubrospinalis);


3) ретикулярно-спинномозговой, или ретикулоспинальный, путь (tractusreticulospinalis).


К восходящим
путям относятся:


1) спинно-таламический (tractusspinothalamicus) путь;


2) латеральный и передний спинно-мозжечковые, или пучки Флексига и Говерса (tractusspinocerebellareslateralisetventralis).


Ассоциативные, или проприоспинальные, пути связывают между собой нейроны одного или разных сегментов спин­ного мозга. Они начинаются от нейронов серого вещества проме­жуточной зоны, идут в белое вещество бокового или переднего канатиков спинного мозга и заканчиваются в сером веществе про­межуточной зоны или на мотонейронах передних рогов других сегментов. Эти связи выполняют ассоциативную функцию, которая заключается в координации позы, тонуса мышц, движений разных метамеров туловища. К проприоспинальным путям относятся также комиссуральные волокна, соединяющие функционально однородные симметричные и несимметричные участки спинного мозга.


Нисходящие пути (рис. 4.10) связывают отделы головного мозга с моторными или вегетативными эфферентными нейронами.


Цереброспинальные нисходящие пути начинаются от нейронов структур головного мозга и заканчиваются на нейронах сегментов спинного мозга. Сюда относятся следующие пути: передний (прямой) и латеральный (перекрещенный) корково-спинномозговой (от пира­мидных нейронов пирамидной и экстрапирамидной коры, обеспечи­вающие регуляцию произвольных движений), красноядерно-спин-номозговой (руброспинальный), преддверно-спинномозговой (вести-булоспинальный), ретикулярно-спинномозговой (ретикулоспиналь-ный) пути участвуют в регуляции тонуса мускулатуры. Объединя­ющим для всех перечисленных путей служит то, что конечным их пунктом являются мотонейроны передних рогов. У человека пира­мидный путь оканчивается непосредственно на мотонейронах, а другие пути оканчиваются преимущественно на промежуточных нейронах.


Пирамидный путь
состоит из двух пучков: латерального и пря­мого. Латеральный пучок начинается от нейронов коры большого мозга, на уровне продолговатого мозга переходит на другую сторону, образуя перекрест, и спускается по противоположной стороне спин­ного мозга. Прямой пучок спускается до своего сегмента и там переходит к мотонейронам противоположной стороны. Следователь­но, весь пирамидный путь является перекрещенным.


Красноядерно-спинномозговой,
или руброспинальный, путь
(tractusrubrospinalis) состоит из аксонов нейронов красного ядра. Эти аксоны сразу после выхода из ядра переходят на симмет­ричную сторону и делятся на три пучка. Один идет в спинной мозг, другой в мозжечок, третий — в ретикулярную формацию ствола мозга.


Нейроны, дающие начало этому пути, участвуют в управлении мышечным тонусом. Рубромозжечковый и руброретикулярные пути обеспечивают координацию активности пирамидных нейронов коры и нейронов мозжечка, участвующих в организации произвольных движений.


Преддверно-спинномозговой,
или вестибулоспинальный, путь
(tractusvestibulospinalis) начинается от нейронов латерального преддверного ядра (ядра Дейтерса), лежащего в продолговатом мозге. Это ядро регулирует активность мотонейронов спинного мозга, обеспечивает тонус мускулатуры, согласованность движений, равновесие.


Ретикулярно-спинномозговой,
или ретикулоспинальный, путь
(tractusreticulospinalis) идет от ретикулярной формации ствола мозга к мотонейронам спинного мозга, через него ретикулярная формация регулирует тонус мускулатуры.


Повреждения проводникового аппарата спинного мозга приводят к нарушениям двигательной или чувствительной системы ниже уча­стка повреждения.


Пересечение пирамидального пути вызывает ниже перерезки ги­пертонус мышц (мотонейроны спинного мозга освобождаются от тормозного влияния пирамидных клеток коры) и, как следствие, к спастическому параличу.


При пересечении чувствительных путей полностью утрачивается мышечная, суставная, болевая и другая чувствительность ниже места перерезки спинного мозга.


Спиноцеребральные восходящие пути (см. рис. 4.10) соединяют сегменты спинного мозга со структурами головного мозга. Эти пути представлены путями проприоцептивной чувствительности, таламическим, спинно-мозжечковым, спинно-ретикулярным. Их функция заключается в передаче информации в мозг об экстеро-, интеро- и проприорецептивных раздражениях.


Проприоцептивный путь
(тонкий и клиновидный пучки) начи­нается от рецепторов глубокой чувствительности мышц сухожилий, надкостницы, оболочек суставов. Тонкий пучок начинается от ган­глиев, собирающих информацию от каудальных отделов тела, таза, нижних конечностей. Клиновидный пучок начинается от ганглиев, собирающих информацию от мышц грудной клетки, верхних ко­нечностей. От спинального ганглия аксоны идут в задние корешки спинного мозга, в белое вещество задних канатиков, поднимаются в тонкое и клиновидные ядра продолговатого мозга. Здесь происходит первое переключение на новый нейрон, далее путь идет в лате­ральные ядра таламуса противоположного полушария большого моз­га, переключается на новый нейрон, т. е. происходит второе пере­ключение. От таламуса путь поднимается к нейронам IVслоя соматосенсорной области коры. Волокна этих трактов отдают кол-латерали в каждом сегменте спинного мозга, что создает возможность коррекции позы всего туловища. Скорость проведения возбуждения по волокнам данного тракта достигает 60—100 м/с.


Спинно-таламический путь
(tractusspinothalamics) — основной путь кожной чувствительности — начинается от болевых, темпера­турных, тактильных рецепторов и барорецепторов кожи. Болевые, температурные, тактильные сигналы от рецепторов кожи идут в спинальный ганглий, далее через задний корешок к заднему рогу спинного мозга (первое переключение). Чувствительные нейроны задних рогов посылают аксоны на противоположную сторону спин­ного мозга и поднимаются по боковому канатику к таламусу; ско­рость проведения возбуждения по ним 1—30 м/с (второе переклю­чение), отсюда — в сенсорную область коры большого мозга. Часть волокон кожных рецепторов идет к таламусу по переднему канатику спинного мозга.


Спинно-мозжечковые пути
(tractusspinocerebellares) лежат в боковых канатиках спинного мозга и представлены неперекрещи-вающимися передним, спинно-мозжечковым путем (пучок Говерса) и дважды перекрещивающимся задним спинно-мозжечковым путем (пучок Флексига). Следовательно, все спинно-мозжечковые пути начинаются на левой стороне тела и заканчиваются в левой доле мозжечка; точно также и правая доля мозжечка получает инфор­мацию только со своей стороны тела. Эта информация идет от сухожильных рецепторов Гольджи, проприорецепторов, рецепторов давления, прикосновения. Скорость проведения возбуждения по этим трактам достигает 110—120 м/с.


4.2.1.4. Рефлекторные функции спинного мозга


Функциональное разнообразие нейронов спинного мозга, наличие в нем афферентных нейронов, интернейронов, мотонейронов и ней­ронов автономной нервной системы, а также многочисленных пря­мых и обратных, сегментарных, межсегментарных связей и связей со структурами головного мозга — все это создает условия для рефлекторной деятельности спинного мозга с участием как собст­венных структур, так и головного мозга. Подобная организация позволяет реализовывать все двигательные рефлексы тела, диаф­рагмы, мочеполовой системы и прямой кишки, терморегуляции, сосудистые рефлексы и т. д.


Рефлекторные реакции спинного мозга зависят от места, силы раздражения, площади раздражаемой рефлексогенной зоны, ско­рости проведения по афферентным и эфферентным волокнам и, наконец, от влияния головного мозга. Сила и длительность ре­флексов спинного мозга увеличивается при повторении раздраже­ния (суммация).


Собственная рефлекторная деятельность спинного мозга осуще­ствляется сегментарными рефлекторными дугами.


Сегментарнаярефлекторная дуга состоит из ре­цептивного поля, из которого импульсация по чувствительному волокну нейрона спинального ганглия, а затем по аксону этого же нейрона через задний корешок входит в спинной мозг, далее аксон может идти прямо к мотонейрону переднего рога, аксон которого подходит к мышце. Так образуется моносинаптическая рефлектор­ная дуга,
которая имеет один синапс между афферентным нейроном спинального ганглия и мотонейроном переднего рога. Эти рефлек­торные дуги образуются в таких рефлексах, которые возникают только при раздражении рецепторов аннулоспиральных окончаний мышечных веретен.


Другие спинальные рефлексы реализуются с участием интерней­ронов заднего рога или промежуточной области спинного мозга. В итоге возникают полисинаптические рефлекторные дуги.


Рассмотрим некоторые рефлексы спинного мозга (рис. 4.11).


Миотатические рефлексы
— рефлексы на растяжение мышцы. Быстрое растяжение мышцы, всего на несколько миллиметров ме­ханическим ударом по ее сухожилию приводит к сокращению всей мышцы и двигательной реакции. Например, легкий удар по сухо­жилию надколенной чашечки вызывает сокращение мышц бедра и разгибание голени. Дуга этого рефлекса следующая: мышечные рецепторы четырехглавой мышцы бедра -> спинальный ганглий -> задние корешки -> задние рога IIIпоясничного сегмента -+ мото­нейроны передних рогов того же сегмента -> экстрафузальные во­локна четырехглавой мышцы бедра. Реализация этого рефлекса была бы невозможна, если бы одновременно с сокращением мышц-разгибателей не расслаблялись мышцы-сгибатели. Рефлекс на рас­тяжение свойствен всем мышцам, но у мышц-разгибателей, они хорошо выражены и легко вызываются.


Рефлексы с рецепторов кожи
носят характер, зависящий от силы раздражения, вида раздражаемого рецептора, но чаще всего конечная реакция выглядит в виде усиления сокращения мышц-сгибателей.


Висцеромоторные рефлексы
возникают при стимуляции аффе­рентных нервов внутренних органов и характеризуются появлением двигательных реакций мышц грудной клетки и брюшной стенки, мышц разгибателей спины.


Рефлексы автономной нервной системы
имеют свои пути. Они начинаются от различных рецепторов, входят в спинной мозг через задние корешки, задние рога, далее в боковые рога, нейроны которых через передний корешок посылают аксоны не непосредственно к органам, а к ганглию симпатического или парасимпатического отдела автономной нервной системы.


Автономные (вегетативные) рефлексы обеспечивают реакцию внутренних органов, сосудистой системы на раздражение висцераль­ных, мышечных, кожных рецепторов. Эти рефлексы отличаются большим латентным периодом (ЛП) двумя фазами реакции: пер­вая — ранняя — возникает с ЛП 7—9 мс и реализуется ограни­ченным числом сегментов, вторая — поздняя — возникает с большим ЛП — до 21 мс и вовлекает в реакцию практически все сегменты спинного мозга. Поздний компонент вегетативного рефлекса обус­ловлен вовлечением в него вегетативных центров головного мозга.


Сложной формой рефлекторной деятельности спинного мозга является рефлекс, реализующий произвольное движение. В основе реализации произвольного движения лежит ^-афферентная рефлек­торная система. В нее входят пирамидная кора, экстрапирамидная система, а-
и у-мотонейроны спинного мозга, экстра- и интрафу-зальные волокна мышечного веретена.


При травмах у человека в ряде случаев происходит полное или половинное пересечение спинного мозга. При половинном латераль­ном повреждении спинного мозга развивается синдром Броун-Се-кара. Он проявляется в том, что на стороне поражения спинного мозга (ниже места поражения) развивается паралич двигательной системы вследствие повреждения пирамидных путей. На противо­положной поражению стороне движения сохраняются.


На стороне поражения (ниже места поражения) нарушается про-приоцептивная чувствительность. Это обусловлено тем, что восхо­дящие пути глубокой чувствительности идут по своей стороне спин­ного мозга до продолговатого мозга, где происходит их перекрест.


На противоположной стороне туловища (относительно повреж­дения спинного мозга) нарушается болевая чувствительность, так как проводящие пути болевой чувствительности кожи идут от спи-нального ганглия в задний рог спинного мозга, где переключаются на новый нейрон, аксон которого переходит на противоположную сторону. В итоге если повреждена левая половина спинного мозга, то исчезает болевая чувствительность правой половины туловища ниже повреждения. Полную перерезку спинного мозга в экспери­ментах на животных производят для исследования влияния выше­лежащих отделов ЦНС на нижележащие. После полного пересечения


спинного мозга возникает спинальный шок.
Это явление заключается в том, что все центры ниже перерезки перестают организовывать присущие им рефлексы. Нарушение рефлекторной деятельности по­сле пересечения спинного мозга у разных животных длится разное время. У лягушек оно исчисляется десятками секунд, у кролика рефлексы восстанавливаются через 10—15 мин, у собак отдельные рефлексы, например мышечного сокращения, восстанавливаются че­рез несколько часов, другие — через несколько дней (рефлексы регуляции артериального давления), через недели восстанавлива­ются рефлексы мочеиспускания. У обезьян первые признаки вос­становления рефлексов после перерезки спинного мозга появляются через несколько суток; у человека первые спинальные рефлексы восстанавливаются через несколько недель, а то и месяцев.


Следовательно, чем сложнее организация ЦНС у животного, тем сильнее контроль вышележащих отделов мозга над нижележащими. То, что причиной шока является нарушение супраспинальных вли­яний, доказывается повторной перерезкой спинного мозга ниже места первой перерезки. В этом случае спинальный шок не возни­кает, рефлекторная деятельность спинного мозга сохраняется.


По истечении длительного периода времени после шока спиналь­ные рефлексы резко усиливаются, что объясняется устранением тормозного влияния ретикулярной формации ствола мозга на ре­флексы спинного мозга.


4.2.2. Ствол мозга


Ствол мозга включает продолговатый мозг, мост, средний мозг, промежуточный мозг и мозжечок. Ствол мозга выполняет следующие функции:


1) организует рефлексы, обеспечивающие подготовку и реали­зацию различных форм поведения; осуществляет проводниковую функцию: через ствол мозга проходят в восходящем и нисходящем направлении пути, связывающие между собой структуры ЦНС; 3) при организации поведения обеспечивает взаимодействие своих структур между собой, со спинным мозгом, базальными ганглиями и корой большого мозга, т. е. обеспечивает ассоциативную функцию.


4.2.2. 1. Продолговатый мозг


Особенности функциональной организации. Продолговатый мозг (medullaoblongata) у человека имеет длину около 25 мм. Он является продолжением спинного мозга. Структурно по разнообразию и стро­ению ядер продолговатый мозг сложнее, чем спинной. В отличие от спинного мозга он не имеет метамерного, повторяемого строения, серое вещество в нем расположено не в центре, а ядрами к пери­ферии.


В продолговатом мозге находятся оливы, связанные со спинным мозгом, экстрапирамидной системой и мозжечком — это тонкое и клиновидное ядра проприоцептивной чувствительности (ядра Голля


и Бурдаха). Здесь же находятся перекресты нисходящих пирамидных путей и восходящих путей, образованных тонким и клиновидным пучками (Голля и Бурдаха), ретикулярная формация.


Продолговатый мозг за счет своих ядерных образований и ре­тикулярной формации участвует в реализации вегетативных, сома­тических, вкусовых, слуховых, вестибулярных рефлексов. Особен­ностью продолговатого мозга является то, что его ядра, возбуждаясь последовательно, обеспечивают выполнение сложных рефлексов, требующих последовательного включения разных мышечных групп, что наблюдается, например, при глотании.


В продолговатом мозге расположены ядра следующих черепных нервов:


пара VIIIчерепных нервов — преддверно-улитковый нерв состоит из улитковой и преддверной частей. Улитковое ядро лежит в про­долговатом мозге;


пара IX— языкоглоточный нерв (п. glossopharyngeus); его ядро образовано 3 частями — двигательной, чувствительной и вегета­тивной. Двигательная часть участвует в иннервации мышц глотки и полости рта, чувствительная — получает информацию от рецеп­торов вкуса задней трети языка; вегетативная иннервирует слюнные железы;


пара X— блуждающий нерв (n.vagus) имеет 3 ядра: вегетативное иннервирует гортань, пищевод, сердце, желудок, кишечник, пище­варительные железы; чувствительное получает информацию от ре­цепторов альвеол легких и других внутренних органов и двигатель­ное (так называемое обоюдное) обеспечивает последовательность сокращения мышц глотки, гортани при глотании;


пара XI— добавочный нерв (n.accessorius); его ядро частично расположено в продолговатом мозге;


пара XII— подъязычный нерв (n.hypoglossus) является двига­тельным нервом языка, его ядро большей частью расположено в продолговатом мозге.


Сенсорные функции. Продолговатый мозг регулирует ряд сен­сорных функций: рецепцию кожной чувствительности лица — в сенсорном ядре тройничного нерва; первичный анализ рецепции вкуса — в ядре языкоглоточного нерва; рецепцию слуховых раз­дражений — в ядре улиткового нерва; рецепцию вестибулярных раздражений — в верхнем вестибулярном ядре. В задневерхних отделах продолговатого мозга проходят пути кожной, глубокой, висцеральной чувствительности, часть из которых переключается здесь на второй нейрон (тонкое и клиновидное ядра). На уровне продолготоватого мозга перечисленные сенсорные функции реали­зуют первичный анализ силы и качества раздражения, далее обра­ботанная информация передается в подкорковые структуры для определения биологической значимости данного раздражения.


Проводниковые функции. Через продолготоватый мозг проходят все восходящие и нисходящие пути спинного мозга: спинно-тала-мический, кортикоспинальный, руброспинальный. В нем берут на­чало вестибулоспинальный, оливоспинальный и ретикулоспиналь-


ный тракты, обеспечивающие тонус и координацию мышечных ре­акций. В продолговатом мозге заканчиваются пути из коры большого мозга — корковоретикулярные пути. Здесь заканчиваются восходя­щие пути проприоцептивной чувствительности из спинного мозга: тонкого и клиновидного. Такие образования головного мозга, как мост, средний мозг, мозжечок, таламус, гипоталамус и кора большого мозга, имеют двусторонние связи с продолговатым мозгом. Наличие этих связей свидетельствует об участии продолговатого мозга в регуляции тонуса скелетной мускулатуры, вегетативных и высших интегративных функций, анализе сенсорных раздражений.


Рефлекторные функции. Многочисленные рефлексы продолгова­того мозга делят на жизненно важные и нежизненно важные, однако такое представление достаточно условно. Дыхательные и сосудо-двигательные центры продолговатого мозга можно отнести к жиз­ненно важным центрам, так как в них замыкается ряд сердечных и дыхательных рефлексов.


Продолговатый мозг организует и реализует ряд защитных ре­флексов: рвоты, чиханья, кашля, слезоотделения, смыкания век. Эти рефлексы реализуются благодаря тому, что информация о раздра­жении рецепторов слизистой оболочки глаза, полости рта, гортани, носоглотки через чувствительные ветви тройничного и языкоглоточ-ного нервов попадает в ядра продолговатого мозга, отсюда идет коман­да к двигательным ядрам тройничного, блуждающего, лицевого, язы-коглоточного, добавочного или подъязычного нервов, в результате ре­ализуется тот или иной защитный рефлекс. Точно так же за счет последовательного включения мышечных групп головы, шеи, грудной клетки и диафрагмы организуются рефлексы пищевого пове­дения: сосания, жевания, глотания.


Кроме того, продолговатый мозг организует рефлексы под­держания позы. Эти рефлексы формируются за счет афферен-тации от рецепторов преддверия улитки и полукружных каналов в верхнее вестибулярное ядро; отсюда переработанная информация оценки необходимости изменения позы посылается к латеральному и медиальному вестибулярным ядрам. Эти ядра участвуют в опре­делении того, какие мышечные системы, сегменты спинного мозга должны принять участие в изменении позы, поэтому от нейронов медиального и латерального ядра по вестибулоспинальному пути сигнал поступает к передним рогам соответствующих сегментов спинного мозга, иннервирующих мышцы, участие которых в изме­нении позы в данный момент необходимо.


Изменение позы осуществляется за счет статических и статоки-нетических рефлексов. Статические рефлексы
регулируют тонус скелетных мышц с целью удержания определенного положения тела. Статокинетические рефлексы
продолговатого мозга обеспечивают перераспределение тонуса мышц туловища для организации позы, соответствующей моменту прямолинейного или вращательного дви­жения.


Большая часть автономных рефлексов продолговатого мозга реализуется через расположенные в нем ядра блуждающего


нерва,
которые получают информацию о состоянии деятельности сердца, сосудов, пищеварительного тракта, легких, пищеваритель­ных желез и др. В ответ на эту информацию ядра организуют двигательную и секреторную реакции названных органов.


Возбуждение ядер блуждающего нерва вызывает усиление со­кращения гладких мышц желудка, кишечника, желчного пузыря и одновременно расслабление сфинктеров этих органов. При этом замедляется и ослабляется работа сердца, сужается просвет брон­хов.


Деятельность ядер блуждающего нерва проявляется также в уси­лении секреции бронхиальных, желудочных, кишечных желез, в возбуждении поджелудочной железы, секреторных клеток печени.


В продолговатом мозге локализуется центр слюноотделения,
парасимпатическая часть которого обеспечивает усиление общей секреции, а симпатическая — белковой секреции слюнных желез.


В структуре ретикулярной формации продолговатого мозга рас­положены дыхательный и сосудодвигательный центры. Особенность этих центров в том, что их нейроны способны возбуждаться ре-флекторно и под действием химических раздражителей.


Дыхательный центр
локализуется в медиальной части ретику­лярной формации каждой симметричной половины продолговатого мозга и разделен на две части, вдоха и выдоха.


В ретикулярной формации продолговатого мозга представлен дру­гой жизненно важный центр — сосудодвигательный центр
(регу­ляции сосудистого тонуса). Он функционирует совместно с выше­лежащими структурами мозга и прежде всего с гипоталамусом. Возбуждение сосудодвигательного центра всегда изменяет ритм ды­хания, тонус бронхов, мышц кишечника, мочевого пузыря, цили-арной мышцы и др. Это обусловлено тем, что ретикулярная фор­мация продолговатого мозга имеет синаптические связи с гипота­ламусом и другими центрами.


В средних отделах ретикулярной формации находятся нейроны, образующие ретикулоспинальный путь, оказывающий тормозное влияние на мотонейроны спинного мозга. На дне IVжелудочка расположены нейроны «голубого пятна». Их медиатором является норадреналин. Эти нейроны вызывают активацию ретикулоспиналь-ного пути в фазу «быстрого» сна, что приводит к торможению спинальных рефлексов и снижению мышечного тонуса.


Симптомы повреждения. Повреждение левой или правой поло­вины продолговато мозга выше перекреста восходящих путей про-приоцептивной чувствительности вызывает на стороне повреждения нарушения чувствительности и работы мышц лица и головы. В то же время на противоположной стороне относительно стороны по­вреждения наблюдаются нарушения кожной чувствительности и двигательные параличи туловища и конечностей. Это объясняется тем, что восходящие и нисходящие проводящие пути из спинного мозга и в спинной мозг перекрещиваются, а ядра черепных нервов иннервируют свою половину головы, т. е. черепные нервы не пе­рекрещиваются.


4.2.2.2. Мост


Мост (ponscerebri, ponsVarolii) располагается выше продолго­ватого мозга и выполняет сенсорные, проводниковые, двигательные, интегративные рефлекторные функции.


В состав моста входят ядра лицевого, тройничного, отводящего, преддверно-улиткового нерва (вестибулярные и улитковые ядра), ядра преддверной части преддверно-улиткового нерва (вестибуляр­ного нерва): латеральное (Дейтерса) и верхнее (Бехтерева). Рети­кулярная формация моста тесно связана с ретикулярной формацией среднего и продолговатого мозга.


Важной структурой моста является средняя ножка мозжечка. Именно она обеспечивает функциональные компенсаторные и мор­фологические связи коры большого мозга с полушариями мозжечка.


Сенсорные функции моста обеспечиваются ядрами преддверно-улиткового, тройничного нервов. Улитковая часть преддверно-улит­кового нерва заканчивается в мозге в улитковых ядрах; преддверная часть преддверно-улиткового нерва — в треугольном ядре, ядре Дейтерса, ядре Бехтерева. Здесь происходит первичный анализ ве­стибулярных раздражений их силы и направленности.


Чувствительное ядро тройничного нерва получает сигналы от рецепторов кожи лица, передних отделов волосистой части головы, слизистой оболочки носа и рта, зубов и конъюнктивы глазного яблока. Лицевой нерв (п. facialis) иннервирует все мимические мышцы лица. Отводящий нерв (п. abducens) иннервирует прямую латеральную мышцу, отводящую глазное яблоко кнаружи.


Двигательная порция ядра тройничного нерва (п. trigeminus) иннервирует жевательные мышцы, мышцу, натягивающую ба­рабанную перепонку, и мышцу, натягивающую небную зана­веску.


Проводящая функция моста. Обеспечивается продольно и по­перечно расположенными волокнами. Поперечно расположенные во­локна образуют верхний и нижний слои, а между ними проходят идущие из коры большого мозга пирамидные пути. Между попе­речными волокнами расположены нейронные скопления — ядра моста. От их нейронов начинаются поперечные волокна, которые идут на противоположную сторону моста, образуя среднюю ножку мозжечка и заканчиваясь в его коре.


В покрышке моста располагаются продольно идущие пучки во­локон медиальной петли (lemniscusmedialis). Они пересекаются поперечно идущими волокнами трапециевидного тела (corpustrapezoideum), представляющие собой аксоны улитковой части пред­дверно-улиткового нерва противоположной стороны, которые закан­чиваются в ядре верхней оливы (olivasuperior). От этого ядра идут пути боковой петли (lemniscuslateralis), которые направляются в заднее четверохолмие среднего мозга и в медиальные коленчатые тела промежуточного мозга.


В покрышке мозга локализуются переднее и заднее ядра тра-


пециевидного тела и латеральной петли. Эти ядра вместе с верхней оливой обеспечивают первичный анализ информации от органа слуха и затем передают информацию в задние бугры четверохол­мий.


В покрышке также расположены длинный медиальный и текто-спинальный пути.


Собственные нейроны структуры моста образуют его ретикуляр­ную формацию, ядра лицевого, отводящего нервов, двигательной порции ядра и среднее сенсорное ядро тройничного нерва.


Ретикулярная формация моста является продолжением ретику­лярной формации продолговатого мозга и началом этой же системы среднего мозга. Аксоны нейронов ретикулярной формации моста идут в мозжечок, в спинной мозг (ретикулоспинальный путь). По­следние активируют нейроны спинного мозга.


Ретикулярная формация моста влияет на кору большого мозга, вызывая ее пробуждение или сонное состояние. В ретикулярной формации моста находятся две группы ядер, которые относятся к общему дыхательному центру. Один центр активирует центр вдоха продолговатого мозга, другой — центр выдоха. Нейроны дыхатель­ного центра, расположенные в мосте, адаптируют работу дыхатель­ных клеток продолговатого мозга в соответствии с меняющимся состоянием организма.


4.2.2.3. Средний мозг


Морфофункциональная организация. Средний мозг (mesen­cephalon) представлен четверохолмием и ножками мозга. Наиболее крупными ядрами среднего мозга являются красное ядро, черное вещество и ядра черепных (глазодвигательного и блокового) нервов, а также ядра ретикулярной формации.


Сенсорные функции. Реализуются за счет поступления в него зрительной, слуховой информации.


Проводниковая функция. Заключается в том, что через него проходят все восходящие пути к вышележащим таламусу (меди­альная петля, спинно-таламический путь), большому мозгу и моз­жечку. Нисходящие пути идут через средний мозг к продолговатому и спинному мозгу. Это пирамидный путь, корково-мостовые волокна, руброретикулоспинальный путь.


Двигательная функция. Реализуется за счет ядра блокового нерва (п. trochlearis), ядер глазодвигательного нерва (п. оси-lomotorius), красного ядра (nucleusruber), черного вещества (sub­stantianigra).


Красные ядра располагаются в верхней части ножек мозга. Они связаны с корой большого мозга (нисходящие от коры пути), под­корковыми ядрами, мозжечком, спинным мозгом (красноядерно-спинномозговой путь). Базальные ганглии головного мозга, мозжечок имеют свои окончания в красных ядрах. Нарушение связей красных ядер с ретикулярной формацией продолговатого мозга ведет к де-церебрационной ригидности.
Это состояние характеризуется силь-


ным напряжением мышц-разгибателей конечностей, шеи, спины. Основной причиной возникновения децеребрационной ригидности служит выраженное активирующее влияние латерального вестибу­лярного ядра (ядро Дейтерса) на мотонейроны разгибателей. Это влияние максимально в отсутствие тормозных влияний красного ядра и вышележащих структур, а также мозжечка. При перерезке мозга ниже ядра латерального вестибулярного нерва децеребраци-онная ригидность исчезает.


Красные ядра, получая информацию от двигательной зоны коры большого мозга, подкорковых ядер и мозжечка о готовящемся дви­жении и состоянии опорно-двигательного аппарата, посылают кор­ригирующие импульсы к мотонейронам спинного мозга по рубро-спинальному тракту и тем самым регулируют тонус мускулатуры, подготавливая его уровень к намечающемуся произвольному дви­жению.


Другое функционально важное ядро среднего мозга — черное вещество — располагается в ножках мозга, регулирует акты жева­ния, глотания (их последовательность), обеспечивает точные дви­жения пальцев кисти руки, например при письме. Нейроны этого ядра способны синтезировать медиатор дофамин, который постав­ляется аксональным транспортом к базальным ганглиям головного мозга. Поражение черного вещества приводит к нарушению пла­стического тонуса мышц. Тонкая регуляция пластического тонуса при игре на скрипке, письме, выполнении графических работ обес­печивается черным веществом. В то же время при длительном удержании определенной позы происходят пластические изменения в мышцах за счет изменения их коллоидных свойств, что обеспе­чивает наименьшие затраты энергии. Регуляция этого процесса осуществляется клетками черного вещества.


Нейроны ядер глазодвигательного и блокового нервов регулируют движение глаза вверх, вниз, наружу, к носу и вниз к углу носа. Нейроны добавочного ядра глазодвигательного нерва (ядро Якубо­вича) регулируют просвет зрачка и кривизну хрусталика.


Рефлекторные функции.
Функционально самостоятельными структурами среднего мозга являются бугры четверохолмия. Верхние из них являются первичными подкорковыми центрами зрительного анализатора (вместе с латеральными коленчатыми телами проме­жуточного мозга), нижние — слухового (вместе с медиальными коленчатыми телами промежуточного мозга). В них происходит первичное переключение зрительной и слуховой информации. От бугров четверохолмия аксоны их нейронов идут к ретикулярной формации ствола, мотонейронам спинного мозга. Нейроны четверо­холмия могут быть полимодальными и детекторными. В последнем случае они реагируют только на один признак раздражения, на­пример смену света и темноты, направление движения светового источника и т. д. Основная функция бугров четверохолмия — ор­ганизация реакции настораживания и так называемых старт-ре­флексов на внезапные, еще не распознанные, зрительные или зву­ковые сигналы. Активация среднего мозга в этих случаях через


гипоталамус приводит к повышению тонуса мышц, учащению со­кращений сердца; происходит подготовка к избеганию, к оборони­тельной реакции.


Четверохолмие организует ориентировочные зрительные и слу­ховые рефлексы.


У человека четверохолмный рефлекс является сторожевым. В случаях повышенной возбудимости четверохолмий при внезапном звуковом или световом раздражении у человека возникает вздра­гивание, иногда вскакивание на ноги, вскрикивание, максимально быстрое удаление от раздражителя, подчас безудержное бегство.


При нарушении четверохолмного рефлекса человек не может быстро переключаться с одного вида движения на другое. Следова­тельно, четверохолмия принимают участие в организации произ­вольных движений.


4.2.2.4. Ретикулярная формация ствола мозга


Ретикулярная формация (formatioreticularis; РФ) мозга пред­ставлена сетью нейронов с многочисленными диффузными связями между собой и практически со всеми структурами центральной нервной системы. РФ располагается в толще серого вещества продолговатого, среднего, промежуточного мозга и изначально свя­зана с РФ спинного мозга. В связи с этим целесообразно ее рассмотреть как единую систему. Сетевые связи нейронов РФ между собой позволили Дейтерсу назвать ее ретикулярной фор­мацией мозга.


РФ имеет прямые и обратные связи с корой большого мозга, базальными ганглиями, промежуточным мозгом, мозжечком, сред­ним, продолговатым и спинным мозгом.


Основной функцией РФ является регуляция уровня активности коры большого мозга, мозжечка, таламуса, спинного мозга.


С одной стороны, генерализованный характер влияния РФ на многие структуры мозга дал основание считать ее неспецифической системой. Однако исследования с раздражением РФ ствола показали, что она может избирательно оказывать активирующее или тормо­зящее влияние на разные формы поведения, на сенсорные, моторные, висцеральные системы мозга. Сетевое строение обеспечивает высо­кую надежность функционирования РФ, устойчивость к поврежда­ющим воздействиям, так как локальные повреждения всегда ком­пенсируются за счет сохранившихся элементов сети. С другой сто­роны, высокая надежность функционирования РФ обеспечивается тем, что раздражение любой из ее частей отражается на активности всей РФ даной структуры за счет диффузности связей.


Большинство нейронов РФ имеет длинные дендриты и короткий аксон. Существуют гигантские нейроны с длинным аксоном, обра­зующие пути из РФ в другие области мозга, например в нисходящем направлении, ретикулоспинальный и руброспинальный. Аксоны ней­ронов РФ образуют большое число коллатералей и синапсов, которые оканчиваются на нейронах различных отделов мозга. Аксоны ней-


ронов РФ, идущие в кору большого мозга, заканчиваются здесь на дендритах Iи IIслоев.


Активность нейронов РФ различна и в принципе сходна с ак­тивностью нейронов других структур мозга, но среди нейронов РФ имеются такие, которые обладают устойчивой ритмической актив­ностью, не зависящей от приходящих сигналов.


В то же время в РФ среднего мозга и моста имеются нейроны, которые в покое «молчат», т. е. не генерируют импульсы, но воз­буждаются при стимуляции зрительных или слуховых рецепторов. Это так называемые специфические нейроны,
обеспечивающие бы­струю реакцию на внезапные, неопознанные сигналы. Значительное число нейронов РФ являются полисенсорными.


В РФ продолговатого, среднего мозга и моста конвергируют сигналы различной сенсорности. На нейроны моста приходят сигналы преимущественно от соматосенсорных систем. Сигналы от зритель­ной и слуховой сенсорных систем в основном приходят на нейроны РФ среднего мозга.


РФ контролирует передачу сенсорной информации, идущей через ядра таламуса, за счет того, что при интенсивном внешнем раздра­жении нейроны неспецифических ядер таламуса затормаживаются, тем самым снимается их тормозящее влияние с релейных ядер того же таламуса и облегчается передача сенсорной информации в кору большого мозга.


В РФ моста, продолговатого, среднего мозга имеются нейроны, которые реагируют на болевые раздражения, идущие от мышц или внутренних органов, что создает общее диффузное диском­фортное, не всегда четко локализуемое, болевое ощущение «тупой боли».


Повторение любого вида стимуляции приводит к снижению им­пульсной активности нейронов РФ, т. е. процессы адаптации (при­выкания) присущи и нейронам РФ ствола мозга.


РФ ствола мозга имеет прямое отношение к регуляции мышечного тонуса, поскольку на РФ ствола мозга поступают сигналы от зри­тельного и вестибулярного анализаторов и мозжечка. От РФ к мотонейронам спинного мозга и ядер черепных нервов поступают сигналы, организующие положение головы, туловища и т. д.


Ретикулярные пути, облегчающие активность моторных систем спинного мозга, берут начало от всех отделов РФ. Пути, идущие от моста, тормозят активность мотонейронов спинного мозга, ин-нервирующих мышцы-сгибатели, и активируют мотонейроны мышц-разгибателей. Пути, идущие от РФ продолговатого мозга, вызывают противоположные эффекты. Раздражение РФ приводит к тремору, повышению тонуса мышц. После прекращения раздражения вызван­ный им эффект сохраняется длительно, видимо, за счет циркуляции возбуждения в сети нейронов.


РФ ствола мозга участвует в передаче информации от коры большого мозга, спинного мозга к мозжечку и, наоборот, от мозжечка к этим же системам. Функция данных связей заключается в под­готовке и реализации моторики, связанной с привыканием, ориен-


тировочными реакциями, болевыми реакциями, организацией ходь­бы, движениями глаз.


Регуляция вегетативной деятельности организма РФ описана в разделе 4.3, здесь же заметим, что наиболее четко эта регуляция проявляется в функционировании дыхательного и сердечно-сосуди­стых центров. В регуляции вегетативных функций большое значение имеют так называемые стартовые нейроны
РФ. Они дают начало циркуляции возбуждения внутри группы нейронов, обеспечивая то­нус регулируемых вегетативных систем.


Влияния РФ можно разделить в целом на нисходящие и восхо­дящие. В свою очередь каждое из этих влияний имеет тормозное и возбуждающее действие.


Восходящие влияния РФ на кору большого мозга повы­шают ее тонус, регулируют возбудимость ее нейронов, не изменяя специфику ответов на адекватные раздражения. РФ влияет на фун­кциональное состояние всех сенсорных областей мозга, следователь­но, она имеет значение в интеграции сенсорной информации от разных анализаторов.


РФ имеет прямое отношение к регуляции цикла бодрствова­ние—сон. Стимуляция одних структур РФ приводит к развитию сна, стимуляция других вызывает пробуждение. Г. Мэгун и Д. Мо-руцци выдвинули концепцию, согласно которой все виды сигналов, идущих от периферических рецепторов, достигают по коллатералям РФ продолговатого мозга и моста, где переключаются на нейроны, дающие восходящие пути в таламус и затем в кору большого мозга.


Возбуждение РФ продолговатого мозга или моста вызывает син­хронизацию активности коры большого мозга, появление медленных ритмов в ее электрических показателях, сонное торможение.


Возбуждение РФ среднего мозга вызывает противоположный эф­фект пробуждения: десинхронизацию электрической активности ко­ры, появление быстрых низкоамплитудных beta-подобных ритмов в электроэнцефалограмме.


Г. Бремер (1935) показал, что если перерезать мозг между пе­редними и задними буграми четверохолмия, то животное перестает реагировать на все виды сигналов; если же перерезку произвести между продолговатым и средним мозгом (при этом РФ сохраняет связь с передним мозгом), то животное реагирует на свет, звук и другие сигналы. Следовательно, поддержание активного анализиру­ющего состояния мозга возможно при сохранении связи с передним мозгом.


Реакция активации коры большого мозга наблюдается при раз­дражении РФ продолговатого, среднего, промежуточного мозга. В то же время раздражение некоторых ядер таламуса приводит к воз­никновению ограниченных локальных участков возбуждения, а не к общему ее возбуждению, как это бывает при раздражении других отделов РФ.


РФ ствола мозга может оказывать не только возбуждающее, но и тормозное влияние на активность коры мозга.


Нисходящие влияния РФ ствола мозга на регуляторную деятельность спинного мозга были установлены еще И. М. Сечено­вым (1862). Им было показано, что при раздражении среднего мозга кристалликами соли у лягушки рефлексы отдергивания лапки воз­никают медленно, требуют более сильного раздражения или не появляются вообще, т. е. тормозятся.


Г. Мэгун (1945—1950), нанося локальные раздражения на РФ продолговатого мозга, нашел, что при раздражении одних точек тормозятся, становятся вялыми рефлексы сгибания передней лапы, коленный, роговичный. При раздражении РФ в других точках про­долговатого мозга эти же рефлексы вызывались легче, были сильнее, т. е. их реализация облегчалась. По мнению Мэгуна, тормозные влияния на рефлексы спинного мозга может оказывать только РФ продолговатого мозга, а облегчающие влияния регулируются всей РФ ствола и спинного мозга.


4.2.2.5. Промежуточный мозг


Промежуточный мозг (diencephalon) интегрирует сенсорные, дви­гательные и вегетативные реакции, необходимые для целостной деятельности организма. Основными образованиями промежуточного мозга являются таламус, гипоталамус, который состоит из свода и эпифиза, и таламической области, которая включает в себя таламус, эпиталамус и метаталамус.


4.2.2.5.1. Таламус


Таламус (thalamus, зрительный бугор) — структура, в которой происходит обработка и интеграция практически всех сигналов, идущих в кору большого мозга от спинного, среднего мозга, моз­жечка, базальных ганглиев головного мозга.


Морфофункциональная организация. В ядрах таламуса проис­ходит переключение информации, поступающей от экстеро-, проприорецепторов и интероцепторов и начинаются таламокорти-кальные пути.


Учитывая, что коленчатые тела таламуса являются подкорковыми центрами зрения и слуха, а узел уздечки и переднее зрительное ядро участвуют в анализе обонятельных сигналов, можно утверж­дать, что зрительный бугор в целом является подкорковой «станцией» для всех видов чувствительности. Здесь раздражения внешней и внутренней среды интегрируются, после чего поступают в кору большого мозга.


Зрительный бугор является центром организации и реализации инстинктов, влечений, эмоций. Возможность получать информацию о состоянии множества систем организма позволяет таламусу уча­ствовать в регуляции и определении функционального состояния организма в целом (подтверждением тому служит наличие в тала-мусе около 120 разнофункциональных ядер). Ядра образуют свое­образные комплексы, которые можно разделить по признаку про-


екции в кору на 3 группы: передняя проецирует аксоны своих нейронов в поясную извилину коры большого мозга; медиальная — в лобную долю коры; латеральная — в теменную, височную, за­тылочную доли коры. По проекциям определяется и функция ядер. Такое деление не абсолютно, так как одна часть волокон от ядер таламуса идет в строго ограниченные корковые образования, дру­гая — в разные области коры большого мозга.


Ядра таламуса функционально по характеру входящих и выхо­дящих из них путей делятся на специфические, неспецифические и ассоциативные.


К специфическим ядрам
относятся переднее вентральное, меди­альное, вентролатеральное, постлатеральное, постмедиальное, лате­ральное и медиальное коленчатые тела. Последние относятся к подкорковым центрам зрения и слуха соответственно.


Основной функциональной единицей специфических таламиче-ских ядер являются «релейные» нейроны, у которых мало дендритов и длинный аксон; их функция заключается в переключении ин­формации, идущей в кору большого мозга от кожных, мышечных и других рецепторов.


От специфических ядер информация о характере сенсорных сти­мулов поступает в строго определенные участки III—IVслоев коры большого мозга (соматотопическая локализация). Нарушение фун­кции специфических ядер приводит к выпадению конкретных видов чувствительности, так как ядра таламуса, как и кора большого мозга, имеют соматотопическую локализацию. Отдельные нейроны специфических ядер таламуса возбуждаются рецепторами только своего типа. К специфическим ядрам таламуса идут сигналы от рецепторов кожи, глаз, уха, мышечной системы. Сюда же конвер­гируют сигналы от интерорецепторов зон проекции блуждающего и чревного нервов, гипоталамуса.


Латеральное коленчатое тело имеет прямые эфферентные связи с затылочной долей коры большого мозга и афферентные связи с сетчаткой глаза и с передними буграми четверохолмий. Нейроны латеральных коленчатых тел по-разному реагируют на цветовые раздражения, включение, выключение света, т. е. могут выполнять детекторную функцию.


В медиальное коленчатое тело (МТК) поступают афферентные импульсы из латеральной петли и от нижних бугров четверохолмий. Эфферетные пути от медиальных коленчатых тел идут в височную зону коры большого мозга, достигая там первичной слуховой области коры. МКТ имеет четкую тонотопичность. Следовательно, уже на уровне таламуса обеспечивается пространственное распределение чувствительности всех сенсорных систем организма, в том числе сенсорных посылок от интерорецепторов сосудов, органов брюшной, грудной полостей.


Ассоциативные ядра
таламуса представлены передним медио-дорсальным, латеральным дорсальным ядрами и подушкой. Переднее ядро связано с лимбической корой (поясной извилиной), медиодор-сальное — с лобной долей коры, латеральное дорсальное — с те-


менной, подушка — с ассоциативными зонами теменной и височной долями коры большого мозга.


Основными клеточными структурами этих ядер являются муль-типолярные, биполярные трехотростчатые нейроны, т. е. нейроны, способные выполнять полисенсорные функции. Ряд нейронов изме­няет активность только при одновременном комплексном раздраже­нии. На полисенсорных нейронах происходит конвергенция возбуж­дений разных модальностей, формируется интегрированный сигнал, который затем передается в ассоциативную кору мозга. Нейроны подушки связаны главным образом с ассоциативными зонами те­менной и височной долей коры большого мозга, нейроны латераль­ного ядра — с теменной, нейроны медиального ядра — с лобной долей коры большого мозга.


Неспецифические ядра
таламуса представлены срединным цент­ром, парацентральным ядром, центральным медиальным и лате­ральным, субмедиальным, вентральным передним, парафасцикуляр-ным комплексами, ретикулярным ядром, перивентрикулярной и цен­тральной серой массой. Нейроны этих ядер образуют свои связи по ретикулярному типу. Их аксоны поднимаются в кору большого мозга и контактируют со всеми ее слоями, образуя не локальные, а диффузные связи. К неспецифическим ядрам поступают связи из РФ ствола мозга, гипоталамуса, лимбической системы, базальных ганглиев, специфических ядер таламуса.


Возбуждение неспецифических ядер вызывает генерацию в коре специфической веретенообразной электрической активности, свиде­тельствующей о развитии сонного состояния. Нарушение функции неспецифических ядер затрудняет появление веретенообразной ак­тивности, т. е. развитие сонного состояния.


Сложное строение таламуса, наличие в нем взаимосвязанных спе­цифических, неспецифических и ассоциативных ядер, позволяет ему организовывать такие двигательные реакции, как сосание, жевание, глотание, смех. Двигательные реакции интегрируются в таламусе с , вегетативными процессами, обеспечивающими эти движения. I
Конвергенцию сенсорных стимулов в таламус обусловливает воз-| никновение так называемых таламических неукротимых болей, ко­торые возникают при патологических процессах в самом таламусе.


4.2.2.6. Мозжечок


Мозжечок (cerebellum, малый мозг) — одна из интегративных структур головного мозга, принимающая участие в координации и регуляции произвольных, непроизвольных движений, в регуляции вегетативных и поведенческих функций.


Особенности морфофункциональной организации и связи моз­жечка. Реализация указанных функций обеспечивается следующими морфологическими особенностями мозжечка:


1) кора мозжечка построена достаточно однотипно, имеет сте­реотипные связи, что создает условия для быстрой обработки ин­формации;


2) основной нейронный элемент коры — клетка Пуркинье, имеет большое количество входов и формирует единственный аксонный выход из мозжечка, коллатерали которого заканчиваются на ядерных его структурах;


3) на клетки Пуркинье проецируются практически все виды сенсорных раздражений: проприоцептивные, кожные, зрительные, слуховые, вестибулярные и др.;


4) выходы из мозжечка обеспечивают его связи с корой большого мозга, со стволовыми образованиями и спинным мозгом.


Мозжечок анатомически и функционально делится на старую, древнюю и новую части.


К старой части мозжечка
(archicerebellum) — вестибулярный мозжечок — относится клочково-флоккулярная доля. Эта часть имеет наиболее выраженные связи с вестибулярным анализатором, что объясняет значение мозжечка в регуляции равновесия.


Древняя, часть мозжечка
(paleocerebellum) — спиннальный моз­жечок — состоит из участков червя и пирамиды мозжечка, язычка, околоклочкового отдела и получает информацию преимущественно от проприорецептивных систем мышц, сухожилий, надкостницы, оболочек суставов.


Новый мозжечок
(neocerebellum) включает в себя кору полуша­рий мозжечка и участки червя; он получает информацию от коры, преимущественно по лобно-мостомозжечковому пути, от зрительных и слуховых рецептирующих систем, что свидетельствует об его участии в анализе зрительных, слуховых сигналов и организации на них реакции.


Кора мозжечка имеет смецифическое, нигде в ЦНС не повто­ряющееся, строение. Верхний (I) слой коры мозжечка — молеку­лярный слой, состоит из параллельных волокон, разветвлений ден-дритов и аксонов IIи IIIслоев. В нижней части молекулярного слоя встречаются корзинчатые и звездчатые клетки, которые обес­печивают взаимодействие клеток Пуркинье.


Средний (II) слой коры образован клетками Пуркинье, вы­строенными в один ряд и имеющими самую мощную в ЦНС дендритную систему. На дендритном поле одной клетки Пуркинье может быть до 60 000 синапсов. Следовательно, эти клетки вы­полняют задачу сбора, обработки и передачи информации. Аксоны клеток Пуркинье являются единственным путем, с помощью ко­торого кора мозжечка передает информацию в его ядра и ядра структуры большого мозга.


Под IIслоем коры (под клетками Пуркинье) лежит гранулярный (III) слой, состоящий из клеток-зерен, число которых достигает 10 млрд. Аксоны этих клеток поднимаются вверх, Т-образно делятся на поверхности коры, образуя дорожки контактов с клетками Пур­кинье. Здесь же лежат клетки Гольджи.


Из мозжечка информация уходит через верхние и нижние ножки. Через верхние ножки сигналы идут в таламус, в мост, красное ядро, ядра ствола мозга, в ретикулярную формацию среднего мозга. Через нижние ножки мозжечка сигналы идут в продолговатый мозг к его


вестибулярным ядрам, оливам, ретикулярной формации. Средние ножки мозжечка связывают новый мозжечок с лобной долей мозга.


Импульсная активность нейронов регистрируется в слое клеток Пуркинье и гранулярном слое, причем частота генерации импульсов этих клеток колеблется от 20 до 200 в секунду. Клетки ядер мозжечка генерируют импульсы значительно реже — 1 —3 импульса в секунду.


Стимуляция верхнего слоя коры мозжечка приводит к длитель­ному (до 200 мс) торможению активности клеток Пуркинье. Такое же их торможение возникает при световых и звуковых сигналах. Суммарные изменения электрической активности коры мозжечка на раздражение чувствительного нерва любой мышцы выглядят в форме позитивного колебания (торможение активности коры, ги­перполяризация клеток Пуркинье), которое наступает через 15— 20 мс и длится 20—30 мс, после чего возникает волна возбуждения, длящаяся до 500 мс (деполяризация клеток Пуркинье).


В кору мозжечка от кожных рецепторов, мышц, суставных обо­лочек, надкостницы сигналы поступают по так называемым спин-но-мозжечковым трактам: по заднему (дорсальному) и переднему (вентральному). Эти пути к мозжечку проходят через нижнюю оливу продолговатого мозга. От клеток олив идут так называемые лазающие волокна, которые ветвятся на дендритах клеток Пуркинье.


Ядра моста посылают афферентные пути в мозжечок, образующие мшистые волокна, которые оканчиваются на клетках-зернах IIIслоя коры мозжечка. Между мозжечком и голубоватым местом среднего мозга существует афферентная связь с помощью адренергических волокон. Эти волокна способны диффузно выбрасывать норадреналин в межклеточное пространство коры мозжечка, тем самым гуморально изменяют состояние возбудимости его клеток.


Аксоны клеток IIIслоя коры мозжечка вызывают торможение клеток Пуркинье и клеток-зерен своего же слоя.


Клетки Пуркинье в свою очередь тормозят активность нейронов ядер мозжечка. Ядра мозжечка имеют высокую тоническую актив­ность и регулируют тонус ряда моторных центров промежуточного, среднего, продолговатого, спинного мозга.


Подкорковая система мозжечка состоит из трех функционально разных ядерных образований: ядра шатра, пробковидного, шаровид­ного и зубчатого ядра.


Ядро шатра получает информацию от медиальной зоны коры мозжечка и связано с ядром Дейтерса и РФ продолговатого и среднего мозга. Отсюда сигналы идут по ретикулоспинальному пути к мотонейронам спинного мозга.


Промежуточная кора мозжечка проецируется на пробковидное и шаровидное ядра. От них связи идут в средний мозг к красному ядру, далее в спинной мозг по руброспинальному пути. Второй путь от промежуточного ядра идет к таламусу и далее в двигательную зону коры большого мозга.


Зубчатое ядро, получая информацию от латеральной зоны коры мозжечка, связано с таламусом, а через него — с моторной зоной коры большого мозга.


Мозжечковый контроль двигательной активности.
Эфферентные сигналы из мозжечка к спинному мозгу регулируют силу мышечных сокращений, обеспечивают способность к длительному тоническому сокращению мышц, способность сохранять оптимальный тонус мышц в покое или при движениях, соразмерять произвольные движения с целью этого движения, быстро переходить от сгибания к разги­банию и наоборот.


Мозжечок обеспечивает синергию сокращений разных мышц при сложных движениях. Например, делая шаг при ходьбе, человек заносит вперед ногу, одновременно центр тяжести туловища пере­носится вперед при участии мышц спины. В тех случаях, когда мозжечок не выполняет своей регуляторной функции, у человека наблюдаются расстройства двигательных функций, что выражается следующими симптомами.


1) астения (astenia— слабость) — снижение силы мышечного сокращения, быстрая утомляемость мышц;


2) астазия (astasia, от греч. а — не, stasia— стояние) — утрата способности к длительному сокращению мышц, что затрудняет сто­яние, сидение и т. д.;


3) дистония (distonia— нарушение тонуса) — непроизвольное повышение или понижение тонуса мышц;


4) тремор (tremor— дрожание) — дрожание пальцев рук, кистей, головы в покое; этот тремор усиливается при движении;


5) дисметрия (dismetria— нарушение меры) — расстройство равномерности движений, выражающееся либо в излишнем, либо недостаточном движении. Больной пытается взять предмет со стола и проносит руку за предмет (гиперметрия) или не доносит ее до предмета (гипометрия);


6) атаксия (ataksia, от греч. а — отрицание, taksia— порядок) — нарушение координации движений. Здесь ярче всего проявляется невозможность выполнения движений в нужном порядке, в опре­деленной последовательности. Проявлениями атаксии являются так­же адиадохокинез, асинергия, пьяная-шаткая походка. При адиа-дохокинезе человек не способен быстро вращать ладони вниз—вверх. При асинергии мышц он не способен сесть из положения лежа без помощи рук. Пьяная походка характеризуется тем, что человек ходит, широко расставив ноги, шатаясь из стороны в сторону от линии ходьбы. Врожденных двигательных актов у человека не так уж много (например, сосание), большинство же движений он выу­чивает в течение жизни и они становятся автоматическими (ходьба, письмо и т.д.). Когда нарушается функция мозжечка, движения становятся неточными, негармоничными, разбросанными, часто не достигают цели.


Данные о том, что повреждение мозжечка ведет к расстройствам движений, которые были приобретены человеком в результате обучения, позволяют сделать вывод, что само обучение шло с участием мозжечковых структур, а следовательно, мозжечок при­нимает участие в организации процессов высшей нервной дея­тельности;


7) дизартрия (disartria) — расстройство организации речевой моторики. При повреждении мозжечка речь больного становится растянутой, слова иногда произносятся как бы толчками (сканди­рованная речь).


При повреждении мозжечка наблюдается повышение тонуса мышц-разгибателей. Регуляция мышечного тонуса с помощью моз­жечка происходит следующим образом: проприоцептивные сигналы о тонусе мышц поступают в область червя и клочково-узелковую долю, отсюда — в ядро шатра, далее — к ядру преддверия и РФ продолговатого и среднего мозга и, наконец, по ретикулярно- и вестибулоспинальным путям к нейронам передних рогов спинного мозга, иннервирующих мышцы, от которых поступили сигналы. Следовательно, регуляция мышечного тонуса реализуется по прин­ципу обратной связи.


Следует отметить, что характер влияния на тонус мышц опре­деляется частотой генерации импульсов нейронов ядра шатра. При высокой частоте (30—300 имп/с) тонус мышц-разгибателей снижа­ется, при низкой (2—10 имп/с) — увеличивается.


Промежуточная область коры мозжечка получает информацию по спинальным трактам от двигательной области коры большого мозга (прецентральной извилины), по коллатералям пирамидного пути, идущего в спинной мозг. Коллатерали заходят в мост, а оттуда — в кору мозжечка. Следовательно, за счет коллатералей мозжечок получает информацию о готовящемся произвольном дви­жении, и возможность участвовать в обеспечении тонуса мышц, необходимого для реализации этого движения.


Латеральная кора мозжечка получает информацию из двигатель­ной области коры большого мозга. В свою очередь латеральная кора посылает информацию в зубчатое ядро мозжечка, отсюда по моз-жечково-кортикальному пути в сенсомоторную область коры боль­шого мозга (постцентральная извилина), а через мозжечково-руб-ральный путь к красному ядру и от него по руброспинальному пути к передним рогам спинного мозга. Параллельно сигналы по пира­мидному пути идут к тем же передним рогам спинного мозга.


Таким образом, мозжечок, получив информацию о готовящемся движении, корректирует программу подготовки этого движения в коре и одновременно готовит тонус мускулатуры для реализации этого движения через спинной мозг.


Изменение тонуса мышц после повреждения мозжечка обуслов­лено тем, что исчезает торможение лабиринтных и миотатических рефлексов, которое в норме осуществляется мозжечком. В норме вестибулярные ядра активируют мотонейроны спинного мозга мышц-разгибателей, а мозжечок тормозит активность нейронов преддвер-ного ядра. При повреждении мозжечка вестибулярные ядра бескон­трольно активируют мотонейроны передних рогов спинного мозга, в результате повышается тонус мышц-разгибателей конечностей.


При повреждении мозжечка усиливаются и проприоцептивные рефлексы спинного мозга (рефлексы, вызываемые при раздражении рецепторов сухожилий, мышц, надкостницы, оболочек суставов),


но в этом случае снимается тормозное влияние на мотонейроны спинного мозга ретикулярной формации продолговатого мозга.


В норме мозжечок активирует пирамидные нейроны коры боль­шого мозга, которые тормозят активность мотонейронов спинного мозга. Чем больше мозжечок активирует пирамидные нейроны коры, тем более выражено торможение мотонейронов спинного мозга. При повреждении мозжечка это торможение исчезает, так как активация пирамидных клеток прекращается.


Таким образом, в случае повреждения мозжечка активируются нейроны вестибулярных ядер и ретикулярной формации продолго­ватого мозга, которые активируют мотонейроны спинного мозга. Одновременно активность пирамидных нейронов снижается, а сле­довательно, снижается их тормозное влияние на те же мотонейроны спинного мозга. В итоге, получая возбуждающие сигналы от про­долговатого мозга при одновременном уменьшении тормозных вли­яний от коры большого мозга (после повреждения структур моз­жечка), мотонейроны спинного мозга активируются и вызывают гипертонус мышц.


Взаимодействие мозжечка и коры большого мозга. Это взаи­модействие организовано соматотопически. Функционально мозже­чок может оказывать облегчающее, тормозящее и компенсаторное влияние на реализацию функций коры большого мозга.


Роль взаимодействия лобной доли коры большого мозга с моз­жечком хорошо проявляется при частичных повреждениях мозжечка. Одномоментное удаление мозжечка приводит к гибели человека, в то же время, если удаляется часть мозжечка, это вмешательство, как правило, несмертельно. После операции частичного удаления мозжечка возникают симптомы его повреждения (тремор, атаксия, астения и т. д.), которые затем исчезают. Если на фоне исчезновения мозжечковых симптомов нарушается функция лобных долей мозга, то мозжечковые симптомы возникают вновь. Следовательно, кора лобных долей большого мозга компенсирует расстройства, вызыва­емые повреждением мозжечка. Механизм данной компенсации ре­ализуется через лобно-мостомозжечковый тракт.


Мозжечок за счет своего влияния на сенсомоторную область коры может изменять уровень тактильной, температурной, зритель­ной чувствительности. Оказалось, что повреждение мозжечка сни­жает уровень восприятия критической частоты мельканий света (наименьшая частота мельканий, при которой световые стимулы воспринимаются не как отдельные вспышки, а как непрерывный свет).


Удаление мозжечка приводит к ослаблению силы процессов воз­буждения и торможения, нарушению баланса между ними, развитию инертности. Выработка двигательных условных рефлексов после уда­ления мозжечка затрудняется, особенно в случаях формирования локальной, изолированной двигательной реакции. Точно так же замедляется выработка пищевых условных рефлексов, увеличивается скрытый (латентный) период их вызова.


Влияние мозжечка на вегетативные функции. Мозжечок ока-


зывает угнетающее и стимулирующее влияние на работу сердечно­сосудистой, дыхательной, пищеварительной и других систем орга­низма. В результате двойственного влияния мозжечок стабилизи­рует, оптимизирует функции систем организма.


Сердечно-сосудистая система реагирует на раздражение мозжечка либо усилением (например, прессорные рефлексы), либо снижением этой реакции. Направленность реакции зависит от фона, на котором она вызывается. При раздражении мозжечка высокое кровяное дав­ление снижается, а исходное низкое — повышается. Раздражение мозжечка на фоне учащенного дыхания (гиперпноэ) снижает частоту дыхания. При этом одностороннее раздражение мозжечка вызывает на своей стороне снижение, а на противоположной — повышение тонуса дыхательных мышц.


Удаление или повреждение мозжечка приводит к уменьшению тонуса мускулатуры кишечника, из-за низкого тонуса нарушается эвакуация содержимого желудка и кишечника. Нарушается также нормальная динамика секреции и всасывания в желудке и кишеч­нике.


Обменные процессы при повреждении мозжечка идут более интенсивно, гипергликемическая реакция (увеличение количества глюкозы в крови) на введение глюкозы в кровь или на прием ее с пищей возрастает и сохраняется дольше, чем в норме, ухуд­шается аппетит, наблюдается исхудание, замедляется заживление ран, волокна скелетных мышц подвергаются жировому перерож­дению.


При повреждении мозжечка нарушается генеративная функция, что проявляется в нарушении последовательности процессов родовой деятельности. При возбуждении или повреждении мозжечка мы­шечные сокращения, сосудистый тонус, обмен веществ и т. д. реа­гируют так же, как при активации или повреждении симпатического отдела вегетативной нервной системы.


Таким образом, мозжечок принимает участие в различных видах деятельности организма: моторной, соматической, вегетативной, сен­сорной, интегративной и т. д. Однако эти функции мозжечок реа­лизует через другие структуры центральной нервной системы. Моз­жечок выполняет функцию оптимизации отношений между различ­ными отделами нервной системы, что реализуется, с одной стороны, активацией отдельных центров, с другой — удержанием этой ак­тивности в определенных рамках возбуждения, лабильности и т. д. После частичного повреждения мозжечка могут сохраняться все функции организма, но сами функции, порядок их реализации, количественное соответствие потребностям трофики организма на­рушаются.


4.2.3. Лимбическая система


Лимбическая система представляет собой функциональное объ­единение структур мозга, участвующих в организации эмоциональ-но-мотивационного поведения, таких как пищевой, половой, обо-


решительный инстинкты. Эта система участвует в организации цикла бодрствование—сон.


Лимбическая система как филогенетически древнее образование оказывает регулирующее влияние на кору большого мозга и под­корковые структуры, устанавливая необходимое соответствие уров­ней их активности.


Морфофункциональная организация.
Структуры лимбической системы включают в себя 3 комплекса. Первый комплекс — древняя кора (препериформная, периамигдалярная, диагональная кора), обо­нятельные луковицы, обонятельный бугорок, прозрачная перегород­ка (рис. 4.12).


Вторым комплексом структур лимбической системы является ста­рая кора, куда входят гиппокамп, зубчатая фасция, поясная изви­лина.


Третий комплекс лимбической системы — структуры островковой коры, парагиппокамповая извилина.


И, наконец, в лимбическую систему включают подкорковые структуры: миндалевидные тела, ядра прозрачной перегородки, пе­реднее таламическое ядро, сосцевидные тела.


Особенностью лимбической системы является то, что между ее структурами имеются простые двусторонние связи и сложные пути, образующие множество замкнутых кругов (см. рис. 4.12). Такая организация создает условия для длительного циркулирования од­ного и того же возбуждения в системе и тем самым для сохранения в ней единого состояния и навязывание этого состояния другим системам мозга.


В настоящее время хорошо известны связи между структурами мозга, организующие круги, имеющие свою функциональную спе­цифику. К ним относится круг Пейпеса
(гиппокамп -» сосцевидные тела -> передние ядра таламуса -> кора поясной извилины -
парагиппокампова извилина -> гиппокамп). Этот круг имеет отно­шение к памяти и процессам обучения.


Другой круг (миндалевидное тело -> гипоталамус -> мезен-цефальные структуры -
миндалевидное тело) регулирует аг­рессивно-оборонительные, пищевые и сексуальные формы поведе­ния.


Считается, что образная (иконическая) память формируется кор-тико-лимбико-таламо-кортикальным кругом.
Круги разного фун­кционального назначения связывают лимбическую систему со мно­гими структурами центральной нервной системы, что позволяет последней реализовать функции, специфика которых определяется включенной дополнительной структурой.


Например, включение хвостатого ядра в один из кругов лимби­ческой системы определяет ее участие в организации тормозных процессов высшей нервной деятельности.


Большое количество связей в лимбической системе, своеобразное круговое взаимодействие ее структур создают благоприятные условия для реверберации возбуждения по коротким и длинным кругам. Это, с одной стороны, обеспечивает функциональное взаимодействие частей лимбической системы, с другой — создает условия для за­ поминания. Обилие связей лимбической системы со структурами центральной нервной системы затрудняет выделение функций мозга, в которых она не принимала бы участия. Так, лимбическая система имеет отношение к регулированию уровня реакции автономной, соматической систем при эмоционально-мотивационной деятельно­ сти, регулированию уровня внимания, восприятия, воспроизведения эмоционально значимой информации. Лимбическая система опре­ деляет выбор и реализацию адаптационных форм поведения, дина­ мику врожденных форм поведения, поддержание гомеостаза, гене­ ративных процессов. Наконец, она обеспечивает создание эмоцио­ нального фона, формирование и реализацию процессов высшей нервной деятельности...


Нужно отметить, что древняя и старая кора лимбической системы имеет прямое отношение к обонятельной функции. В свою очередь обонятельный анализатор, как самый древний из анализаторов,


является неспецифическим активатором всех видов деятельности коры большого мозга.


Некоторые авторы называют лимбическую систему висцераль­ным мозгом, т. е. структурой ЦНС, участвующей в регуляции деятельности внутренних органов. И действительно, миндалевид­ные тела, прозрачная перегородка, обонятельный мозг при их возбуждении изменяют активность вегетативных систем организма в соответствии с условиями окружающей среды. Это стало воз­можно благодаря установлению морфологических и функциональ­ных связей с более молодыми образованиями мозга, обеспечива­ющими взаимодействие экстероцептивных, интероцептивных сис­тем и коры височной доли.


Наиболее полифункциональными образованиями лимбической системы являются гиппокамп и миндалевидные тела. Физиология этих структур наиболее изучена.


4.2.3.1. Гиппокамп


Гиппокамп (hippocampus) расположен в глубине височных долей мозга и является основной структурой лимбической системы. Мор­фологически гиппокамп представлен стереотипно повторяющимися модулями, связанными между собой и с другими структурами.


Модульное строение обусловливает способность гиппокампа ге­нерировать высокоамплитудную ритмическую активность. Связь мо­дулей создает условие циркулирования активности в гиппокампе при обучении. При этом возрастает амплитуда синаптических по­тенциалов, увеличиваются нейросекреция клеток гиппокампа, число шипиков на дендритах его нейронов, что свидетельствует о переходе потенциальных синапсов в активные. Многочисленные связи гип­покампа со структурами как лимбической системы, так и других отделов мозга определяют его многофункциональность.


Выраженными и специфическими являются электрические про­цессы в гиппокампе. Активность здесь чаще всего характеризуется быстрыми бета-ритмами (14—30 в секунду) и медленными тета-ритмами (4—7 в секунду).


Если с помощью фармакологических методов в новой коре ос­лабить десинхронизацию на новое раздражение, то в гиппокампе затрудняется возникновение тета-ритма. Раздражение ретикулярной формации ствола мозга усиливает выраженность тета-ритма в гип­покампе и высокочастотных ритмов в новой коре.


Значение тета-ритма заключается в том, что он отражает реак­цию гиппокампа, а тем самым — его участие в ориентировочном рефлексе, реакциях настороженности, повышения внимания, в ди­намике обучения. Тета-ритм в гиппокампе наблюдается при высоком уровне эмоционального напряжения — страхе, агрессии, голоде, жажде. Вызванная активность в гиппокампе возникает на раздра­жение различных рецепторов и любой из структур лимбической системы. Разносенсорные проекционные зоны в гиппокампе пере­крываются. Это обусловлено тем, что большинство нейронов гип-


покампа характеризуется полисенсорностью, т. е. способностью ре­агировать на световые, звуковые и другие виды раздражений.


Нейроны гиппокампа отличаются выраженной фоновой актив­ностью. В ответ на сенсорное раздражение реагирует до 60% ней­ронов гиппокампа. Особенность строения гиппокампа, взаимосвя­занные модули обусловливают цикл генерирования возбуждения в нем, что выражается в длительной реакции (до 12 с) нейронов на однократный короткий стимул.


Повреждение гиппокампа у человека нарушает память на собы­тия, близкие к моменту повреждения (ретроантероградная амнезия). Нарушаются запоминание, обработка новой информации, различие пространственных сигналов. Повреждение гиппокампа ведет к сни­жению эмоциональности, инициативности, замедлению скорости ос­новных нервных процессов, повышаются пороги вызова эмоциональ­ных реакций.


4.2.3.2. Миндалевидное тело


Миндалевидное тело (corpusamygdoloideum), миндалина — под­корковая структура лимбической системы, расположенная в глубине височной доли мозга. Нейроны миндалины разнообразны по форме, функциям и нейрохимическим процессам в них. Функции минда­лины связаны с обеспечением оборонительного поведения, вегета­тивными, двигательными, эмоциональными реакциями, мотивацией условнорефлекторного поведения.


Электрическая активность миндалин характеризуется разноамп-литудными и разночастотными колебаниями. Фоновые ритмы могут коррелировать с ритмом дыхания, сердечных сокращений.


Миндалины реагируют многими своими ядрами на зрительные, слуховые, интероцептивные, обонятельные, кожные раздражения, причем все эти раздражения вызывают изменение активности любого из ядер миндалины, т. е. ядра миндалины полисенсорны. Реакция ядра на внешние раздражения длится, как правило, до 85 мс, т. е. значительно меньше, чем реакция на подобные же раздражения новой коры.


Нейроны имеют хорошо выраженную спонтанную активность, которая может быть усилена или заторможена сенсорными раздра­жениями. Многие нейроны полимодальны и полисенсорны и акти­вируются синхронно с тета-ритмом.


Раздражение ядер миндалевидного тела
создает выраженный парасимпатический эффект на деятельность сердечно-сосудистой, дыхательной систем, приводит к понижению (редко к повышению) кровяного давления, урежению сердечного ритма, нарушению про­ведения возбуждения по проводящей системе сердца, возникновению аритмий и экстрасистолий. При этом сосудистый тонус может не изменяться.


Урежение ритма сокращений сердца при воздействии на минда­лины отличается длительным скрытым периодом и имеет длительное последействие.


Раздражение ядер миндалины вызывает угнетение дыхания, иног­да кашлевую реакцию.


При искусственной активации миндалины появляются реакции принюхивания, облизывания, жевания, глотания, саливации, изме­нения перистальтики тонкой кишки, причем эффекты наступают с большим латентным периодом (до 30—45 с после раздражения). Стимуляция миндалин на фоне активных сокращений желудка или кишечника тормозит эти сокращения.


Разнообразные эффекты раздражения миндалин обусловлены их связью с гипоталамусом, который регулирует работу внутренних органов.


Повреждение миндалины
у животных снижает адекватную под­готовку автономной нервной системы к организации и реализации поведенческих реакций, приводит к гиперсексуальности, исчезно­вению страха, успокоению, неспособности к ярости и агрессии. Животные становятся доверчивыми. Например, обезьяны с повреж­денной миндалиной спокойно подходят к гадюке, вызывавшей ранее у них ужас, бегство. Видимо, в случае повреждения миндалины исчезают некоторые врожденные безусловные рефлексы, реализую­щие память об опасности.


4.2.3.3. Гипоталамус


Гипоталамус (hypothalamus, подбугорье) — структура промежу­точного мозга, входящая в лимбическую систему, организующая эмоциональные, поведенческие, гомеостатические реакции организ­ма.


Морфофункциональная организация. Гипоталамус имеет боль­шое число нервных связей с корой большого мозга, подкорковыми узлами, зрительным бугром, средним мозгом, мостом, продолговатым и спинным мозгом.


В состав гипоталамуса входят серый бугор, воронка с нейрогипо-физом и сосцевидные тела. Морфологически в нейронных структурах гипоталамуса можно выделить около 50 пар ядер, имеющих свою спе­цифическую функцию. Топографически эти ядра можно объединить в 5 групп: 1) преоптическая группа имеет выраженные связи с конеч­ным мозгом и делится на медиальное и латеральное предоптические ядра; 2) передняя группа, в состав которой входят супраоптическое, паравентрикулярные ядра; 3) средняя группа состоит из нижнемеди­ального и верхнемедиального ядер; 4) наружная группа включает в себя латеральное гипоталамическое поле и серобугорные ядра; 5) за­дняя группа сформирована из медиальных и латеральных ядер сосце­видных тел и заднего гипоталамического ядра.


Ядра гипоталамуса имеют мощное кровоснабжение, подтвержде­нием чему служит тот факт, что ряд ядер гипоталамуса обладает изолированным дублирующим кровоснабжением из сосудов артери­ального круга большого мозга (виллизиев круг). На 1 мм2
площади гипоталамуса приходится до 2600 капилляров, в то время как на той же площади Vслоя предцентральной извилины (моторной коры)


их 440, в гиппокампе — 350, в бледном шаре — 550, в затылочной доле коры большого мозга (зрительной коре) — 900. Капилляры гипоталамуса высокопроницаемы для крупномолекулярных белко­вых соединений, к которым относятся нуклеопротеиды, что объясняет высокую чувствительность гипоталамуса к нейровирусным инфек­циям, интоксикациям, гуморальным сдвигам.


У человека гипоталамус окончательно созревает к возрасту 13— 14 лет, когда заканчивается формирование гипоталамо-гипофизар-ных нейросекреторных связей. За счет мощных афферентных связей с обонятельным мозгом, базальными ганглиями, таламусом, гиппо-кампом, корой большого мозга гипоталамус получает информацию о состоянии практически всех структур мозга. В то же время ги­поталамус посылает информацию к таламусу, ретикулярной фор­мации, вегетативным центрам ствола мозга и спинного мозга.


Нейроны гипоталамуса имеют особенности, которые и определяют специфику функций самого гипоталамуса. К этим особенностям относятся чувствительность нейронов к составу омывающей их кро­ви, отсутствие гематоэнцефалического барьера между нейронами и кровью, способность нейронов к нейросекреции пептидов, нейроме-диаторов и др.


Роль гипоталамуса в регуляции вегетативных функций. Влияние на симпатическую и парасимпатическую регуляцию позволяет ги­поталамусу воздействовать на вегетативные функции организма гу­моральным и нервным путями.


Раздражение ядер передней группы сопровождается парасимпа­тическими эффектами. Раздражение ядер задней группы вызывает симпатические эффекты в работе органов. Стимуляция ядер средней группы приводит к снижению влияний симпатического отдела ав­тономной нервной системы. Указанное распределение функций ги­поталамуса не абсолютно. Все структуры гипоталамуса способны в разной степени вызывать симпатические и парасимпатические эф­фекты. Следовательно, между структурами гипоталамуса существу­ют функциональные взаимодополняющие, взаимокомпенсирующие отношения.


В целом за счет большого количества связей, полифункционально­сти структур гипоталамус выполняет интегрирующую функцию веге­тативной, соматической и эндокринной регуляции, что проявляется и в организации его ядрами ряда конкретных функций. Так, в гипота­ламусе располагаются центры гомеостаза, теплорегуляции, голода и насыщения, жажды и ее удовлетворения, полового поведения, страха, ярости, регуляции цикла бодрствование—сон. Все эти центры реали­зуют свои функции путем активации или торможения автономного (вегетативного) отдела нервной системы, эндокринной системы, структур ствола и переднего мозга. Нейроны ядер передней группы гипоталамуса продуцируют вазопрессин, или антидиуретический гор­мон (АДГ), окситоцин и другие пептиды, которые по аксонам попада­ют в заднюю долю гипофиза — нейрогипофиз.


Нейроны ядер срединной группы гипоталамуса продуцируют так называемые рилизинг-факторы (либерины) и ингибирующие фак-


торы (статины), которые регулируют активность передней доли гипофиза — аденогипофиз.
В нем образуются такие вещества, как соматотропный, тиреотропный и другие гормоны (см. раздел 5.2.2). Наличие такого набора пептидов в структурах гипоталамуса свиде­тельствует о присущей им нейросекреторной функции.


Они также обладают детектирующей функцией: реагируют на изменения температуры крови, электролитного состава и осмотиче­ского давления плазмы, количества и состав гормонов крови.


Олдс (Olds) описал поведение крыс, которым вживляли электроды в ядра гипоталамуса и давали возможность самостоятельно стимули­ровать эти ядра. Оказалось, что стимуляция некоторых ядер приводи­ла к негативной реакции. Животные после однократной самостимуля­ции больше не подходили к педали, замыкающей стимулирующий ток. При самостимуляции других ядер животные нажимали на педаль часами, не обращая внимания на пищу, воду и др.


Исследования Дельгадо (Delgado) во время хирургических опе­раций показали, что у человека раздражение аналогичных участков вызывало эйфорию, эротические переживания. В клинике показано также, что патологические процессы в гипоталамусе могут сопро­вождаться ускорением полового созревания, нарушением менстру­ального цилка, половой функции.


Раздражение передних отделов гипоталамуса может вызывать у животных пассивно-оборонительную реакцию, ярость страх, а раз­дражение заднего гипоталамуса вызывает активную агрессию.


Раздражение заднего гипоталамуса приводит к экзофтальму, рас­ширению зрачков, повышению кровяного давления, сужению про­света артериальных сосудов, сокращениям желчного, мочевого пу­зырей. Могут возникать взрывы ярости с описанными симпатиче­скими проявлениями. Уколы в области гипоталамуса вызывают глюкозурию, полиурию. В ряде случаев раздражение вызывало на­рушение теплорегуляции: животные становились пойкилотермными, у них не возникало лихорадочное состояние.


Гипоталамус является также центром регуляции цикла бодрство­вание — сон. При этом задний гипоталамус активизирует бодрствова­ние, стимуляция переднего вызывает сон. Повреждение заднего гипо­таламуса может вызвать так называемый летаргический сон.


Особое место в функциях гипоталамуса занимает регуляция де­ятельности гипофиза (см. раздел 5.2.2).


В гипоталамусе и гипофизе образуются также нейрорегуляторные пептиды — энкефалины, эндорфины, обладающие морфиноподобным действием и способствующие снижению стресса и т. д.


4.2.4. Базальные ядра


Базальные (подкорковые) ядра (nucleibasales) головного мозга располагаются под белым веществом внутри переднего мозга, пре­имущественно в лобных долях. К базальным ядрам относят хвостатое ядро (nucleuscaudatus), скорлупу (putamen), ограду (claustrum), бледный шар (globuspallidus).


4.2.4.1. Хвостатое ядро. Скорлупа


Хвостатое ядро (nucleuscaudatus) и скорлупа (putamen) являются эволюционно более поздними, чем бледный шар, образованиями и функционально оказывают на него тормозящее влияние.


Хвостатое ядро и скорлупа имеют сходное гистологическое стро­ение. Их нейроны относятся ко IIтипу клеток Гольджи, т. е. имеют короткие дендриты, тонкий аксон; их размер до 20 мк. Этих нейронов в 20 раз больше, чем нейронов Гольджи Iтипа, имеющих развет­вленную сеть дендритов и размер около 50 мк.


Функции любых образований головного мозга определяются прежде всего их связями, которых у базальных ядер достаточно много. Эти связи имеют четкую направленность и функциональную очерченность.


Хвостатое ядро и скорлупа получают нисходящие связи преиму­щественно от экстрапирамидной коры через подмозолистый пучок. Другие поля коры большого мозга также посылают большое коли­чество аксонов к хвостатому ядру и скорлупе.


Основная часть аксонов хвостатого ядра и скорлупы идет к бледному шару, отсюда — к таламусу и только от него — к сенсорным полям. Следовательно, между этими образованиями име­ется замкнутый круг связей. Хвостатое ядро и скорлупа имеют также функциональные связи со структурами, лежащими вне этого круга: с черной субстанцией, красным ядром, люисовым телом, ядрами преддверия, мозжечком, у-клетками спинного мозга.


Обилие и характер связей хвостатого ядра и скорлупы свиде­тельствуют об их участии в интегративных процессах, организации и регуляции движений, регуляции работы вегетативных органов.


Раздражение поля 8 коры большого мозга вызывает возбуждение нейронов хвостатого ядра, а поля 6 — возбуждение нейронов хво­статого ядра и скорлупы. Одиночное раздражение сенсомоторной области коры большого мозга может вызывать возбуждение или торможение активности нейронов хвостатого ядра. Эти реакции возникают через 10—20 мс, что свидетельствует о прямых и опос­редованных связях коры большого мозга с хвостатым ядром.


Медиальные ядра таламуса имеют прямые связи с хвостатым ядром, свидетельством чего служит реакция его нейронов, насту­пающая через 2—4 мс после раздражения таламуса.


Реакцию нейронов хвостатого ядра вызывают раздражения кожи, световые, звуковые стимулы.


Во взаимодействиях хвостатого ядра и бледного шара
прева­лируют тормозные влияния. Если раздражать хвостатое ядро, то большая часть нейронов бледного шара тормозится, а меньшая возбуждается. В случае повреждения хвостатого ядра у животного появляется двигательная гиперактивность.


Взаимодействие черного вещества и хвостатого ядра
основано на прямых и обратных связях между ними. Установлено, что сти­муляция хвостатого ядра усиливает активность нейронов черного вещества. Стимуляция черного вещества приводит к увеличению,


а разрушение — к уменьшению количества дофамина в хвостатом ядре. Установлено, что дофамин синтезируется в клетках черного вещества, а затем со скоростью 0,8 мм/ч транспортируется к си­напсам нейронов хвостатого ядра. В хвостатом ядре в 1 г нервной ткани накапливается до 10 мкг дофамина, что в 6 раз больше, чем в других отделах переднего мозга, бледном шаре, в 19 раз больше, чем в мозжечке. Благодаря дофамину проявляется растормажива­ющий механизм взаимодействия хвостатого ядра и бледного шара.


При недостатке дофамина в хвостатом ядре (например, при дисфункции черного вещества) бледный шар растормаживается, ак­тивизирует спинно-стволовые системы, что приводит к двигательным нарушениям в виде ригидности мышц.


Кортико-стриарные связи
топически локализованы. Так, пе­редние области мозга связаны с головкой хвостатого ядра. Пато­логия, возникающая в одной из взаимосвязанных областей кора — хвостатое ядро, функционально компенсируется сохранившейся структурой.


Хвостатое ядро и бледный шар принимают участие в таких интегративных процессах, как условнорефлекторная деятельность, двигательная активность. Это выявляется при стимуляции хвостатого ядра, скорлупы и бледного шара, деструкции и при регистрации электрической активности.


Прямое раздражение некоторых зон хвостатого ядра вызывает поворот головы в сторону, противоположную раздражаемому полу­шарию, животное начинает двигаться по кругу, т. е. возникает так называемая циркуляторная реакция.


Раздражение других областей хвостатого ядра и скорлупы вы­зывает прекращение всех видов активности человека или животного: ориентировочной, эмоциональной, двигательной, пищевой. При этом в коре большого мозга наблюдается медленноволновая активность.


У человека стимуляция хвостатого ядра во время нейрохирур­гической операции нарушает речевой контакт с больным: если боль­ной что-то говорил, то он замолкает, а после прекращения раздра­жения не помнит, что к нему обращались. В случаях травм головного мозга с раздражением головки хвостатого ядра у больных отмечается ретро-, антеро- или ретроантероградная амнезия.


У таких животных, как обезьяны, раздражения хвостатого ядра на разных этапах реализации условного рефлекса приводят к тор­можению выполнения данного рефлекса. Например, если у обезьяны через вживленные электроды раздражать хвостатое ядро перед по­дачей условного сигнала, то обезьяна не реагирует на сигнал, как будто не слышала его; раздражение ядра после того, как обезьяна на сигнал направляется к кормушке или уже начинает брать пищу из кормушки, приводит к остановке животного, после прекращения раздражения обезьяна, не завершив условной реакции, возвращается на место, т. е. она «забывает», что был раздражающий сигнал (ре­троградная амнезия).


Раздражение хвостатого ядра может полностью предотвратить восприятие болевых, зрительных, слуховых и других видов стиму-


«ляции. Раздражение вентральной области хвостатого ядра снижает, а дорсальной — повышает слюноотделение.


При стимуляции хвостатого ядра удлиняются латентные периоды рефлексов, нарушается переделка условных рефлексов. Выработка условных рефлексов на фоне стимуляции хвостатого ядра становится невозможной. Видимо, это объясняется тем, что стимуляция хво­статого ядра вызывает торможение активности коры большого мозга.


Ряд подкорковых структур также получает тормозное влияние хвостатого ядра. Так, стимуляция хвостатых ядер вызывала вере­тенообразную активность в зрительном бугре, бледном шаре, суб-таламическом теле, черном веществе и др.


Таким образом, специфичным для раздражения хвостатого ядра является преимущественно торможение активности коры боль­шого мозга, подкорковых образований, торможение безусловного и условнорефлекторного поведения.


В то же время при раздражении хвостатого ядра могут появляться некоторые виды изолированных движений. Видимо, хвостатое ядро имеет наряду с тормозящими и возбуждающие структуры.


Выключение хвостатого ядра сопровождается развитием гипер-кинезов типа непроизвольных мимических реакций, тремора, ате­тоза, торсионного спазма, хореи (подергивания конечностей; туло­вища, как при некоординированном танце), двигательной гиперак­тивности в форме бесцельного перемещения с места на место.


В случае повреждения хвостатого ядра
наблюдаются сущест­венные расстройства высшей нервной деятельности, затруднение ориентации в пространстве, нарушение памяти, замедление роста организма. После двустороннего повреждения хвостатого ядра ус­ловные рефлексы исчезают на длительный срок, выработка новых рефлексов затрудняется, общее поведение отличается застойностью, инертностью, трудностью переключений. У обезьян после односто­роннего повреждения хвостатого ядра условная реакция восстанав­ливалась через 30—50 дней, латентные периоды рефлексов удли­нялись, появлялись межсигнальные реакции. Двустороннее повреж­дение приводило к полному торможению условных рефлексов. Видимо, двустороннее повреждение истощает симметричные ком­пенсаторные механизмы.


При воздействиях на хвостатое ядро, помимо нарушений высшей нервной деятельности, отмечаются расстройства движения. Многие авторы отмечают, что у разных животных при двустороннем по­вреждении полосатого тела появляется безудержное стремление дви­гаться вперед, при одностороннем — возникают манежные движения.


Несмотря на большое функциональное сходство хвостатого ядра и скорлупы, имеется ряд функций, специфичных для последней.


Эволюционно скорлупа появляется раньше хвостатого ядра (ее зачатки есть уже у рыб).


Для скорлупы характерно участие в организации пищевого по­ведения: пищепоиска, пищенаправленности, пищезахвата и пище-владения; ряд трофических нарушений кожи, внутренних органов (например, гепатолентикулярная дегенерация) возникает при нару-


шениях функции скорлупы. Раздражения скорлупы приводят к из-» менениям дыхания, слюноотделения.


Как упоминалось ранее, раздражение хвостатого ядра тормозит условный рефлекс на всех этапах его реализации. В то же время раздражение хвостатого ядра препятствует угашению условного ре­флекса, т. е. развитию торможения; животное перестает восприни­мать новую обстановку. Учитывая, что стимуляция хвостатого ядра приводит к торможению условного рефлекса, следовало бы ожидать, что разрушение хвостатого ядра вызовет облегчение условнореф-лекторной деятельности. Но оказалось, что разрушение хвостатого ядра также приводит к торможению условнорефлекторной деятель­ности. Видимо, функция хвостатого ядра не является просто тор­мозной, а заключается в корреляции и интеграции процессов опе­ративной памяти. Это подтверждается также тем, что на нейронах хвостатого ядра конвергирует информация различных сенсорных систем, так как большая часть этих нейронов полисенсорна.


4.2.4.2. Бледный шар


Бледный шар (globuspalliduss. pallidum) имеет преимущественно крупные нейроны Гольджи Iтипа. Связи бледного шара с таламусом, скорлупой, хвостатым ядром, средним мозгом, гипоталамусом, со-матосенсорной системой и др. свидетельствуют об его участии в организации простых и сложных форм поведения.


Раздражение бледного шара
с помощью вживленных электродов вызывает сокращение мышц конечностей, активацию или торможе­ние у-мотонейронов спинного мозга. У больных с гиперкинезами раздражение разных отделов бледного шара (в зависимости от места и частоты раздражения) увеличивало или снижало гиперкинез.


Стимуляция бледного шара
в отличие от стимуляции хвостатого ядра не вызывает торможения, а провоцирует ориентировочную реакцию, движения конечностей, пищевое поведение (обнюхивание, жевание, глотание и т. д.).


Повреждение бледного шара
вызывает у людей гипомимию, ма-скообразность лица, тремор головы, конечностей (причем этот тре­мор исчезает в покое, во сне и усиливается при движениях), мо­нотонность речи. При повреждении бледного шара наблюдается миоклония — быстрые подергивания мышц отдельных групп или отдельных мышц рук, спины, лица.


В первые часы после повреждения бледного шара в остром опыте на животных резко снижалась двигательная активность, движения ха­рактеризовались дискоординацией, отмечалось наличие незавершен­ных движений, при сидении — поникшая поза. Начав движение, жи­вотное долго не могло остановиться. У человека с дисфункцией блед­ного шара затруднено начало движений, исчезают вспомогательные и реактивные движения при вставании, нарушаются содружественные движения рук при ходьбе, появляется симптом пропульсии: длитель­ная подготовка к движению, затем быстрое движение и остановка. Та­кие циклы у больных повторяются многократно.


4.2.4.3. O2рада


Oграда (claustrum) содержит полиморфные нейроны разных ти­пов. Она образует связи преимущественно с корой большого мозга.


Глубокая локализация и малые размеры ограды представляют определенные трудности для ее физиологического исследования. Это ядро имеет форму узкой полоски серого вещества, расположенного под корой большого мозга в глубине белого вещества.


Стимуляция ограды вызывает ориентировочную реакцию, пово­рот головы в сторону раздражения, жевательные, глотательные, иногда рвотные движения. Раздражение ограды тормозит условный рефлекс на свет, мало сказывается на условном рефлексе на звук. Стимуляция ограды во время еды тормозит процесс поедания пищи.


Известно, что толщина ограды левого полушария у человека несколько больше, чем правого; при повреждении ограды правого полушария наблюдаются расстройства речи.


Таким образом, базальные ядра головного мозга являются ин-тегративными центрами организации моторики, эмоций, высшей нервной деятельности, причем каждая из этих функций может быть усилена или заторможена активацией отдельных образований ба-зальных ядер.


4.2.5. Кора большого мозга


Высшим отделом ЦНС является кора большого мозга (кора боль­ших полушарий). Она обеспечивает совершенную организацию по­ведения животных на основе врожденных и приобретенных в онто­генезе функций.


4.2.5.1. Морфофункциональная организация


Кора большого мозга имеет следующие морфофункциональные особенности:


— многослойность расположения нейронов;


— модульный принцип организации;


— соматотопическая локализация рецептирующих систем;


— экранность, т. е. распределение внешней рецепции на пло­скости нейронального поля коркового конца анализатора;


— зависимость уровня активности от влияния подкорковых структур и ретикулярной формации;


— наличие представительства всех функций нижележащих структур ЦНС;


— цитоархитектоническое распределение на поля;


— наличие в специфических проекционных сенсорных и мотор­ ной системах вторичных и третичных полей с ассоциативными функциями;


— наличие специализированных ассоциативных областей;


— динамическая локализация функций, выражающаяся в воз­ можности компенсаций функций утраченных структур;


— перекрытие в коре большого мозга зон соседних перифери­ ческих рецептивных полей;


— возможность длительного сохранения следов раздражения;


— реципрокная функциональная взаимосвязь возбудительных и тормозных состояний;


— способность к иррадиации возбуждения и торможения;


— наличие специфической электрической активности. Глубокие борозды делят каждое полушарие большого мозга на


лобную, височную, теменную, затылочную доли и островок. Ост­ровок расположен в глубине сильвиевой борозды и закрыт сверху частями лобной и теменной долей мозга.


Кора большого мозга делится на древнюю (archicortex), старую (paleocortex) и новую (neocortex). Древняя кора наряду с другими функциями имеет отношение к обонянию и обеспечению взаимо­действия систем мозга. Старая кора включает поясную извилину, гиппокамп. У новой коры наибольшее развитие величины, диффе­ренциации функций отмечается у человека. Толщина новой коры колеблется от 1,5 до 4,5 мм и максимальна в передней центральной извилине.


Функции отдельных зон новой коры определяются особенностями ее структурно-функциональной организации, связями с другими структурами мозга, участием в восприятии, хранении и воспроиз­ведении информации при организации и реализации поведения, регуляции функций сенсорных систем, внутренних органов.


Особенности структурно-функциональной организации коры большого мозга обусловлены тем, что в эволюции происходила кортикализация функций, т. е. передача коре большого мозга фун­кций нижележащих структур мозга. Однако эта передача не озна­чает, что кора берет на себя выполнение функций других структур. Ее роль сводится к коррекции возможных нарушений функций взаимодействующих с ней систем, более совершенного, с учетом индивидуального опыта, анализа сигналов и организации оптималь­ной реакции на эти сигналы, формирование в своих и в других заинтересованных структурах мозга памятных следов о сигнале, его характеристиках, значении и характере реакции на него. В даль­нейшем, по мере автоматизации реакция начинает выполняться подкорковыми структурами.


Общая площадь коры большого мозга человека около 2200 см2
, число нейронов коры превышает 10 млрд. В составе коры имеются пирамидные, звездчатые, веретенообразные нейроны.


Пирамидные нейроны
имеют разную величину, их дендриты несут большое количество шипиков; аксон пирамидного нейрона, как правило, идет через белое вещество в другие зоны коры или в структуры ЦНС.


Звездчатые
клетки имеют короткие хорошо ветвящиеся дендриты и короткий аскон, обеспечивающий связи нейронов в пределах самой коры большого мозга.


Веретенообразные нейроны
обеспечивают вертикальные или го­ризонтальные взаимосвязи нейронов разных слоев коры.


Кора большого мозга имеет преимущественно шестислойное стро­ение (рис. 4.13).


Слой I— верхний молекулярный, представлен в основном вет­влениями восходящих дендритов пирамидных нейронов, среди ко­торых расположены редкие горизонтальные клетки и клетки-зерна, сюда же приходят волокна неспецифических ядер таламуса, регу­лирующие через дендриты этого слоя уровень возбудимости коры большого мозга.


Слой II— наружный зернистый, состоит из звездчатых клеток, определяющих длительность циркулирования возбуждения в коре большого мозга, т. е. имеющих отношение к памяти.


Слой III— наружный пирамидный, формируется из пирамидных клеток малой величины и вместе со IIслоем обеспечивают корко-корковые связи различных извилин мозга.


Слой IV— внутренний зернистый, содержит преимущественно звездчатые клетки. Здесь заканчиваются специфические таламокор-тикальные пути, т. е. пути, начинающиеся от рецепторов анализаторов.


Слой V— внутренний пирамидный, слой крупных пирамид, которые являются выходными нейронами, аксоны их идут в ствол мозга и спинной мозг.


Слой VI— слой полиморфных клеток, большинство нейронов этого слоя образуют кортико-таламические пути.


Клеточный состав коры по разнообразию морфологии, функции, формам связи не имеет себе равных в других отделах ЦНС. Ней­ронный состав, распределение нейронов по слоям в разных областях коры различны, что позволило выделить в мозге человека 53 ци-тоархитектонических поля. Разделение коры большого мозга на цитоархитектонические поля более четко формируется по мере со­вершенствования ее функции в филогенезе.


У высших млекопитающих в отличие от низших от двигательного 4 поля хорошо дифференцируются вторичные поля 6, 8 и 10, функци­онально обеспечивающие высокую координацию, точность движений; вокруг зрительного поля 17 — вторичные зрительные поля 18 и 19, участвующие в анализе значения зрительного стимула (организация зрительного внимания, управление движением глаза). Первичные слуховое, соматосенсорное, кожное и другие поля также имеют рядом расположенные вторичные и третичные поля, обеспечивающие ассо­циацию функций данного анализатора с функциями других анализа­торов. Для всех анализаторов характерен соматотопический принцип организации проекции на кору большого мозга периферических ре-цептирующих систем. Так, в сенсорной области коры второй цент­ральной извилины имеются участки представительства локализации каждой точки кожной поверхности, в двигательной области коры каж­дая мышца имеет свою топику (свое место), раздражая которую мож­но получить движение данной мышцы; в слуховой области коры име­ется топическая локализация определенных тонов (тонотопическая локализация), повреждение локального участка слуховой области ко­ры приводит к потере слуха на определенный тон.


Точно так же в проекции рецепторов сетчатки глаза на зри-


тельное поле коры 17 имеется топографическое распределение. В случае гибели локальной зоны поля 17 изображение не воспри­нимается, если оно падает на участок сетчатки, проецирующийся на поврежденную зону коры большого мозга.


Особенностью корковых полей является экранный принцип их функционирования. Этот принцип заключается в том, что рецептор проецирует свой сигнал не на один нейрон коры, а на поле нейронов, которое образуется их коллатералями и связями. В результате сигнал фокусируется не точка в точку, а на множестве разнообразных нейронов, что обеспечивает его полный анализ и возможность пе­редачи в другие заинтересованные структуры. Так одно волокно, приходящее в зрительную область коры, может активировать зону размером 0,1 мм. Это значит, что один аксон распределяет свое действие на более чем 5000 нейронов.


Входные (афферентные) импульсы поступают в кору снизу, под­нимаются к звездчатым и пирамидным клеткам III—Vслоев коры. От звездчатых клеток IVслоя сигнал идет к пирамидным нейронам IIIслоя, а отсюда по ассоциативным волокнам — к другим полям, об­ластям коры большого мозга. Звездчатые клетки поля 3 переключают сигналы, идущие в кору, на пирамидные нейроны Vслоя, отсюда об­работанный сигнал уходит из коры к другим структурам мозга.


В коре входные и выходные элементы вместе со звездчатыми клетками образуют так называемые колонки — функциональные единицы коры, организованные в вертикальном направлении. До­казательством этого служит следующее: если микроэлектрод погру­жать перпендикулярно в кору, то на своем пути он встречает нейроны, реагирующие на один вид раздражения, если же микро­электрод вводить горизонтально по коре, то он встречает нейроны, реагирующие на разные виды стимулов.


Диаметр колонки около 500 мкм и определяется она зоной распределения коллатералей восходящего афферентного таламокор-тикального волокна. Соседние колонки имеют взаимосвязи, орга­низующие участки множества колонок в организации той или иной реакции. Возбуждение одной из колонок приводит к торможению соседних.


Каждая колонка может иметь ряд ансамблей, реализующих ка­кую-либо функцию по вероятностно-статистическому принципу. Этот принцип заключается в том, что при повторном раздражении в реакции участвует не вся группа нейронов, а ее часть. Причем каждый раз часть участвующих нейронов может быть разной по составу, т. е. формируется группа активных нейронов (вероятност­ный принцип), среднестатистически достаточная для обеспечения нужной функции (статистический принцип).


Как уже упоминалось, разные области коры большого мозга имеют разные поля, определяющиеся по характеру и количеству нейронов, толщине слоев и т. д. Наличие структурно различных полей предполагает и разное их функциональное предназначение (рис. 4.14). Действительно, в коре большого мозга выделяют сен­сорные, моторные и ассоциативные области.


4.2.5.2. Сенсорные области


Корковые концы анализаторов имеют свою топографию и на них проецируются определенные афференты проводящих систем. Кор­ковые концы анализаторов разных сенсорных систем перекрываются. Помимо этого, в каждой сенсорной системе коры имеются полисен­сорные нейроны, которые реагируют не только на «свой» адекватный стимул, но и на сигналы других сенсорных систем.


Кожная рецептирующая система,
таламокортикальные пути проецируются на заднюю центральную извилину. Здесь имеется строгое соматотопическое деление. На верхние отделы этой извилины проецируются рецептивные поля кожи нижних конечностей, на средние — туловища, на нижние отделы — руки, головы.


На заднюю центральную извилину в основном проецируются болевая и температурная чувствительность.
В коре теменной доли (поля 5 и 7), где также оканчиваются проводящие пути чув­ствительности, осуществляется более сложный анализ: локализация раздражения, дискриминация, стереогноз.


При повреждениях коры более грубо страдают функции дисталь-ных отделов конечностей, особенно рук.


Зрительная система
представлена в затылочной доле мозга: поля 17, 18, 19. Центральный зрительный путь заканчивается в поле 17; он информирует о наличии и интенсивности зрительного сигнала. В полях 18 и 19 анализируются цвет, форма, размеры, качества предметов. Поражение поля 19 коры большого мозга при­водит к тому, что больной видит, но не узнает предмет (зрительная агнозия, при этом утрачивается также цветовая память).


Слуховая система
проецируется в поперечных височных извилинах (извилины Гешля), в глубине задних отделов латеральной (сильвиевой) борозды (поля 41, 42, 52). Именно здесь заканчиваются аксоны задних бугров четверохолмий и латеральных коленчатых тел.


Обонятельная система
проецируется в области переднего конца гнппокампальной извилины (поле 34). Кора этой области имеет не шести-, а трехслойное строение. При раздражении этой области отмечаются обонятельные галлюцинации, повреждение ее ведет к аносмии (потеря обоняния).


Вкусовая система
проецируется в гнппокампальной извилине по соседству с обонятельной областью коры (поле 43).


4.2.5.3. Моторные области


Впервые Фритч и Гитциг (1870) показали, что раздражение передней центральной извилины мозга (поле 4) вызывает двига­тельную реакцию. В то же время признано, что двигательная область является анализаторной.


В передней центральной извилине зоны, раздражение которых вызывает движение, представлены по соматотопическому типу, но вверх ногами: в верхних отделах извилины — нижние конечности, в нижних — верхние.


Спереди от передней центральной извилины лежат премоторные поля 6 и 8. Они организуют не изолированные, а комплексные, координированные, стереотипные движения. Эти поля также обес­печивают регуляцию тонуса гладкой мускулатуры, пластический тонус мышц через подкорковые структуры.


В реализации моторных функций принимают участие также вторая лобная извилина, затылочная, верхнетеменная области.


Двигательная область коры, как никакая другая, имеет большое количество связей с другими анализаторами, чем, видимо, и обус­ловлено наличие в ней значительного числа полисенсорных ней­ронов.


4.2.5.4. Ассоциативные области


Все сенсорные проекционные зоны и моторная область коры занимают менее 20% поверхности коры большого мозга (см. рис. 4.14). Остальная кора составляет ассоциативную область. Каждая ассоциативная область коры связана мощными связями с несколь­кими проекционными областями. Считают, что в ассоциативных областях происходит ассоциация разносенсорной информации. В ре­зультате формируются сложные элементы сознания.


Ассоциативные области мозга у человека наиболее выражены в лобной, теменной и височной долях.


Каждая проекционная область коры окружена ассоциативными областями. Нейроны этих областей чаще полисенсорны, обладают большими способностями к обучению. Так, в ассоциативном зри­тельном поле 18 число нейронов, «обучающихся» условнорефлек-торной реакции на сигнал, составляет более 60% от числа фоно-воактивных нейронов. Для сравнения: таких нейронов в проекци­онном поле 17 всего 10—12%.


Повреждение поля 18 приводит к зрительной агнозии. Больной видит, обходит предметы, но не может их назвать.


Полисенсорность нейронов ассоциативной области коры обеспе­чивает их участие в интеграции сенсорной информации, взаимо­действие сенсорных и моторных областей коры.


В теменной ассоциативной области коры формируются субъек­тивные представления об окружающем пространстве, о нашем теле. Это становится возможным благодаря сопоставлению соматосенсор-ной, проприоцептивной и зрительной информации.


Лобные ассоциативные поля имеют связи с лимбическим отделом мозга и участвуют в организации программ действия при реализации сложных двигательных поведенческих актов.


Первой и наиболее характерной чертой ассоциативных областей коры является мультисенсорность их нейронов, причем сюда посту­пает не первичная, а достаточно обработанная информация с вы­делением биологической значимости сигнала. Это позволяет фор­мировать программу целенаправленного поведенческого акта.


Вторая особенность ассоциативной области коры заключается в способности к пластическим перестройкам в зависимости от значи­мости поступающей сенсорной информации.


I* Третья особенность ассоциативной области коры проявляется в длительном хранении следов сенсорных воздействий. Разрушение ассоциативной области коры приводит к грубым нарушениям обу­чения, памяти. Речевая функция связана как с сенсорной, так и с двигательной системами. Корковый двигательный центр речи рас­положен в заднем отделе третьей лобной извилины (поле 44) чаще левого полушария и был описан вначале Даксом (1835), а затем Брока (1861).


Слуховой центр речи расположен в первой височной извилине левого полушария (поле 22). Этот центр был описан Вернике (1874). Моторный и слуховой центры речи связаны между собой мощным пучком аксонов.


Речевые функции, связанные с письменной речью, — чтение, письмо — регулируются ангулярной извилиной зрительной области коры левого полушария мозга (поле 39).


При поражении моторного центра речи развивается моторная афазия; в этом случае больной понимает речь, но сам говорить не может. При поражении слухового центра речи больной может го­ворить, излагать устно свои мысли, но не понимает чужой речи, слух сохранен, но больной не узнает слов. Такое состояние назы­вается сенсорной слуховой афазией. Больной часто много говорит (логорея), но речь его неправильная (аграмматизм), наблюдается замена слогов, слов (парафазии).


Поражение зрительного центра речи приводит к невозможности чтения, письма.


Изолированное нарушение письма — аграфия, возникает также в случае расстройства функции задних отделов второй лобной из­вилины левого полушария.


В височной области расположено поле 37, которое отвечает за запоминание слов. Больные с поражениями этого поля не помнят названия предметов. Они напоминают забывчивых людей, которым необходимо подсказывать нужные слова. Больной, забыв название предмета, помнит его назначения, свойства, поэтому долго опи­сывает их качества, рассказывает, что делают этим предметом, но назвать его не может. Например, вместо слова «галстук» боль­ной, глядя на галстук, говорит: «это то, что надевают на шею и завязывают специальным узлом, чтобы было красиво, когда идут в гости».


Распределение функций по областям мозга не является абсолют­ным. Установлено, что практически все области мозга имеют поли­сенсорные нейроны, т. е. нейроны, реагирующие на различные раз­дражения. Например, при повреждении поля 17 зрительной области его функцию могут выполнять поля 18 и 19. Кроме того, разные двигательные эффекты раздражения одного и того же двигательного пункта коры наблюдаются в зависимости от текущей моторной деятельности.


Если операцию удаления одной из зон коры провести в раннем детском возрасте, когда распределение функций еще не жестко закреплено, функция утраченной области практически полностью


восстанавливается, т. е. в коре имеются проявления механизмов динамической локализации функций, позволяющих компенсировать функционально и анатомически нарушенные структуры.


Важной особенностью коры большого мозга является ее способ­ность длительно сохранять следы возбуждения.


Следовые процессы в спинном мозге после его раздражения сохраняются в течение секунды; в подкорково-стволовых отделах (в форме сложных двигательно-координаторных актов, доминантных установок, эмоциональных состояний) длятся часами; в коре мозга следовые процессы могут сохраняться по принципу обратной связи в течение всей жизни. Это свойство придает коре исключительное значение в механизмах ассоциативной переработки и хранения ин­формации, накопления базы знаний.


Сохранение следов возбуждения в коре проявляется в колебаниях уровня ее возбудимости; эти циклы длятся в двигательной области коры 3—5 мин, в зрительной — 5—8 мин.


Основные процессы, происходящие в коре, реализуются двумя состояниями: возбуждением и торможением. Эти состояния всегда реципрокны. Они возникают, например, в пределах двигательного анализатора, что всегда наблюдается при движениях; они могут возникать и между разными анализаторами. Тормозное влияние одного анализатора на другие обеспечивает сосредоточенность вни­мания на одном процессе.


Реципрокные отношения активности очень часто наблюдаются в активности соседних нейронов.


Отношение между возбуждением и торможением в коре прояв­ляется в форме так называемого латерального торможения.
При латеральном торможении вокруг зоны возбуждения формируется зона заторможенных нейронов (одновременная индукция) и она по протяжености, как правило, в два раза больше зоны возбуждения. Латеральное торможение обеспечивает контрастность восприятия, что в свою очередь позволяет идентифицировать воспринимаемый объект.


Помимо латерального пространственного торможения, в нейронах коры после возбуждения всегда возникает торможение активности и наоборот, после торможения — возбуждение — так называемая последовательная индукция.


В тех случаях когда торможение не в состоянии сдерживать возбудительный процесс в определенной зоне, возникает иррадиация возбуждения по коре. Иррадиация может просходить от нейрона к нейрону, по системам ассоциативных волокон Iслоя, при этом она имеет очень малую скорость — 0,5—2,0 м/с. В другом случае иррадиация возбуждения возможна за счет аксонных связей пира­мидных клеток IIIслоя коры между соседними структурами, в том числе между разными анализаторами. Иррадиация возбуждения обеспечивает взаимоотношение состояний систем коры при органи­зации условнорефлекторного и других форм поведения.


Наряду с иррадиацией возбуждения, которое происходит за счет импульсной передачи активности, существует иррадиация состояния


торможения по коре. Механизм иррадиации торможения заключа­ется в переводе нейронов в тормозное состояние под влиянием импульсов, приходящих из возбужденных участков коры, например, из симметричных областей полушарий.


4.2.5.5. Электрические проявления активности коры большого мозга


Оценка функционального состояния коры большого мозга чело­века является трудной и до настоящего времени нерешенной задачей. Одним из признаков, косвенно свидетельствующем о функциональ­ном состоянии структур головного мозга, является регистрация в них колебаний электрических потенциалов.


Каждый нейрон имеет заряд мембраны, который при активации уменьшается, а при торможении — чаще увеличивается, т. е. раз­вивается гиперполяризация. Глия мозга также имеет заряд клеток мембран. Динамика заряда мембраны нейронов, глии, процессы, происходящие в синапсах, дендритах, аксонном холмике, в аксоне — все это постоянно изменяющиеся, разнообразные по интенсивности, скорости процессы, интегральные характеристики которых зависят от функционального состояния нервной структуры и суммарно оп­ределяют ее электрические показатели. Если эти показатели реги­стрируются через микроэлектроды, то они отражают активность локального (до 100 мкм в диаметре) участка мозга и называются фокальной активностью.


В случае, если электрод располагается в подкорковой структуре, регистрируемая через него активность называется субкортикограм-мой, если электрод располагается в коре мозга — кортикограммой. Наконец, если электрод располагается на поверхности кожи головы, то регистрируется суммарная активность как коры, так и подкор­ковых структур. Это проявление активности называется электроэн­цефалограммой (ЭЭГ) (рис. 4.15).


Все виды активности мозга в динамике подвержены усилению и ослаблению и сопровождаются определенными ритмами электриче­ских колебаний. У человека в покое при отсутствии внешних раз­дражений преобладают медленные ритмы изменения состояния коры мозга, что на ЭЭГ находит отражение в форме так называемого альфа-ритма, частота колебаний которого составляет 8—13 в се­кунду, а амплитуда — приблизительно 50 мкВ.


Переход человека к активной деятельности приводит к смене альфа-ритма на более быстрый бета-ритм, имеющий частоту коле­баний 14—30 в секунду, амплитуда которых составляет 25 мкВ.


Переход от состояния покоя к состоянию сосредоточенного вни­мания или ко сну сопровождается развитием более медленного тета-ритма (4—8 колебаний в секунду) или дельта-ритма (0,5—3,5 колебаний в секунду). Амплитуда медленных ритмов составляет 100—300 мкВ (см. рис. 4.15).


Когда на фоне покоя или другого состояния мозгу предъявляется новое быстрое нарастающее раздражение, на ЭЭГ регистрируются


так называемые вызванные потенциалы (ВП). Они представляют собой синхронную реакцию множества нейронов данной зоны коры.


Латентный период, амплитуда ВП зависят от интенсивности наносимого раздражения. Компоненты ВП, количество и характер его колебаний зависят от адекватности стимула относительно зоны регистрации ВП.


ВП может состоять из первичного ответа или же из первичного и вторичного. Первичные ответы представляют собой двухфазные, позитивно-негативные колебания. Они регистрируются в первичных зонах коры анализатора и только при адекватном для данного анализатора стимуле. Например, зрительная стимуляция для пер­вичной зрительной коры (поле 17) является адекватной (рис. 4.16). Первичные ответы характеризуются коротким латентным периодом (ЛП), двухфазностью колебания: вначале положительная, затем — отрицательная. Первичный ответ формируется за счет кратковре­менной синхронизации активности близлежащих нейронов.


Вторичные ответы более вариабельны по ЛП, длительности, ам-


плитуде, чем первичные. Как правило, вторичные ответы чаще возникают на сигналы, имеющие определенную смысловую нагруз­ку, на адекватные для данного анализатора стимулы; они хорошо формируются при обучении.


4.2.5.6. Межполушарные взаимоотношения


Взаимоотношение полушарий большого мозга определяется как функция, обеспечивающая специализацию полушарий, облегчение выполнения регуляторных процессов, повышение надежности уп­равления деятельностью органов, систем органов и организма в целом.


Роль взаимоотношений полушарий большого мозга наиболее чет­ко проявляется при анализе функциональной межполушарной асим­метрии.


Асимметрия в функциях полушарий впервые была обнаружена в XIXв., когда обратили внимание на различные последствия повреждения левой и правой половины мозга.


В 1836 г. Марк Дакс выступил на заседании медицинского об­щества в Монпелье (Франция) с небольшим докладом о больных, страдающих потерей речи — состояния, известного специалистам под названием афазии. Дакс заметил связь между потерей речи и поврежденной стороной мозга. В его наблюдениях более чем у 40 больных с афазией имелись признаки повреждения левого полуша­рия. Ученому не удалось обнаружить ни одного случая афазии при повреждении только правого полушария. Суммировав эти наблю­дения, Дакс сделал следующее заключение: каждая половина мозга контролирует свои, специфические функции; речь контролируется левым полушарием.


Его доклад не имел успеха. Спустя некоторое время после смерти Дакса Брока при посмертном исследовании мозга больных, страдав­ших потерей речи и односторонним параличом, отчетливо выявил в обоих случаях очаги повреждения, захватившие части левой лобной доли. С тех пор эта зона стала известна как зона Брока; она была им определена, как область в задних отделах нижней лобной из­вилины.


Проанализировав связь между предпочтением одной из двух рук и речью, он предположил, что речь, большая ловкость в движениях правой руки связаны с превосходством левого полушария у право-руких.


Через 10 лет после публикации наблюдений Брока концепция, известная теперь как концепция доминантности полушарий, стала основной точкой зрения на взаимоотношения двух полушарий мозга.


В 1864 г. английский невролог Джон Джексон писал: «Не так давно редко кто сомневался в том, что оба полушария одинаковы как в физическом, так и в функциональном плане, но теперь, когда благодаря исследованиям Дакса, Брока и других стало ясно, что повреждение одного полушария может вызвать у человека полную потерю речи, прежняя точка зрения стала несостоятельной».


Д. Джексон выдвинул идею о «ведущем» полушарии, которую можно рассматривать как предшественницу концепции доминант­ности полушарий. «Два полушария не могут просто дублировать друг друга, — писал он, — если повреждение только одного из них может привести к потере речи. Для этих процессов (речи), выше которых ничего нет, наверняка должна быть ведущая сторона». Далее Джексон сделал вывод о том, «что у большинства людей ведущей стороной мозга является левая сторона так называемой воли, и что правая сторона является автоматической».


К 1870 г. и другие исследователи стали понимать, что многие типы расстройств речи могут быть вызваны повреждением левого полушария. К. Вернике нашел, что больные при повреждении задней части височной доли левого полушария часто испытывали затруд­нения и в понимании речи.


У некоторых больных при повреждении левого, а не правого полушария обнаруживались затруднения при чтении и письме. Счи­талось также, что левое полушарие управляет и «целенаправлен­ными движениями».


Совокупность этих данных стала основой представления о вза­имоотношении двух полушарий. Одно полушарие (у праворуких обычно левое) рассматривалось как ведущее для речи и других высших функций, другое (правое), или «второстепенное», считали находящимся под контролем «доминантного» левого.


Выявленная первой речевая асимметрия полушарий мозга пред­определила представление об эквипотенциальности полушарий боль­шого мозга детей до появления речи. Считается, что асимметрия мозга формируется при созревании мозолистого тела.


Концепция доминантности полушарий, согласно которой во всех гностических и интеллектуальных функциях ведущим у «правшей» является левое полушарие, а правое оказывается «глухим и немым», просуществовала почти столетие. Однако постепенно накапливались свидетельства, что представление о правом полушарии как о вто­ростепенном, зависимом, не соответствует действительности. Так, у больных с нарушениями левого полушария мозга хуже выполня­ются тесты на восприятие форм и оценку пространственных взаи­мосвязей, чем у здоровых. Неврологически здоровые испытуемые, владеющие двумя языками (английским и идиш), лучше иденти­фицируют английские слова, предъявленные в правом поле зрения, а слова на идиш — в левом. Был сделан вывод, что такого рода асимметрия связана с навыками чтения: английские слова читаются слева направо, а слова идиш — справа налево.


Почти одновременно с распространением концепции доминант­ности полушарий стали появляться данные, указывающие на то, что правое, или второстепенное, полушарие также обладает своими особыми способностями. Так, Джексон выступил с утверждением о том, что в задних долях правого мозга локализована способность к формированию зрительных образов.


Повреждение левого полушария приводит, как правило, к низким показателям по тестам на вербальные способности. В то же время


больные с повреждением правого полушария обычно плохо выпол­няли невербальные тесты, включавшие манипуляции с геометриче­скими фигурами, сборку головоломок, восполнение недостающих частей рисунков или фигур и другие задачи, связанные с оценкой формы, расстояния и пространственных отношений.


Обнаружено, что повреждение правого полушария часто сопро­вождалось глубокими нарушениями ориентации и сознания. Такие больные плохо ориентируются в пространстве, не в состоянии найти дорогу к дому, в котором прожили много лет. С повреждением правого полушария были связаны также определенные виды агнозий, т. е. нарушений в узнавании или восприятии знакомой информации, восприятии глубины и пространственных взаимоотношений. Одной из самых интересных форм агнозии является агнозия на лица. Больной с такой агнозией не способен узнать знакомого лица, а иногда вообще не может отличать людей друг от друга. Узнавание других ситуаций и объектов, например, может быть при этом не нарушено. Дополнительные сведения, указывающие на специали­зацию правого полушария, были получены при наблюдении за больными, страдающими тяжелыми нарушениями речи, у которых, однако, часто сохраняется способность к пению. Кроме того, в клинических сообщениях содержались данные о том, что повреж­дение правой половины мозга может привести к утрате музыкальных способностей, не затронув речевых. Это расстройство, называемое амузией, чаще всего отмечалось у профессиональных музыкантов, перенесших инсульт или другие повреждения мозга.


После того как нейрохирурги осуществили серию операций с комиссуротомией и были выполнены психологические исследования на этих больных, стало ясно, что правое полушарие обладает соб­ственными высшими гностическими функциями.


Существует представление, что межполушарная асимметрия в решающей мере зависит от функционального уровня переработки информации. В этом случае решающее значение придается не ха­рактеру стимула, а особенностям гностической задачи, стоящей перед наблюдателем. Принято считать, что правое полушарие спе­циализировано в переработке информации на образном функцио­нальном уровне, левое — на категориальном. Применение такого подхода позволяет снять ряд трудноразрешимых противоречий. Так, преимущество левого полушария, обнаруженное при чтении нотных и пальцевых знаков, объясняется тем, что эти процессы протекают на категориальном уровне переработки информации. Сравнение слов без их лингвистического анализа успешнее осуществляется при их адресации правой гемисфере, поскольку для решения этих задач достаточна переработка информации на образном функциональном уровне.


Межполушарная асимметрия зависит от функционального уровня переработки информации: левое полушарие обладает способностью к переработке информации как на семантическом, так и на пер­цептивном функциональных уровнях, возможности правого полуша­рия ограничиваются перцептивным уровнем.


В случаях латерального предъявления информации можно вы­делить три способа межполушарных взаимодействий, проявляющих­ся в процессах зрительного опознания.


1. Параллельная деятельность. Каждое полушарие перерабаты­вает информацию с использованием присущих ему механизмов.


2. Избирательная деятельность. Информация перерабатывается в «компетентном» полушарии.


3. Совместная деятельность. Оба полушария участвуют в пере­работке информации, последовательно играя ведущую роль на тех или иных этапах этого процесса.


Основным фактором, определяющим участие того или иного полушария в процессах узнавания неполных изображений, является то, каких элементов лишено изображение, а именно какова степень значимости отсутствующих в изображении элементов. В случае, если детали изображения удалялись без учета степени их значи­мости, опознание в большей мере было затруднено у больных с поражениями структур правого полушария. Это дает основание счи­тать правое полушарие ведущим в опознании таких изображений. Если же из изображения удалялся относительно небольшой, но высокозначимый участок, то опознание нарушалось в первую очередь при поражении структур левого полушария, что свидетельствует о преимущественном участии левой гемисферы в опознании подобных изображений.


В правом полушарии осуществляется более полная оценка зри­тельных стимулов, тогда как в левом оцениваются наиболее суще­ственные, значимые их признаки.


Когда значительное число деталей изображения, подлежащего опознанию, удалено, вероятность того, что наиболее информативные, значимые его участки не подвергнутся искажению или удалению, невелика, а потому левополушарная стратегия опознания значи­тельно ограничена. В таких случаях более адекватной является стратегия, свойственная правому полушарию, основанная на ис­пользовании всей содержащейся в изображении информации.


Трудности в реализации левополушарной стратегии в этих ус­ловиях усугубляются еще и тем обстоятельством, что левое по­лушарие обладает недостаточными «способностями» к точной оценке отдельных элементов изображения. Об этом свидетельствуют также исследования, согласно которым оценка длины и ориентации линий, кривизны дуг, величины углов нарушается прежде всего при пора­жениях правого полушария.


Иная картина отмечается в случаях, когда большая часть изо­бражения удалена, но сохранен наиболее значимый, информативный его участок. В подобных ситуациях более адекватным является способ опознания, основанный на анализе наиболее значимых фраг­ментов изображения — стратегия, используемая левым полушарием.


В процессе узнавания неполных изображений участвуют струк­туры как правого, так и левого полушария, причем степень участия каждого из них зависит от особенностей предъявляемых изображе­ний, и в первую очередь от того, содержит ли изображение наиболее


значимые информативные элементы. При наличии этих элементов преобладающая роль принадлежит левому полушарию; при их уда­лении преимущественную роль в процессе опознания играет правое полушарие.


4.2.6. Координация движений


Термин «координация» происходит от латинского coordinatio— взаимоупорядочение. Под координацией движений понимают про­цессы согласования активности мышц тела, направленные на ус­пешное выполнение двигательной задачи.


Для центральной нервной системы объектом управления является опорно-двигательный аппарат. Своеобразие скелетно-мышечной си­стемы заключается в том, что она состоит из большого числа звеньев, подвижно соединенных в суставах, допускающих поворот одного звена относительно другого. Суставы могут позволять звеньям по­ворачиваться относительно одной, двух или трех осей, т. е. обладать одной, двумя или тремя степенями свободы. Чтобы в трехмерном пространстве достичь любой заданной точки (в пределах длины конечности), достаточно иметь двухзвенную конечность с двумя степенями свободы в проксимальном суставе («плече») и одной степенью свободы в дистальном («локтевом»). На самом деле ко­нечности имеют большее число звеньев и степеней свободы. Поэтому, если бы мы захотели решить геометрическую задачу о том, как должны изменяться углы в суставах, для того чтобы рабочая точка конечности переместилась из одного заданного положения в про­странстве в другое, мы обнаружили бы, что эта задача имеет бес­конечное множество решений. Чтобы кинематическая цепь совер­шала нужное движение, необходимо исключить те степени свободы, которые для данного движения являются избыточными. Этого можно достичь двумя способами: 1) можно зафиксировать избыточные сте­пени свободы путем одновременной активации антагонистических групп мышц (коактивация); 2) можно связать движения в разных суставах определенными соотношениями, уменьшив таким образом число независимых переменных, с которыми должна «иметь дело» центральная нервная система. Такие устойчивые сочетания одно­временных движений в нескольких суставах, направленных на до­стижение единой цели, получили название синергии.


Весьма своеобразны и «двигатели», используемые в живом ор­ганизме. Скелетные мышцы представляют собой эластомеры с не­линейной зависимостью развиваемой силы от частоты активации. При этом развитие силы автоматически сопровождается изменени­ями упругости и вязкости мышцы. Кроме того, как известно, на­пряжение мышцы зависит от ее длины (угла в суставе) и скорости удлинения или укорочения. Сложность управления движениями в суставах при помощи мышц усугубляется еще и тем, что на каждую степень свободы, как правило, приходится больше одной пары мышц. При этом многие мышцы являются двухсуставными, т. е. действуют не на один, а на два сустава. Поэтому, например, сгибание пальцев


руки невозможно без одновременной активации разгибателей кисти, препятствующих действию сгибателей пальцев в лучезапястном со­членении.


Формы участия мышц в осуществлении двигательных актов весь­ма многообразны. Анатомическая классификация мышц (например, сгибатели и разгибатели, синергисты и антагонисты) не всегда со­ответствуют их функциональной роли в движениях. Так, некоторые двухсуставные мышцы в одном суставе осуществляют сгибание, а в другом — разгибание. Антагонист может возбуждаться одновре­менно с агонистом для обеспечения точности движения, и его участие помогает выполнять двигательную задачу. В связи с этим, учитывая функциональный аспект координации, в каждом конкретном дви­гательном акте целесообразно выделить основную мышцу (основной двигатель), вспомогательные мышцы (синергисты), антагонисты и стабилизаторы (мышцы, фиксирующие, не участвующие в движении суставы). Роль мышц не ограничивается генерацией силы, антаго­нисты и стабилизаторы часто функционируют в режиме растяжения под нагрузкой. Этот режим используется для плавного торможения движений, амортизации толчков.


На конечный результат движения влияют не только силы, раз­виваемые мышцами, но и силы немышечного происхождения. К ним относятся силы инерции, создаваемые массами звеньев тела, вов­лекаемых в движение, а также силы реакции, возникающие в кинематических цепях при смещении любого из звеньев. Движение смещает различные звенья тела друг относительно друга и меняет конфигурацию тела, а следовательно, по ходу движения изменяются моменты упомянутых сил. Вследствие изменения суставных углов меняются и моменты мышечных сил. На ход движения влияет и масса звеньев тела; моменты сил тоже изменяются в процессе движения из-за изменения ориентации звеньев относительно вектора силы тяжести. В практической деятельности человек вступает во взаимодействие с предметами внешнего мира — различными инс­трументами, перемещаемыми грузами и т. д., и ему приходится преодолевать силы тяжести, упругости, трения, инерции, возника­ющие в процессе этого взаимодействия. Немышечные силы вмеши­ваются в процесс движения и делают необходимым непрерывное согласование с ними деятельности мышечного аппарата. Необходимо также нейтрализовывать действие непредвиденных помех движению, которые могут возникать во внешней среде, и оперативно исправлять допущенные в ходе реализации движения ошибки.


В связи с перечисленными особенностями скелетно-мышечной системы и условиями ее взаимодействия с внешним миром, управ­ление движениями оказывается немыслимым без решения задачи согласования активности большого числа мышц.


Характер этого согласования зависит от двигательной задачи. Так, если нужно взять стакан с водой, то для формирования такого движения центральная нервная система должна располагать инфор­мацией о положении стакана относительно тела и о исходном по­ложении руки. Однако, поскольку мы хотим, чтобы это движение


было успешным, кисть заранее раскрылась на величину, соответ­ствующую размеру стакана, чтобы сгибатели пальцев сжимали ста­кан с силой, достаточной для предотвращения проскальзывания, чтобы приложенная сила была достаточной для плавного подъема, но не вызывала резкого отрыва, чтобы ориентация стакана в кисти после захвата все время была вертикальной, т. е. чтобы реализация движения соответствовала двигательной задаче, то необходимы не только данные о пространственных соотношениях, но и разные сведения о свойствах объекта манипулирования. Многие из этих сведений не могут быть получены в ходе самого движения посред­ством обратных связей, а должны быть заложены в программу предстоящего движения на этапе его планирования. Предполагают, что двигательная память содержит обобщенные классы двигательных программ, из числа которых в соответствии с двигательной задачей выбирается нужная. Эта программа модифицируется применительно к конкретной ситуации: однотипные движения могут выполняться быстрее или медленнее, с большей или меньшей амплитудой. Одна и та же программа может быть реализована разными наборами мышц. В качестве примера на рис. 4.17 приведены образцы почерка при написании слова «координация» правой и левой рукой, а также карандашом, зажатым в зубах, или прикрепленным к носку ботинка. Размышление над этим примером приводит нас к важному выводу о том, что уровень планирования движения и уровень его исполнения не совпадают, иначе говоря, система управления движениями яв­ляется многоуровневой. Действительно, произвольное пространст-


венно ориентированное движение планируется в терминах трехмер­ного эвклидового пространства: вверх—вниз, вперед—назад, впра­во—влево. Для выполнения этого плана необходимо перевести пла­нируемые линейные перемещения в соответствующие угловые пе­ременные (изменения суставных углов), определить, какие мышечные моменты необходимы для этих угловых перемещений, и, наконец, сформировать двигательные команды, которые вызовут активацию мышц, дающую необходимые значения моментов.


В планировании, преобразовании и исполнении двигательной программы участвуют различные структуры нервной системы, ор­ганизованные по иерархическому принципу. Двигательная програм­ма может быть реализована различными способами. В простейшем случае центральная нервная система посылает заранее сформиро­ванную последовательность команд к мышцам, не подвергающуюся во время реализации никакой коррекции. В этом случае говорят о разомкнутой системе управления.
Такой способ управления ис­пользуется при осуществлении быстрых, так называемых баллисти­ческих движений. Чаще всего ход осуществления движения срав­нивается с его планом на основе сигналов, поступающих от много­численных рецепторов, и в реализуемую программу вносятся необходимые коррекции — это замкнутая система управления с обратными связями.
Однако и такое управление имеет свои недо­статки. Вследствие относительно малой скорости проведения сигна­лов, значительных задержек в центральном звене обратной связи и времени, необходимых для развития усилия мышцей после прихода активирующей посылки, коррекция движения по сигналу обратной связи может запаздывать. Поэтому во многих случаях целесообразно реагировать не на отклонение от плана движения, а на само внешнее возмущение еще до того, как оно успело вызвать это отклонение. Такое управление называют управлением по возмущению.


В осуществлении координации движений участвуют все отделы центральной нервной системы — от спинного мозга до коры большого мозга. У человека двигательные функции достигли наивысшей слож­ности в результате перехода к прямостоянию и прямохождению (что осложнило задачу поддержания равновесия), специализации передних конечностей для совершения тонких движений, использо­вания двигательного аппарата для коммуникации (речь, письмо). В управление движениями человека включены высшие формы де­ятельности мозга, связанные с сознанием, что дало основание на­зывать соответствующие движения произвольными.


На спинальном уровне протекают лишь простейшие координации, тем не менее спинной мозг может осуществлять довольно обширные функции, вплоть до «спинального шагания» у животных (Ч. Шер-рингтон). Нервные механизмы ствола мозга существенно обогащают двигательный репертуар, обеспечивая координацию правильной ус­тановки тела в пространстве за счет шейных и лабиринтных ре­флексов (Р. Магнус) и нормального распределения мышечного то­нуса. Важная роль в координации движений принадлежит мозжечку. Такие качества движения, как плавность, точность, необходимая


сила, реализуются с участием мозжечка путем регуляции времен­ных, скоростных и пространственных характеристик движения. Жи­вотные с удаленными полушариями, но с сохраненным стволом мозга по координации движений почти не отличаются от интактных. Полушария мозга (кора и базальные ядра) обеспечивают наиболее тонкие координации движений: двигательные реакции, приобретен­ные в индивидуальной жизни. Осуществление этих реакций бази­руется на работе рефлекторного аппарата ствола мозга и спинного мозга, функционирование которых многократно обогащается дея­тельностью высших отделов центральной нервной системы.


Механизмы координации движений, роль тех или иных отделов ЦНС в управлении движениями изучаются чаще в опытах на жи­вотных, однако объектом исследования естественных движений яв­ляется преимущественно человек, что обусловлено двумя обстоя­тельствами. Во-первых, человек в зависимости от задачи исследо­вания может воспроизводить любую требуемую форму двигательной деятельности. Во-вторых, движения человека являются проявлением его поведения и трудовой деятельности и поэтому представляют особый интерес как с теоретической точки зрения вследствие их сложности и дифференцированности, так и с практической — в связи с их значением для медицины, физиологии труда, космонав­тики, эргономики, физиологии спорта.


Методы исследования движений человека
. Многообразие мето­дических приемов, используемых при изучении координации дви­жений человека, можно разделить на две группы. Одна группа методов ориентирована на получение сведений о процессах, лежащих в основе координации движений, путем регистрации внешних дви­гательных проявлений. Другие методы связаны с непосредственной регистрацией управляющих сигналов, поступающих к мышцам в процессе двигательной активности (электромиография), с регистра­цией афферентных сигналов (микронейронография), изменений ЭЭГ, предшествующих началу движения.


Для регистрации механических параметров движения — траек­торий, скорости, ускорения, развиваемой силы (механограмм) ис­пользуют технику превращения неэлектрических величин в элект­рические с помощью различных датчиков. Так, с помощью тензо-датчиков можно непосредственно измерять и регистрировать силу, прилагаемую к тому или иному инструменту, или реакции опоры при ходьбе, с помощью резистивных датчиков на основе потенцио­метров — регистрировать изменения суставных углов при движении. Дифференцирование сигналов с помощью электронных дифферен­циаторов или ЭВМ позволяет одновременно с записью перемещения получать запись скорости и ускорения.


При анализе механических параметров движения может быть использован принцип циклографии — регистрации последователь­ных моментов движения путем фотосъемки движущегося человека через равные промежутки времени на неподвижную пластинку. Если на суставах или точках, соответствующих положению центров тяжести звеньев тела, укреплены светящиеся лампочки, то по такой


записи — циклограмме, можно восстановить траекторию движения. В настоящее время чаще используются специализированные ком­пьютерные системы регистрации движения с непосредственным вво­дом в ЭВМ изображений с двух телекамер, образующих стереопару. Решая обратную задачу механики по записям кинематических па­раметров (если известно распределение масс), можно рассчитать возникающие при движении силы, моменты в суставах, работу и мощность.


Движения глаз можно регистрировать электрически (электро-окулография), с помощью контактных линз (внутри них распола­гается виток проволоки, в котором наводится напряжение при по­вороте витка в магнитном поле) и другими методами.


Анализ работы мышц при совершении двигательного акта осу­ществляется с помощью электромиографии. При электромиографи­ческом исследовании движений обычно используют накожные элек­троды, укрепляемые над исследуемой мышцей. Многоканальный электромиограф дает возможность одновременно записывать элек-тромиограммы нескольких мышц. Амплитуда электромиографиче­ского сигнала возрастает с увеличением развиваемой мышцей силы, поэтому электромиограммы в сопоставлении с регистрируемыми син­хронно механограммами позволяют судить о силе сокращения мышц и о распределении их активности в последовательных фазах дви­гательного акта.


Набор средств изучения нейронных механизмов управления дви­жениями на человеке включает регистрацию сухожильных рефлек­сов и рефлекса Гофмана (Н-рефлекс), дающих оценку уровня воз­будимости двигательных нейронов спинного мозга в разные фазы движения. Позже стала возможной регистрация через кожу головы электрических потенциалов различных областей головного мозга, сопутствующих или предшествующих движению (потенциалы го­товности). В последние годы разработаны методы неповреждающей стимуляции отдельных областей коры мозга человека с помощью чрезвычайно кратковременных импульсов высокого напряжения (электрическая стимуляция) или кратковременных и очень сильных магнитных полей, создаваемых индуктивными катушками, укреп­ленными над разными областями головы и индуцирующими элек­трические поля, достаточные для стимуляции мозговых структур (магнитная стимуляция).


Физиология движений изучает роль сигналов от различных рецепторов в планировании и осуществлении движений и поддер­жании позы. Среди них есть как простейшие — закрывание глаз, так и более сложные — использование призматических очков, смещающих или переворачивающих изображения окружающего мира, специальных систем, позволяющих вызвать у человека ил­люзию движения зрительного окружения. Значение вестибулярного аппарата можно изучать в условиях его гальванической или ка­лорической стимуляции, а также при искусственном изменении величины и направления вектора силы тяжести — на центрифуге, в условиях кратковременной или длительной невесомости. Посту-


пающие от мышцы проприоцептивные сигналы можно менять, прикладывая к ее сухожилию вибрацию, вызывающую активацию рецепторов мышечных веретен.


С помощью описанных методов изучены такие сложные естест­венные двигательные акты, как ходьба, бег, рабочие и спортивные движения. Многие из этих методов используются в клинике при исследованиях нарушений двигательной функции вследствие пора­жения нервной системы или опорно-двигательного аппарата.


Ходьба и бег.
Ходьба является наиболее распространенной фор­мой локомоции человека (локомоция — активное перемещение в пространстве на расстояния, значительно превышающие размеры тела). Она относится к циклическим двигательным актам, при ко­торых последовательные фазы движения периодически повторяются.


Для удобства изучения и описания цикл ходьбы подразделяют на фазы: для каждой ноги выделяют фазу опоры, в течение которой нога контактирует с опорой, и фазу переноса, когда нога находится в воздухе. Фазы опоры двух ног частично перекрываются по времени, образуя двухопорный период. Центр масс тела человека при ходьбе совершает сложные пространственные движения. Амплитуда этих движений составляет около 5 см в направлении вверх—вниз и 2—4 см в боковом направлении. Наиболее низкое положение центра масс соответствует двухопорному периоду, а наиболее высокое — середине одноопорного периода. Давление на опору во время ходьбы непостоянно. Оно превышает вес тела во время динамических тол­чков и меньше веса тела в середине одноопорного периода. Ходьба здорового человека характеризуется симметрией движений левой и правой сторон. Фаза опоры начинается с момента соприкосновения пятки с опорой, нога при этом полностью разогнута. Перенос на­грузки на эту ногу сопровождается подошвенным сгибанием стопы и подгибанием в коленном суставе. За счет этих угловых движений в начале фазы опоры происходит «присваивание» стопы к опоре. В записи опорных реакций в это время отмечают первый макси­мум — передний динамический толчок. Задний динамический тол­чок соответствует отталкиванию задней ноги от опоры и осущест­вляется главным образом мышцами голеностопного сустава и в меньшей степени коленного и тазобедренного суставов. В осущест­влении ходьбы участвуют также мышцы спины (рис. 4.18). Наи­большая активность мышц наблюдается в фазу опоры. При этом за счет одновременной активности сгибателей и разгибателей нога становится опорной, способной нести вес тела.


Сопоставление изменений межзвенных узлов в тазобедренном, коленном и голеностопном суставах с распределением по времени активности мышц приводит к выводу, что движение ноги в фазу переноса в значительной степени осуществляется за счет сил инерции подобно двухзвенному маятнику.


Анализ работы мышц при ходьбе показывает, что в разные фазы шага они сокращаются в разных режимах — концентрическом, т. е. с укорочением (мышцы, осуществляющие подошвенное сгибание стопы в опорном периоде), эксцентрическом, т. е. с удлинением


(передняя большеберцовая мышца во время «присваивания» стопы обеспечивает плавность ее опускания на опору), изометрическом, т. е. без изменения длины (мышцы тазобедренного сустава во время переката через пятку).


Повторяемость параметров движений в последовательных циклах при ходьбе не абсолютная: движения обладают некоторой вариа­бельностью. Наименьшая вариабельность у кинематической картины ходьбы, наибольшая — в работе мышц, проявляющаяся в изменениях электромиограмм от цикла к циклу. Это отражает корригирующую деятельность ЦНС, которая при каждом шаге вносит в стандартную структуру ходьбы поправки, необходимые для обеспечения относи­тельного постоянства ее кинематики.


Бег отличается от ходьбы тем, что нога, которая находится позади, отталкивается от опоры раньше, чем другая опускается на эту опору. В результате в беге имеется безопорный период — период полета. В беге благодаря большим, чем при ходьбе, скоростям перемещения более значительную роль играют баллистические ком­поненты движения — перемещение звеньев ноги по инерции.


Рабочие движения. Рабочими движениями в широком смысле слова могут быть названы самые разные целенаправленные движе-


ния, совершаемые как в процессе труда, так и в повседневной жизни.


У человека основным рабочим органом является рука, причем для выполнения двигательной задачи обычно наиболее важно по­ложение кисти, которая в результате движения должна в опреде­ленный момент оказаться в определенном месте пространства. Бла­годаря большому числу степеней свободы верхней конечности кисть может попасть в нужную точку по разным траекториям и при различных соотношениях углов в плечевом, локтевом и лучезапя-стном суставах. Это многообразие возможностей позволяет выпол­нять двигательную задачу, начиная движение из различных исход­ных поз, и в то же время ставит ЦНС перед сложной задачей выбора одного варианта из многих.


Электромиографические исследования ряда рабочих движений показали сложную картину работы мышц, однако в этой картине часто можно выделить устойчивые сочетания активности некоторых мышц, используемые в различных движениях. Это синергии, осно­ванные на врожденных или выработанных в процессе опыта связях, которые, являясь устойчивыми компонентами движений, упрощают управление сложными двигательными актами и помогают преодолеть избыточность числа мышц и количества степеней свободы.


При совершении одного и того же, даже простого, движения организация мышечной деятельности в сильной степени зависит от вмешательства немышечных сил, в частности, внешних по отноше­нию к человеку. Так, при ударе молотком, когда к массе предплечья добавляется масса молотка, и, следовательно, возрастает роль инер­ции, разгибание предплечья совершается по типу баллистического движения — мышцы-разгибатели активны только в начале разги­бания, которое дальше совершается по инерции, а в конце притор­маживается мышцами-антагонистами. Аналогичное по кинематике движение при работе напильником (рис. 4.19), когда основная внеш­няя сила — трение, совершается путем непрерывной активности мышцы на протяжении всего разгибания. Если первое из этих двух движений является в основном предпрограммированным, то во вто­ром велика роль обратных связей.


Поза
. У млекопитающих животных и человека поддержание позы обеспечивается теми же фазическими мышцами, что и дви­жения, специализированные тонические мышцы отсутствуют. От­личие заключается в том, что при «позной» деятельности сила сокращения мышц обычно невелика, режим близок к изометриче­скому, длительность сокращения значительна. В «позный», или по-стуральный, режим работы мышц вовлекаются преимущественно низкопороговые, медленные, устойчивые к утомлению двигательные единицы.


Одна из основных задач «позной» деятельности мышц — удер­жание нужного положения звеньев тела в поле силы тяжести (удер­жание головы от свисания, голеностопных суставов от тыльного сгибания при стоянии и др.). Кроме того, «позная» активность может быть направлена на фиксацию суставов, не принимающих участия


в осуществляемом движении. В трудовой деятельности удержание позы бывает связано с преодолением внешних сил.


Типичный пример позы — стояние человека. Сохранение рав­новесия при стоянии возможно в том случае, если проекция центра тяжести тела находится в пределах опорного контура, т. е. площади, занимаемой на плоскости опоры стопами (рис. 4.20). Вертикаль, опущенная из общего центра тяжести тела, при стоянии проходит несколько впереди оси голеностопных и коленных суставов и не­сколько позади оси тазобедренных. Следовательно, на эти суставы действуют моменты сил тяжести вышерасположенных звеньев тела, а это делает необходимым для удержания позы стояния напряжение многих мышц туловища и ног. Развиваемая этими мышцами сила


невелика. Максимальное напря­жение при стоянии развивают мышцы голеностопного сустава, меньшее — мышцы коленного и тазобедренного суставов. У боль­шинства мышц активность под­держивается на более или менее постоянном уровне. Другие, на­пример передняя большеберцовая мышца, активируются периоди­чески. Последнее обусловлено небольшими колебаниями центра тя­жести тела, постоянно происходящими при стоянии как в сагит­тальной, так и во фронтальной плоскостях. Эти колебания могут быть зарегистрированы специальным прибором — стабилографом, работающим с помощью тензодатчиков (рис. 4.21). Мышцы голени противодействуют отклонениям тела, возвращая его в вертикальное положение. Таким образом, поддержание позы — это активный процесс, осуществляющийся, как и движение, с участием обратных связей от рецепторов. В поддержании вертикальной позы участвуют зрение и вестибулярный аппарат. Важную роль играет проприоре-цепция.


Поза стояния у человека энергетически относительно экономна, так как моменты силы тяжести невелики вследствие близости про­екции тяжести тела к осям основных суставов ног. Менее экономно стояние у многих животных, например у кошки и собаки, которые стоят на полусогнутых конечностях.


Поддержание равновесия при стоянии — только частный случай «позной» активности. Механизмы поддержания равновесия исполь­зуются также при локомоции и повседневной двигательной деятель­ности. Например, быстрое движение руки может вызывать наруше­ние равновесия. Обычно этого не происходит, потому что произ­вольному движению предшествуют такие изменения в системе регуляции позы, которые заранее изменяют распределение «позной» активности мышц и тем самым обеспечивают нейтрализацию по-


следствий движения — так называемые позные компоненты произ­вольного движения. Эта упреждающая «позная» активность осуще­ствляется автоматически с очень короткими центральными задер­жками. Роль упреждающей активности в стабилизации положения звеньев тела можно проиллюстрировать простым примером: студент удерживает на ладони вытянутой руки учебник физиологии. Бели его товарищ внезапно снимет эту книгу с ладони, то рука резко подпрыгнет вверх, если же студент сам снимет книгу свободной рукой, то ладонь останется на прежнем уровне.


К понятию позы примыкает понятие мышечного тонуса. Термин «тонус" многозначен, в применении к скелетным мышцам им обоз­начают комплекс явлений. В покое мышечные волокна обладают тургором (упругостью), определяющим их сопротивление давлению и растяжению. Тургор составляет тот компонент тонуса, который не связан со специфической нервной активацией мышцы, обуслов­ливающей ее сокращение. Однако в естественных условиях боль­шинство мышц обычно в некоторой степени активируется нервной системой, в частности, для поддержания позы («позный тонус»). Полное расслабление мышцы, когда электромиографическим мето­дом не регистрируется никаких потенциалов действия, достигается только в условиях полного покоя и при исключении задачи под­держания позы в поле силы тяжести (исследуемая часть тела лежит на опоре).


Другой важный компонент тонуса — рефлекторный, определяется рефлексом на растяжение. При исследовании на человеке он выяв­ляется по сопротивлению растяжения мышцы в случае пассивного поворота звена конечности в суставе. Если в процессе такого ис­следования записать электромиограмму, то в растягиваемой мышце регистрируется электрическая активность, свидетельствующая об активации двигательных единиц. У здорового человека рефлекс на растяжение при пассивном движении наблюдается только в процессе самого растяжения и притом в случае достаточно большой скорости растяжения. Тонический компонент рефлекса на растяжение, т. е. активность в растянутой мышце, обычно отсутствует, о чем можно судить по отсутствию электромиографического сигнала.


Выработка двигательных навыков
. Совершенствование двига­тельной функции человека в процессе онтогенеза происходит как вследствие продолжающегося в первые годы после рождения созре­вания отделов нервной системы и врожденных механизмов, участ­вующих в координации движений, так и в результате обучения, т. е. формирования новых связей, ложащихся в основу программ тех или иных конкретных двигательных актов. Координация новых, непривычных движений имеет характерные черты, отличающие ее от координации тех же движений после обучения.


Обилие степеней свободы в опорно-двигательном аппарате, вли­яние на результат движения сил тяжести и инерции осложняют выполнение любой двигательной задачи. На первых порах обучения нервная система справляется с этими трудностями, нейтрализуя помехи путем развития дополнительных мышечных напряжений.


Мышечный аппарат жестко фиксирует суставы, не участвующие в движении, активно тормозит инерцию быстрых движений. Такой путь преодоления помех, возникающих в ходе движения, энерге­тически невыгоден и утомителен. Использование обратных связей еще несовершенно — коррекционные посылки, возникающие на их основе, несоразмерны и вызывают необходимость повторных допол­нительных коррекций.


На электромиограммах видно, что мышцы-антагонисты даже тех суставов, в которых совершаются движения, активируются одновре­менно, при этом в циклических движениях мышцы почти не рас­слабляются. Возбуждены также многие мышцы, не имеющие прямого отношения к данному двигательному акту. Движения, совершаемые в таких условиях, напряжены и неэстетичны (например, движения человека, впервые вышедшего на коньках на лед).


Как показал в своих исследованиях Н. А. Бернштейн, по мере обучения вырабатывается такая структура двигательного акта, при которой немышечные силы включаются в его динамику, становятся составной частью двигательной программы. Излишние мышечные напряжения при этом устраняются, движение становится более ус­тойчивым к внешним возмущениям. На электромиограммах видна концентрация возбуждения мышц во времени и пространстве, пе­риоды активности работающих мышц укорачиваются, а количество мышц, вовлеченных в возбуждение, уменьшается. Это приводит к повышению экономичности мышечной деятельности, а движения де­лаются более плавными, точными и непринужденными (см. рис. 4.19).


Важную роль в обучении движениям играет рецепция, особенно проприорецепция. В процессе двигательного обучения обратные свя­зи используются не только для коррекции движения по его ходу, но и для коррекции программы следующего движения на основе ошибок предыдущего.


Утомление
. При длительной физической работе наступает утом­ление, которое, в частности, проявляется в изменении координации мышечной деятельности. Возбуждение каждой работающей мышцы становится менее локализованным во времени. В работу вовлекаются другие мышцы, сначала синергисты, компенсирующие снижение силы основных мышц, а затем, по мере нарастания дискоордина-ции — и другие мышцы, в частности антагонисты. Движения ста­новятся менее точными, темп их замедляется.


Картина мышечной активности во время движений, совершаемых на фоне утомления, во многом напоминает картину, наблюдаемую при выполнении новых, непривычных движений.


Нарушения координации движений
. Поскольку в управлении движениями принимают участие многие отделы ЦНС, нарушения координации движений могут быть использованы в целях диагно­стики. Они проявляются нарушениями устойчивости при стоянии и ходьбе, асимметрией движений правой и левой стороны, наруше­ниями точности движений, снижением силы и уменьшением скоро­сти. Регистрация пространственных и временных характеристик дви­жений с их количественным представлением дает возможность оце-


нить степень двигательных расстройств при различных заболеваниях, ход восстановления двигательных функций, предложить эффектив­ные методы двигательной реабилитации.


4.3. ФИЗИОЛОГИЯ АВТОНОМНОЙ (ВЕГЕТАТИВНОЙ) НЕРВНОЙ СИСТЕМЫ


Согласно Международной анатомической номенклатуре, термин «автономная нервная система» заменил все ранее существовавшие — «растительная», «висцеральная», «непроизвольная», «вегетативная». Анатомически автономная нервная система представлена ядерными образованиями, лежащими в головном и спинном мозге, нервными ганглиями и нервными сплетениями, иннервирующими гладкую му­скулатуру всех органов, сердце и железы. Главная функция авто­номной нервной системы состоит в поддержании постоянства внут­ренней среды, или гомеостаза, при различных воздействиях на организм. Наряду с этим автономная нервная система регулирует также деятельность и других органов, которые не участвуют непос­редственно в поддержании гомеостаза (внутриглазные мышцы, по­ловые органы). Выделяя регуляцию автономной нервной системой висцеральных функций, следует заметить, что в целостных реакциях организма сенсорные, моторные, соматические и висцеральные ком­поненты между собой тесно связаны. Специальными исследованиями К. М. Быкова, В. Н. Черниговского и др. показана также возмож­ность условнорефлекторной регуляции висцеральных процессов. Это означает, что высшие отделы головного мозга могут регулировать работу иннервированных автономной нервной системой органов, а также координировать их деятельность в соответствии с текущими потребностями организма.


4.3.1. Функциональная структура автономной нервной системы


На основании структурно-функциональных свойств автономную нервную систему принято делить на симпатическую, парасимпати­ческую и метасимпатическую части. Из них первые две имеют центральные структуры и периферический нервный аппарат, мета-симпатическая же часть целиком лежит на периферии в стенках внутренних органов.


Дуга автономного рефлекса
(рис. 4.22), как и соматическая рефлекторная дуга, состоит из трех звеньев: чувствительного (аф­ферентного, сенсорного), ассоциативного (вставочного) и эфектор-ного. В зависимости от уровня замыкания, т. е. расположения ас­социативного звена, различают местные, или ганглионарные, спи-нальные, бульварные и т. д. рефлекторные дуги. Рефлексы, возникающие при раздражении чувствительных волокон, идущих в составе симпатических и парасимпатических нервов, вовлекают в деятельность не только автономную, но и соматическую нервную систему. Чувствительные волокна этой единой (автономной и со­матической) афферентной системы являются отростками биполярных


клеток, лежащих в спинномозговых узлах или их аналогах, таких как яремный, тройничный (гассеров) узлы и др. Такое понимание справедливо для сегментарных и рефлекторных дуг более высокого порядка и не относится к местным периферическим дугам автоном­ного рефлекса.


Наряду с общим для обеих (автономной и соматической) систем звеном существует и собственный афферентный путь автономной нервной системы,
называемый особым,
или висцеральным.
Он со­здает основу для путей местных рефлексов, осуществляемых неза­висимо, без участия ЦНС. По локализации клеточных тел чувст­вительных нейронов, по ходу и длине отростков их разделяют на три группы. В первую группу объединены клетки, тела которых локализуются в узлах солнечного и нижнего брыжеечного сплетений. Один из их длинных отростков направляется на периферию, другой в сторону спинного мозга. Клетки второй группы характеризуются тем, что их длинный отросток идет к рабочему органу, короткие распределяются в самом ганглии и синаптически контактируют с вставочным или эффекторным нейронами. Висцеральные чувстви­тельные клетки третьей группы отличаются тем, что их тела и короткие отростки располагаются в интрамуральных узлах, длинные же отростки в составе соответствующих нервов достигают симпати­ческих узлов, где и происходит переключение на ассоциативный и моторный (эфферентный) нейрон.


Висцеральная чувствительность обусловлена активностью пяти отдельных типов интероцепторов: механо-, хемо-, термо-, осмо- и ноцицепторов, называемых специфическими. Из них наиболее рас­пространенными являются механорецепторы.


Среди механорецепторов внутренних органов известны ре­цепторы двух типов: быстро- и медленноадаптирующиеся. Быстро-адаптирующиеся механорецепторы
характеризуются высоким по­рогом возбуждения и встречаются в основном в слизистой оболочке и серозном слое висцеральных органов и связаны преимущественно с миелиновыми волокнами. Характерной чертой быстроадаптирую-щихся рецепторов являются исключительная чувствительность к динамической фазе движения и сокращения. Для медленноадапти-рующихся механорецепторов,
наоборот, характерна генерация сиг­налов в течение длительного периода раздражения или после его окончания. Эти рецепторы имеются во всех внутренних органах и характеризуются низким порогом возбуждения. Такая особенность позволяет им быть спонтанно-активными и направлять в нервные центры разнообразную информацию о сокращении, расслаблении, растяжении, смещении висцеральных органов. Медленноадаптиру­ющиеся рецепторы связаны с тонкими миелинизированными и без-миелиновыми нервными волокнами.


Хеморецепторы активируются при изменении химического состава ткани, например напряжения С02
и 02
в крови. В органах пищеварения выделены специальные кислого- и щелочечувствитель-ные рецепторы, чувствительные к действию только аминокислот или аминокислот и глюкозы.


Тепловые и холодовые
терморецепторы также обнаружены по преимуществу в пищеварительном тракте. Осморецепторы, ионорецепторы (например, натриевые) висцеральных органов обнаружены в печени. Частота их разрядов находится в прямой зависимости от осмотического давления жидкости. Существование специфических ноцицепторов пока еще окончательно не уста­новлено, хотя их роль и отводится некоторым свободным нервным окончаниям. Болевые ощущения возникают при чрезмерной стиму­ляции любого типа — растяжении, сокращении, действии химиче­ских стимулов.


Помимо специфических, имеются и рецепторы, воспринимающие раздражение любой модальности, будь то механическое, химическое, термическое, осмотическое. Местом локализации таких полимодаль­ных интероцепторов является, например, слизистая оболочка пи­щеварительного тракта.


Все рассмотренные виды висцеральной чувствительности пере­даются в центры по волокнам трех основных нервных путей: блуж­дающего, чревных (большого, малого, поясничных) и тазового (рис. 4.23). Из них самым мощным коллектором висцеральной чув­ствительности является блуждающий нерв. Соотношение в нем аф­ферентных и эфферентных волокон составляет 9:1, в то время как в чревном и тазовом нервах 3:1 и 1:1 соответственно.


Помимо местных сетей, афферентные сигналы могут запускать центральные нейронные механизмы ряда систем: сегментарную, межсегментарную, проприоспинальную, надсегментарную. Несмотря на такую сложность многоступенчатой организации, основа меха­низма взаимодействия на всех ступенях остается одной и той же: это синаптическая конвергенция к центральным клеткам сигналов различной природы (висцеральной и соматической) и разной мо­дальности, оценка их аппаратом суммации постсинаптических по­тенциалов и на основании оценки результатов — генерация нового сигнала. Различия между механизмами, включающимися на разных уровнях, непринципиальны и заключаются в количественных осо­бенностях конвергенции. Эти механизмы вовлекаются в разной сте­пени в зависимости от интенсивности воздействия и включаются в разных соотношениях.


Для запуска менее сложных сегментарных механизмов оказывает­ся достаточной и менее сложная суммация постсинаптических процес­сов. Эти механизмы срабатывают при возбуждении небольшого числа афферентов. Включение более сложных систем требует значительной суммации процессов, а стало быть, более интенсивного притока аффе-рентации. Следовательно, для запуска различных нейронных систем основой является мощность поступающего афферентного потока.


Импульсы, интегрированные в общей системе вставочных ней­ронов, способны вызвать их активность и, как следствие, появление вегетативных, например дыхательных или сердечно-сосудистых, эф­фектов. Импульсы могут также активировать клетки высших отделов центральной нервной системы, вызывая появление поведенческих реакций и субъективных ощущений.


Реакция на афферентный импульс и элементы его переработки на подкорковом уровне является основой для последующих процессов в коре больших полушарий, направленных на регуляцию функций определенной висцеральной системы — пищеварительной, дыхатель­ной и т. д. Эти процессы выражаются в виде вызванных потенци­алов — первичного и вторичного ответов: первичные сравниваются с пусковыми, вторичные — с корригирующими влияниями коры большого мозга.


При анализе локализации представительства висцеральных сис­тем в коре большого мозга обнаруживается несоответствие числа зон проекций блуждающего и чревного нервов. Объясняется это тем, что блуждающий нерв по числу сенсорных волокон и особенно по величине иннервируемых областей не имеет себе равных, охва­тывая большое количество внутренних органов, некоторые из ко­торых подвержены в какой-то мере произвольному контролю.


Представительства функционально близких висцеральных систем находятся и в близко расположенных областях коры. Например, зоны брыжеечных, селезеночных и чревных нервов перекрываются представительством блуждающего нерва, что служит основой для тонкой координации процессов, осуществляемых корой больших полушарий, восстановления функции, надежности работы висце­ральных органов.


Предложенная В. Н. Черниговским схема проведения висцераль­ных сигналов в центральной нервной системе дает представление об участии той или иной наиболее важной структуры в этом процессе, хотя и не указывает на степень участия каждой и не отражает всей сложности существующих взаимодействий (схема 4.2). Сигналы, вызывающие ответы в клетках коры большого мозга, после соот­ветствующей обработки передаются в специальные выходы передних отделов поясной извилины, и уже оттуда через гипоталамус нисхо­дящие пути следуют к вставочным (преганглионарным), затем к эффекторным нейронам и далее к исполнительным органам. Таким образом, информация от высших центров по нисходящим путям и от периферических висцеральных и соматических клеток по спи-нальным дугам поступает к преганглионарным нейронам.


Тело преганглионарного автономного нейрона
располагается в сером веществе в одних случаях ствола мозга, в других — спинного мозга. На периферии за пределами спинного мозга нервное волокно вступает в синаптический контакт с эффекторным нейроном. Иск­лючение составляет лишь часть волокон, следующих в составе чрев­ного нерва к надпочечнику. Эти волокна проникают непосредственно в мозговой слой железы, который и выполняет своеобразную фун­кцию постганглионарного звена рефлекторной дуги. Истинное же эффекторное звено дуги автономного рефлекса представляет собой нервную клетку, мигрировавшую из ЦНС.


Преганглионарные волокна
различаются по своим функциональ­ным свойствам. Наибольшее их число составляют тонкие, легко возбудимые, с медленным проведением возбуждения единицы. При­ближаясь к эффекторным нейронам, преганглионарные волокна те-


ряют миелин и разветвляются на тонкие терминалы, образуя на теле и отростках эффекторного нейрона синаптические контакты.


Эффекторных нейронов
несравненно больше, чем преганглио-нарных волокон. Например, в верхнем шейном симпатическом ган­глии одно преганглионарное симпатическое волокно контактирует более чем с сотней эффекторных нейронов. При этом на одном и том же эффекторном нейроне могут оканчиваться разветвления нескольких преганглионарных волокон. Наличие таких широких конвергентных и дивергентных отношений обеспечивает надежность проведения возбуждения. Эта закономерность касается только сим­патической части автономной нервной системы, в двух других ее частях подобная конвергенция практически отсутствует.


В интеграции сигналов в низших центрах вегетативной перифе­рии значительная роль отводится пространственной и временной суммации постсинаптических потенциалов. Роль их состоит в том, что поступающие по пресинаптическим терминалям присущие им относительно слабые сигналы благодаря этим процессам трансфор-


мируются, превращаясь в сверх­пороговые постсинаптические по­тенциалы эфферентного нейрона.


Тело эффекторной клетки ду­ги автономного рефлекса пред­ставляет собой мигрировавшую из спинного мозга клетку, распола­гающуюся в одном из перифери­ческих автономных ганглиев (рис. 4.24). Нейроны этих ганглиев ох­ватывают своим влиянием, как правило, большие территории висцеральных органов. Ганглии могут располагаться либо около позвоночника (превертебральные), либо в сплетениях вблизи внут­ренних органов (паравертебральные), наконец, в тканях внутренних органов (интрамуральные, интервисцеральные).


Эффекторный нейрон дуги автономного рефлекса по электриче­ским показателям в покоящемся состоянии мало чем отличается от мотонейрона соматической дуги. Однако кратковременная или оди­ночная стимуляция преганглионарных волокон вызывает появление в нем сложной последовательности медленных деполяризующих и гиперполяризующих постсинаптических процессов. В этом случае вначале возникает локальный отрицательный потенциал (О-волна), переходящий в положительную П-волну. Последняя сменяется поз­дней отрицательной П-волной. Каждая из этих фаз отражает меж­нейронную передачу, при этом О-волна — возникающий в холи-нергических синапсах возбуждающий постсинаптический потенциал


(ВПСП). Появление П-волны обусловлено возбуждением особой группы преганглионарных волокон, которые оканчиваются на хро-маффинных клетках ганглия. Появление деполяризующихся и ги-перполяризующихся постсинаптических потенциалов опосредуется мускариноподобным действием ацетилхолина, в то время как ги­перполяризация — специальными вставочными адренергическими клетками, регулируя тем самым возбудимость эффекторных нейронов. Как правило, зффекторный нейрон может иметь, помимо основ­ного возбуждающего холинергического преганглионарного входа, еще и прямой вход сугубо периферического происхождения, пред­ставляющий одно из звеньев местной рефлекторной дуги ганглио-нарного уровня. Электрофизиологические характеристики эффек-торного нейрона позволяют интегрировать эти сигналы и формиро­вать новый выходной сигнал. Благодаря этим местным дугам в эфферентном нейроне поддерживается необходимый уровень спон­танной активности и при децентрализации ганглия сохраняется его рефлекторная функция. У спонтанно активных эфферентных ней­ронов фоновые разряды характеризуются низкой частотой. Они могут возникать синхронно пульсовым толчкам, дыхательным и перистальтическим движениям. Паттерн и ритм разрядов совпадают с показателями преганглионарных волокон или активностью волокон местных рефлекторных дуг.


4.3.1.1. Симпатическая часть


Симпатическая часть автономной нервной системы (рис. 4.25) имеет центральный аппарат, или спинномозговой (торако-люмбальный) центр Якобсона, который представлен симпатическим ядром бокового рога серого вещества спинного мозга. Это ядро простирается от I—IIгрудных до II—IVпоясничных сегментов. Отростки составляющих ядро клеток называются преганглионарными волокнами. Они выходят из спинного мозга в составе его передних корешков через межпозвоночные отверстия. Вскоре после выхода симпатические волокна отделяются от двигательных соматических (см. рис. 4.15) и далее в виде белых соединительных ветвей вступают в узлы пограничного симпатического ствола. Часть волокон образует здесь синаптические контакты с клетками узлов, часть проходит узлы транзитом и вступает в синаптический контакт либо с клетками других узлов пограничного симпатического ствола, либо превертеб-ральных (чревное сплетение, нижнее брыжеечное сплетение) узлов.


Периферический отдел симпатической части автономной нервной системы образован эфферентными и чувствительными ней­ронами и их отростками, располагающимися в удаленных от спинного мозга узлах. В околопозвоночных, или паравертебральных, узлах часть преганглионарных симпатических волокон синаптически окан­чивается на эфферентных нейронах. Волокна эфферентных нейронов, именуемые постганглионарными, разделяются на две группы. Волок­на одной из них в виде серых соединительных ветвей вновь вступают в соматический нерв и в его составе без перерыва достигают эффек-


торного органа (сосуды кожи, мышц), волокна другой группы, собрав­шись в отдельные веточки, образуют обособленный стволик, направ­ляющийся либо непосредственно к исполнительным органам, либо к предпозвоночным узлам, а через них далее также к исполнительным органам. Постганглионарные волокна в большинстве своем лишены миелиновой оболочки, поэтому имеют розово-серую окраску. Серые ветви отходят от всех узлов пограничного симпатического ствола, ко­торый делится на шейную, грудную, поясничную, крестцовую части.


Предпозвоночные, или превертебральные, узлы лежат на большом расстоянии от центральной нервной системы. На их эффекторных нейронах заканчиваются прошедшие, не прерываясь через узлы по­граничного симпатического ствола, преганглионарные волокна.


Основную массу узлов составляют нервные клетки. В строме ганглиев найдены чувствительные окончания. В синапсах отчетливо выделяются пре~ и постсинаптические мембраны, отмечается боль­шое количество пузырьков, митохондрий, трубочек эндоплазмати-ческой сети.


4.3.1.2. Парасимпатическая часть


Парасимпатическая часть автономной нервной системы имеет общую структуру, подобную симпатической части: здесь также вы­деляют центральные и периферические образования. Как и в сим­патической части, передача возбуждения к исполнительному органу осуществляется по двухнейронному пути. Вместе с тем ряд признаков отличает парасимпатическую часть от симпатической.


Во-первых, центральные структуры парасимпатической части расположены в трех различных, далеко отстоящих друг от друга участках мозга; во-вторых, характерно наличие значительно более длинных преганглионарных и чрезвычайно коротких постганглио-нарных волокон; в-третьих, парасимпатические волокна иннерви-руют, как правило, только определенные зоны тела, которые также снабжаются симпатической, а в значительной части, кроме того, и метасимпатической иннервацией.


Центральныеобразования парасимпатической части ав­тономной нервной системы включают ядра, лежащие в среднем, продолговатом и спинном мозге. В среднем мозге находится пара­симпатическое добавочное ядро глазодвигательного нерва (ядро Яку­бовича, Вестфаля — Эдингера), расположенное вблизи передних бугров четверохолмия; в продолговатом мозге — три пары ядер, от которых начинаются преганглионарные волокна, выходящие из мозга в составе VII, IX, Xпар черепных нервов (лицевого, языкоглоточ-ного, блуждающего). Здесь проходят слюноотделительные, слезоот­делительные, а также двигательный и секреторный пути для внут­ренних органов (блуждающий нерв). Парасимпатические ядра спин­ного мозга располагаются в области I—IIIили II—IVкрестцовых сегментов в боковых рогах серого вещества.


Периферические структуры парасимпатической части автономной нервной системы включают нервные волокна и соот-


ветствующие ганглии. Преганглионарные волокна из среднего мозга выходят сбоку от ножек большого мозга в составе глазодвигательного нерва, проникают через глазную щель в глазницу и синаптичееки заканчиваются на эффекторных клетках расположенного в глубине глазницы ресничного узла.
От него отходят два коротких ресничных нерва. Составляющие их постганглионарные волокна вступают в глазное яблоко, разветвляясь в аккомодационной мышце и сфинктере зрачка.


В продолговатом мозге нервные волокна из верхнего слюноотдели­тельного ядра идут в составе лицевого нерва и, покидая его, образуют барабанную струну, которая позже присоединяется к язычному нерву. Последний достигает челюстного или подъязычного узла,
постгангли­онарные волокна которого иннервируют подчелюстную слюнную же­лезу. Преганглионарные волокна, выходящие из нижнего слюноотде­лительного ядра, вступают в языкоглоточный нерв и далее попадают в ушной узел.
Его постганглионарные волокна являются секреторными для околоушной слюнной железы. Преганглионарные волокна из ядер слезоотделительного пути через лицевой нерв вступают в крылонеб-ный узел,
постганглионарные волокна которого достигают слюнной железы, желез слизистой оболочки носа и неба.


Блуждающий нерв является смешанным: он включает аф­ферентные и эфферентные парасимпатические, чувствительные и двигательные соматические, а также эфферентные симпатические волокна. По выходе из черепа нерв образует два последовательно лежащих узла: верхний и нижний
(яремный и узловой). Верхний узел содержит в основном чувствительные клетки, аналогичные клеткам спинномозговых узлов. От нижнего узла берут начало сердечный депрессорный нерв, возвратный гортанный нерв, пище­водные ветви. У корня легкого от блуждающего нерва отходят соответствующие веточки к легкому. В брюшной полости нерв пе­реходит на желудок, формируя желудочное сплетение, от которого отходят стволики в чревное (солнечное) сплетение. Грудная и брюш­ная части блуждающего нерва могут рассматриваться лишь как проводники, связывающие центральные структуры с эффекторным аппаратом метасимпатической нервной системы.


Крестцовый отдел парасимпатической части нервной си­стемы представлен тазовым нервом, который направляется к повер­хности прямой кишки, где вместе с подчревным симпатическим нервом участвует в образовании тазового сплетения.


4.3.1.3. Метасимпатическая часть


Структура метасимпатической части отличается относительной простотой (см. рис. 4.18). Здесь нет ядерных образований и система представлена лишь комплексом интрамуральных ганглионарных структур, залегающих в стенках полых висцеральных органов. В со­ответствии с иннервационными территориями в ней различают эн-теральную, кардиальную, респираторную и другие области. Мета­симпатическая часть обладает многими признаками, которые отли-


чают ее от других частей автономной нервной системы. Прежде всего эта часть иннервирует только внутренние органы, наделенные моторным ритмом. В сфере ее управления находятся гладкие мышцы, всасывающий и секретирующий эпителий, локальный кровоток, ме­стные эндокринные и иммунные элементы. Метасимпатическая часть получает внешние синаптические входы от симпатической и пара­симпатической частей автономной нервной системы и не имеет прямых синаптических контактов с эфферентной частью соматиче­ской рефлекторной дуги. Метасимпатическая часть характеризуется наличием собственного сенсорного звена. Представляя базовую ин­нервацию висцеральных органов, она обладает гораздо большей, чем симпатическая и парасимпатическая части автономной нервной системы, независимостью от ЦНС.


Органы с разрушенными или выключенными с помощью ганг-лиоблокаторов метасимпатическими путями утрачивают присущую им способность к координированной моторной деятельности и другим функциональным отправлениям.


4.3.2. Особенности конструкции автономной нервной системы


Первое и основное отличие строения автономной нервной системы от строения соматической состоит в расположении эфферентного (моторного) нейрона (см. рис. 4.22). В соматической нервной системе вставочный и моторный нейроны располагаются в сером веществе спинного мозга, в автономной нервной системе эффекторный нейрон вынесен на периферию, за пределы спинного мозга, и лежит в одном из ганглиев — пара-, превертебральном или интраорганном. Более того, в метасимпатической части автономной нервной системы весь рефлекторный аппарат полностью находится в интрамуральных ганглиях и нервных сплетениях внутренних органов.


Второе отличие касается выхода нервных волокон из ЦНС. Со­матические нервные волокна покидают спинной мозг сегментарно и перекрывают иннервацией не менее трех смежных сегментов. Волокна же автономной нервной системы выходят из трех участков ЦНС — головного мозга, грудопоясничного и крестцового отделов спинного мозга. Они иннервируют все органы и ткани без исклю­чения. Большинство висцеральных систем имеет тройную — сим­патическую, парасимпатическую и метасимпатическую — иннерва-цию.


Третье отличие касается иннервации органов соматической и автономной нервной системой. Перерезка у животных вентральных корешков спинного мозга сопровождается полным перерождением всех соматических эфферентных волокон. Она не затрагивает дуги автономного рефлекса ввиду того, что ее эффекторный нейрон вы­несен в пара- или превертебральный ганглий. В этих условиях эффекторный орган управляется импульсами данного нейрона. Именно это обстоятельство подчеркивает относительную автономию указанного отдела нервной системы.


Четвертое отличие относится к свойствам нервных волокон. В ав-


тономной нервной системе они в большинстве своем безмякотные или тонкие мякотные, как, например, преганглионарные волокна, диаметр которых не превышает 5 мкм. Такие волокна принадлежат к типу В. Постганглионарные волокна еще тоньше, большая часть их лишена миелиновой оболочки, они относятся к типу С. В отличие от них соматические эфферентные волокна толстые, мякотные, ди­аметр их составляет 12—14 мкм. Кроме того, пре- и постганглио­нарные волокна отличаются низкой возбудимостью. Для вызова в них ответной реакции необходима значительно большая, чем для моторных соматических волокон, сила раздражения. Волокна авто­номной нервной системы характеризуются большим рефрактерным периодом и большой хронаксией (1,0—2,0 и 0,1—0,8 сигмы соот­ветственно). Скорость распространения по ним нервных импульсов невелика и составляет в преганглионарных волокнах до 18 м/с, в постганглионарных — до 3 м/с. Потенциалы действия волокон автономной нервной системы характеризуются большей, чем в со­матических эфферентах, длительностью. Их возникновение в пре­ганглионарных волокнах сопровождается продолжительным следо­вым положительным потенциалом, в постганглионарных волокнах — следовым отрицательным потенциалом с последующей продолжи­тельной следовой гиперполяризацией (300—400 мс).


4.3.3. Автономный
(вегетативный) тонус


В естественных условиях симпатические и парасимпатические центры, а также эффекторные нейроны метасимпатической части автономной нервной системы находятся в состоянии непрерывного возбуждения, получившего название «тонус». Характерной особен­ностью тонического влияния является длительное поддержание внешнего эффекта, который наиболее выраженно отражается на функциональном состоянии сосудистой стенки, сердечной мышцы, висцеральных органов в целом.


Тоническое состояние можно непосредственно зарегистрировать в отдельных волокнах и клетках всех трех частей автономной нервной системы и оценить по показателям их активности. Частота тонических разрядов в пре- и постганглионарных симпатических волокнах составляет от 0,1 до 5,0 имп/с и находится в зависимости от иннервируемых гладкомышечных органов, которые имеют в свою очередь и собственный базальный мышечный тонус. Тонус можно оценить еще и косвенно. В этом случае основным показателем является изменение деятельности органа после перерезки или элек­трической стимуляции иннервирующих его волокон. Иллюстрацией этого могут служить классические опыты с одновременной перерез­кой на шее собаки обоих блуждающих нервов и односторонней перерезкой на шее кролика симпатического нерва. Перерезка блуж­дающих нервов вызывает отчетливое учащение сердечного ритма. Перерезка шейного симпатического ствола сопровождается немед­ленным расширением сосудов уха на стороне перерезки, что является результатом исключения возбуждащего сосудосуживающего влия-


ния. Стимуляция периферических концов перерезанных нервов с частотой 1—2 имп/с приводит к восстановлению исходного сердеч­ного ритма в опытах с перерезкой блуждающих нервов и полному возвращению к уровню сужения сосудов уха, который был до пе­ререзки симпатического ствола.


Преобладание парасимпатического тонуса обычно оценивается на основании частоты сердечных сокращений. Тоническая импуль-сация, следующая из центров продолговатого мозга по волокнам блуждающего нерва, оказывает на сердце отрицательное хронотроп-ное действие, снижая частоту сердечных сокращений. Напротив, ослабление тонуса ведет к учащению сердечного ритма.


Исключительна роль симпатической части автономной нервной системы и в создании общего сосудистого тонуса. Тонические влияния из сосудодвигательного центра приспосабливают сосуды мелкого и среднего диаметра к местным и общим потребностям организма. В своих тонических влияниях симпатическая часть автономной нервной системы часто взаимодействует с мозговым веществом надпочечников. В этом случае сосудосуживающие ре­акции усиливаются выбросом адреналина, возникающим в резуль­тате активации надпочечников под действием импульсов из сосу­додвигательного центра.


Преобладание тонических влияний парасимпатической и сим­патической частей автономной нервной системы послужило осно­ванием для создания конституционной классификации.
Согласно этой классификации, преобладание в организме тонуса парасим­патической части автономной нервной системы именуется ваго-тонией,
симпатической — симпатикотонией.
Ваготония харак­теризуется замедленным пульсом, склонностью к покраснениям, потливостью, желудочными расстройствами. Для симпатикотонии, напротив, типичным является учащенный пульс и т. д. Чистые формы ваготонии и симпатикотонии встречаются исключительно редко.


Многие стороны природы тонической активности остаются ма­лоизвестными. Считают, что тонус ядерных образований формиру­ется преимущественно благодаря притоку сенсорной информации из рефлексогенных зон, отдельных групп интероцепторов, а также соматических рецепторов. При этом не исключается и существование собственных водителей ритма — пейсмекеров, локализованных в основном в продолговатом мозге. В пользу такой точки зрения свидетельствует возникновение тахикардии после денервации каро-тидного синуса (sinuscaroticus) или области дуги аорты, а также исчезновение разрядов в сердечных веточках блуждающего нерва при снижении артериального давления. Особенностью метасимпа-тической части автономной нервной системы является существование в ее функциональных модулях специальных клеток-осцилляторов, так называемых водителей ритма (рис. 4.26). Эти клетки не имеют синаптических входов, на их функцию не влияют ганглиоблокаторы и вещества медиаторного типа, однако сами они синаптически свя­заны со вставочными и эффекторными нейронами. Спонтанная де-


поляризация этих водителей ритма создает и постоянно поддержи­вает необходимый уровень тонической активности.


В целом тонус автономной нервной системы рассматривается как одно из проявлений гомеостатического состояния и одновременно один из механизмов его стабилизации.


4.3.4. Синаптическая
передача возбуждения в автономной нервной системе


У позвоночных животных в автономной нервной системе имеется три вида синаптической передачи: электрическая, химическая и смешанная. Органом с типичными электрическими синапсами яв­ляется цилиарный ганглий птиц, лежащий в глубине глазницы у основания глазного яблока. Передача возбуждения здесь осуществ­ляется практически без задержки в обоих направлениях. К редко встречающимся можно отнести и передачу через смешанные синап­сы, в которых одновременно соседствуют структуры электрических и химических синапсов. Этот вид также характерен для цилиарного ганглия птиц. Основным же способом передачи возбуждения в ав­тономной нервной системе является химический. Он осуществляется по определенным закономерностям, среди которых выделяют два принципа. Первый (принцип Дейла) заключается в том, что нейрон со всеми отростками выделяет один медиатор. Как стало теперь известно, наряду с основным в этом нейроне могут присутствовать также другие передатчики и участвующие в их синтезе вещества. Согласно второму принципу, действие каждого медиатора на нейрон


или эффектор зависит от природы рецептора постсинаптической мембраны.


В автономной нервной системе насчитывают более десяти видов нервных клеток, которые продуцируют в качестве основных разные медиаторы: ацетилхолин, норадреналин, серотонин и другие био­генные амины, аминокислоты, АТФ. В зависимости от того, какой основной медиатор выделяется окончаниями аксонов автономных нейронов, эти клетки принято называть холинергическими, адре-нергическими, серотонинергическими, пуринергическими и т. д. ней­ронами.


Каждый из медиаторов выполняет передаточную функцию, как правило, в определенных звеньях дуги автономного рефлекса (рис. 4.27). Так, ацетилхолин выделяется в окончаниях всех пре-ганглионарных симпатических и парасимпатических нейронов, а также большинства постганглионарных парасимпатических оконча­ний. Кроме того, часть постганглионарных симпатических волокон, иннервируюших потовые железы и, по-видимому, вазодилататоры скелетных мышц, также осуществляют передачу с помощью аце-тилхолина. В свою очередь норадреналин является медиатором в постганглионарных симпатических окончаниях (за исключением нервов потовых желез и симпатических вазодилататоров) — сосудов сердца, печени, селезенки.


Медиатор, освобождающийся в пресинаптических терминалях под влиянием приходящих нервных импульсов, взаимодействует со спе-цифиеским белком-рецептором постсинаптической мембраны и об­разует с ним комплексное соединение. Белок, с которым взаимо­действует ацетилхолин, носит название холинорецептора,
адрена­лин или норадреналин — адренорецептора
и т. д. Местом локализации рецепторов различных медиаторов является не только постсинаптическая мембрана. Обнаружено существование и специ­альных пресинаптических рецепторов, которые участвуют в меха­низме обратной связи регуляции медиаторного процесса в синапсе.


Помимо холино-, адрено-, пуринорецепторов, в периферической части автономной нервной системы имеются рецепторы пептидов, дофамина, простагландинов. Все виды рецепторов, вначале обнару­женные в периферической части автономной нервной системы, были найдены затем в пре- и постсинаптических мембранах ядерных структур ЦНС.


Характерной реакцией автономной нервной системы является резкое повышение ее чувствительности к медиаторам после денер-вации органов. Например, после ваготомии орган обладает повы­шенной чувствительностью к ацетилхолину, соответственно после симпатэктомии — к норадреналину. Полагают, что в основе этого явления лежит резкое возрастание числа соответствующих рецеп­торов постсинаптической мембраны, а также снижение содержания или активности ферментов, расщепляющих медиатор (ацетилхолин-эстераза, моноаминоксидаза и др.).


В автономной нервной системе, помимо обычных эффекторных нейронов, существуют еще специальные клетки, соответствующие


постганглионарным структурам и выполняющие их функцию. Пе­редача возбуждения к ним осуществляется обычным химическим путем, а отвечают они эндокринным способом. Эти клетки получили название трансдукторов.
Их аксоны не формируют синаптических контактов с эффекторными органами, а свободно заканчиваются вокруг сосудов, с которыми образуют так называемые гемальные оргцны.
К трансдукторам относят следующие клетки: 1) хромаф-финные клетки мозгового слоя надпочечников, которые на холи-нергический передатчик преганглионарного симпатического оконча­ния отвечают выделением адреналина и норадреналина; 2) юкста-гломерулярные клетки почки, которые отвечают на адренергический передатчик постганглионарного симпатического волокна выделением в кровяное русло ренина; 3) нейроны гипоталамических супраоп-тического и паравентрикулярного ядер, реагирующие на синапти-ческий приток разной природы выделением вазопрессина и оксито-цина; 4) нейроны ядер гипоталамуса.


Действие основных классических меадиаторов может быть вос­произведено с помощью фармакологических препаратов. Например,


никотин вызывает эффект, подобный эффекту ацетилхолина, при действии на постсинаптическую мембрану постганглионарного ней­рона, в то время как сложные эфиры холина и токсин мухомора мускарин — на постсинаптическую мембрану эффекторной клетки висцерального органа. Следовательно, никотин вмешивается в меж­нейронную передачу в автономном ганглии, мускарин — в нейро-эффекторную передачу в исполнительном органе. На этом основании считают, что имеется соответственно два типа холинорецепторов: никотиновые (Н-холинорецепторы)
и мускариновые (М-холиноре-цепторы).
В зависимости от чувствительности к различным кате-холаминам адренорецепторы делят на а-адренорецепторы
и р-ад-ренорецепторы.
Их существование установлено посредством фар­макологических препаратов, избирательно действующих на определенный вид адренорецепторов.


В ряде висцеральных органов, реагирующих на катехоламины, находятся оба вида адренорецепторов, но результаты их возбуждения бывают, как правило, противоположными (табл. 4.2). Например, в кровеносных сосудах скелетных мышц имеются а-
и Д-адреноре­цепторы. Возбуждение а-адренорецепторов приводит к сужению, а beta-адренорецепторов — к расширению артериол. Оба вида адрено­рецепторов обнаружены и в стенке кишки, однако реакция органа при возбуждении каждого из видов будет одназначно характеризо­ваться торможением активности гладких мышечных клеток. В сердце и бронхах нет а-адренорецепторов и медиатор взаимодействует толь­ко с beta-адренорецепторами, что сопровождается усилением сердечных сокращений и расширением бронхов. В связи с тем что норадреналин вызывает наибольшее возбуждение р
-адренорецепторов сердечной мышцы и слабую реакцию бронхов, трахеи, сосудов, первые стали называть beta-адренорецепторами,
вторые — beta2-адренорецепторами.


При действии на мембрану гладкой мышечной клетки адреналин и норадреналин активируют находящуюся в клеточной мембране аденилатциклазу. При наличии ионов Mg2+
этот фермент катали­зирует образование в клетке цАМФ (циклического 3' ,5' -аденозин-монофосфата) из АТФ. Последний продукт в свою очередь вызывает ряд физиологических эффектов, активируя энергетический обмен, стимулируя сердечную деятельность.


Особенностью адренергического нейрона является то, что он обладает чрезвычайно длинными тонкими аксонами, которые раз­ветвляются в органах и образуют густые сплетения. Общая длина таких аксонных терминалей может достигать 30 см. По ходу тер-миналей имеются многочисленные расширения — варикозы, в ко­торых синтезируется, запасается и выделяется медиатор. С приходом импульса норадреналин одновременно выделяется из многочислен­ных расширений, действуя сразу на большую площадь гладкомы шечной ткани. Таким образом, деполяризация мышечных клеток сопровождается одновременным сокращением всего органа.


Различные лекарственные средства, оказывающие на эффектор-ный орган действие, аналогичное действию постганглионарного во­локна (симпатического, парасимпатического и т. п.), получили на-


звание миметиков (адрено-, холиномиметики). Наряду с этим имеются и вещества, избирательно блокирующие функцию рецеп­торов постсинаптической мембраны. Они названы ганглиобло-каторами. Например, аммониевые соединения избирательно вы­ключают Н-холинорецепторы, а атропин и скополамин — М-холи-норецепторы.


Классические медиаторы выполняют не только функцию пере­датчиков возбуждения, но обладают и общебиологическим действи-


ем. К ацетилхолину наиболее чувствительна сердечно-сосуди­стая система, он вызывает и усиленную моторику пищеварительного тракта, активируя одновременно деятельность пищеварительных же­лез, сокращает мускулатуру бронхов и понижает бронхиальную секрецию. Под влиянием норадреналина происходит повыше­ние систолического и диастолического давления без изменения сер­дечного ритма, усиливаются сердечные сокращения, снижается сек­реция желудка и кишки, расслабляется гладкая мускулатура кишки и т. д. Более разнообразным диапазоном действий характеризуется адреналин. Посредством одновременной стимуляции ино-, хроно-и дромотропной функций адреналин повышает сердечный выброс. Адреналин оказывает расширяющее и антиспазматическое действие на мускулатуру бронхов, тормозит моторику пищеварительного тракта, расслабляет стенки органов, но тормозит деятельность сфин­ктеров, секрецию желез пищеварительного тракта.


В тканях всех видов животных обнаружен серотонин (5-ок-ситриптамин). В мозге он содержится преимущественно в структу­рах, имеющих отношение к регуляции висцеральных функций, на периферии продуцируется энтерохромаффинными клетками кишки. Серотонин является одним из основных медиаторов метасимпати-ческой части автономной нервной системы, участвующей преиму­щественно в нейроэффекторной передаче, и выполняет также ме-диаторную функцию в центральных образованиях. Известно три типа серотонинергических рецепторов — Д, М, Т. Рецепторы Д-типа локализованы в основном в гладких мышцах и блокируются ди-этиламидом лизергиновой кислоты. Взаимодействие серотонина с этими рецепторами сопровождается мышечным сокращением. Ре­цепторы М-типа характерны для большинства автономных ганглиев; блокируются морфином. Связываясь с этими рецепторами, передат­чик вызывает ганглиостимулирующий эффект. Рецепторы Т-типа, обнаруженные в сердечной и легочной рефлексогенных зонах, бло­кируются тиопендолом. Действуя на эти рецепторы, серотонин уча­ствует в осуществлении коронарных и легочных хеморефлексов. Серотонин способен оказывать прямое действие на гладкую муску­латуру. В сосудистой системе оно проявляется в виде констрикторных или дилататорных реакций. При прямом действии сокращается му­скулатура бронхов, при рефлекторном — изменяются дыхательный ритм и легочная вентиляция. Особенно чувствительна к серотонину пищеварительная система. На введение серотонина она реагирует начальной спастической реакцией, переходящей в ритмические со­кращения с повышенным тонусом и завершающейся торможением активности.


Для многих висцеральных органов характерной является пури-нергическая передача, названная так вследствие того, что при сти­муляции пресинаптических терминалей выделяются аденозин и ино­зин — пуриновые продукты распада. Медиатором же в этом случае является А Т Ф. Местом его локализации служат пресинаптические терминалы эффекторных нейронов метасимпатической части авто­номной нервной системы.


Выделившийся в синаптическую щель АТФ взаимодействует с пуринорецепторами постсинаптической мембраны двух типов. Пу-ринорецепторы первого типа более чувствительны к аденозину, второго — к АТФ. Действие медиатора направлено преимущественно на гладкую мускулатуру и проявляется в виде ее релаксации. В ме­ханизме кишечной пропульсии пуринергические нейроны являются главной антагонистической тормозной системой по отношению к возбуждающей холинергической системе. Пуринергические нейроны участвуют в осуществлении нисходящего торможения, в механизме рецептивной релаксин желудка, расслабления пищеводного и аналь­ного сфинктеров. Сокращения кишечника, возникающие вслед за пуринергически вызванным расслаблением, обеспечивают соответ­ствующий механизм прохождения пищевого комка.


В числе медиаторов может быть гистамин. Он широко рас­пространен в различных органах и тканях, особенно в пищевари­тельном тракте, легких, коже. Среди структур автономной нервной системы наибольшее количество гистамина содержится в постганг-лионарных симпатических волокнах. На основании ответных реак­ций в некоторых тканях обнаружены и специфические гистамино-вые (Н-рецепторы) рецепторы: Н_
I
- и Н2
-рецепторы.
Классическим действием гистамина является повышение капиллярной проницае­мости и сокращение гладкой мускулатуры. В свободном состоянии гистамин снижает кровяное давление, уменьшает частоту сердечных сокращений, стимулирует симпатические ганглии.


На межнейронную передачу возбуждения в ганглиях автономной нервной системы тормозное влияние оказывает Г А М К. Как ме­диатор она может принимать участие в возникновении пресинап-тического торможения.


Большие концентрации различных пептидов, особенно суб­станции Р, в тканях пищеварительного тракта, гипоталамуса, задних корешков спинного мозга, а также эффекты стимуляции последних и другие показатели послужили основанием считать суб­станцию Р медиатором чувствительных нервных клеток.


Помимо классических медиаторов и «кандидатов» в медиаторы, в регуляции деятельности исполнительных органов участвует еще большое число биологически активных веществ — местных гор­монов. Они регулируют тонус, оказывают корригирующее влияние на деятельность автономной нервной системы, им принадлежит су­щественная роль в координации нейрогуморальной передачи, в ме­ханизмах выделения и действия медиаторов.


В комплексе активных факторов видное место занимают про-стагландины, которых много содержится в волокнах блуждаю­щего нерва. Отсюда они выделяются спонтанно либо под влиянием стимуляции. Существует несколько классов простагландинов: Е, G, А, В. Их основное действие — возбуждение гладких мышц, угнетение желудочной секреции, релаксация мускулатуры бронхов. На сер­дечно-сосудистую систему они оказывают разнонаправленное дей­ствие: простагландины класса А и Е вызывают вазодилатацию и гипотензию, класса G— вазоконстрикцию и гипертензию.


4.3.5. Влияние автономной нервной
системы на функции тканей и органов


Главной функцией автономной нервной системы является регу­лирование процессов жизнедеятельности органов тела, согласование и приспособление их работы к общим нуждам и потребностям организма в условиях окружающей среды. Выражением этой фун­кции служит регуляция метаболизма, возбудимости и других сторон деятельности органов и самой ЦНС. В этом случае управление работой тканей, органов и систем осуществляется посредством двух типов влияний — пусковых и корригирующих.


Пусковые влияния используются в случае, если работа исполнительного органа не является постоянной, а возникает лишь с приходом к нему импульсов по волокнам автономной нервной системы. Если же орган обладает автоматизмом и его функция осуществляется непрерывно, то автономная нервная система посред­ством своих влияний может усиливать или ослаблять его деятель­ность в зависимости от потребности. Это будут корригирующие влияния. Пусковые влияния могут дополняться корригирующими.


Влияние автономной нервной системы на висцеральные функ­ции
. Все структуры и системы организма иннервируются волокнами автономной нервной системы. Многие из них имеют двойную, а полые висцеральные органы даже тройную (симпатическую, пара­симпатическую и метасимпатическую) иннервацию. Изучение роли каждой из них обычно осуществляют с помощью электрического раздражения, хирургического или фармакологического выключения, химической стимуляции и т. д.


Так, сильное раздражение симпатических волокон вызывает уча­щение сердечных сокращений, увеличение силы сокращения сердца, расслабление мускулатуры бронхов, снижение моторной активности желудка и кишечника, расслабление желчного пузыря, сокращение сфинктеров и другие эффекты (рис. 4.28). Раздражение блуждающего нерва характеризуется противоположным действием: уменьшается ритм и сила сердечных сокращений, расширяются сосуды языка, слюнных желез, половых органов, суживаются бронхи, активизи­руется работа желудочных желез, расслабляются сфинктеры моче­вого пузыря и сокращается его мускулатура (см. табл. 4.2).


Эти наблюдения послужили основанием для представления о существовании «антагонистических» отношений между симпатиче­ской и парасимпатической частями автономной нервной системы. Их взаимоотношение уподоблялось коромыслу весов, в которых подъем на определенный уровень одной чаши сопровождается сни­жением на такой же уровень другой.


Представлению «уравновешивания» симпатических влияний па­расимпатическими противоречит ряд фактов: например, слюноотде­ление стимулируется раздражением волокон симпатической и па­расимпатической природы, так что здесь проявляется согласованная реакция, необходимая для пищеварения; ряд органов и тканей снаб­жается только либо симпатическими, либо парасимпатическими во-


локнами. К таким органам относятся многие кровеносные сосуды, селезенка, мозговой слой надпочечника, некоторые экзокринные железы, органы чувств и ЦНС.


Известно, что многие внутренние органы, извлеченные из орга­низма, продолжают выполнять присущие им функции. Например, сохраняется перистальтическая и всасывательная функция кишки и т. д. Такая относительная функциональная независимость объяс­няется наличием в стенках этих органов метасимпатическои части автономной нервной системы, которая обладает собственным ней-рогенным ритмом, имеет полный набор необходимых для самосто­ятельной рефлекторной деятельности звеньев — сенсорного, ассо­циативного, эффекторного с соответствующим медиаторным обес­печением. В составе этой системы имеются собственные сенсорные элементы (механо-, хемо-, термо-, осморецепторы), которые посы­лают в свои внутренние сети информацию о состоянии иннервиру-емого органа, а также способны передавать сигналы в ЦНС. Сфера иннервации метасимпатическои части автономной нервной системы ограничена и охватывает сугубо внутренние органы и то не все. Для этих органов метасимпатическая иннервация является базовой, все звенья ее рефлекторного пути локализуются только в интраму-ральных ганглиях. Метасимпатическая часть не имеет своего цен­трального аппарата и ее эфферентные связи с центральными струк­турами опосредованы нейронами симпатической и парасимпатиче­ской частей автономной нервной системы, образующими синаптические контакты на телах и отростках метасимпатических интернейронов и эффекторных нейронов (см. рис. 4.19).


Мнение о том, что метасимпатическая часть автономной нервной системы является диффузным парасимпатическим ганглием, в ко­тором прямые синаптические контакты между преганглионарными волокнами и ганглионарными клетками являются основой для уп­равления (например, сердечной, желудочной или кишечной функ­ции), при экспериментальном рассмотрении не подтверждается. Не­состоятельно также и представление о метасимпатическои части автономной нервной системы как о третьем нейроне в эфферентном звене симпатического пути. Метасимпатическая часть автономной нервной системы — это относительно независимая самостоятельная интегративная система. Ее функцию можно уподобить микропро­цессору, расположенному в непосредственной близости от эффек­торов (гладкая мышца, всасывающий и экскретирующий эпителий, экзокринные и эндокринные элементы), которые ею контролируются и регулируются.


Невыгодность размещения в ЦНС аппарата, необходимого для постоянного и непрерывного контроля за каждой из висцеральных функций, подтверждается тем, что только метасимпатическая часть автономной нервной системы в кишечнике имеет такое же число клеток (1 • 108
), что и весь спинной мозг, а число метасимпатических нейронов, приходящихся на 1 см2
поверхности кишечника, состав­ляет около 20 000. Существование специальных местных метасим­патических механизмов регуляции функций имеет определенный


физиологический смысл. Их наличие увеличивает надежность ре­гуляции функций. Эта регуляция может происходить в случае вы­ключения связи с центральными структурами. При этом ЦНС ос­вобождается от избыточной информации.


Основная функциональная роль метасимпатической части авто­номной нервной системы состоит в осуществлении механизмов, обес­печивающих гомеостаз — относительное динамическое постоянство внутренней среды и устойчивость основных физиологических фун­кций. В отличие от нее симпатическая часть автономной нервной системы рассматривается как система тревоги, мобилизации защит­ных сил и ресурсов для активного взаимодействия с факторами среды. Задачу восстановления и поддержания этого постоянства, нарушенного в результате возбуждения симпатической части авто­номной нервной системы, берет на себя метасимпатическая и отчасти парасимпатическая части автономной нервной системы.


Автономные (вегетативные) рефлексы
. Переключение висце­ральных афферентных сигналов на эфферентные клетки может про­исходить в периферических образованиях автономной нервной си­стемы: пара-, превертебральных и интрамуральных ганглиях, на­зываемых низшими рефлекторными центрами, а также на спинальном уровне. В спинальных структурах имеется специальный интернейронный аппарат, осуществляющий первичную обработку сенсорных сигналов. Этот аппарат соединен с клетками боковых рогов спинного мозга и может согласовывать афферентные сигналы, поступающие одновременно из различных рецептивных зон при раздражении интеро- и экстероцепторов. Интеграция висцеральных и соматических сигналов не ограничивается сегментарным спинно­мозговым уровнем и в определенных условиях может осуществляться уровнями более высокого порядка (см. рис. 4.17). Их координация осуществляется в центрах, расположенных в ретикулярной форма­ции ствола мозга, мозжечке, гипоталамусе, лимбических образова­ниях и в коре большого мозга.


Процессы в автономной и соматической нервной системе тесно связаны, хотя в ответ на раздражение висцеральных афферентных волокон автономная и соматическая системы вовлекаются в разной степени. Рефлексы в этом случае разделяются на висцеро-висце-ральные, висцеросоматические и висцеросенсорные. Уместно назвать соматовисцеральный рефлекс, а также отметить, что в клинической практике существенное значение отводится еще висцеродермальным и дермовисцеральным рефлексам.


Висцеро-висцеральный рефлекс включает пути, в ко­торых возбуждение возникает и заканчивается во внутренних ор­ганах. В этом случае рефлекторные дуги могут быть разного уровня. Одни замыкаются в интрамуральных ганглиях и обеспечиваются метасимпатической иннервацией, другие — в пара- и превертеб­ральных симпатических узлах, наконец, третьи имеют спинальный и более высокий уровень замыкания.


При висцеро-висцеральном рефлексе внутренний орган может отвечать двояко: либо торможением, либо усилением функций.


К числу таких рефлексов относится классический рефлекс Гольца: механическое раздражение брыжейки вызывает замедление частоты сердечных сокращений. Другим примером служит раздражение ре­цепторов пищеварительного тракта, сопровождающееся ослаблением тонуса мышц, суживающих зрачок. Раздражение каротидной или аортальной рефлексогенных зон влечет за собой изменение интен­сивности дыхания, уровня кровяного давления, частоты сердечных сокращений.


Разновидностью висцеро-висцерального является аксон-рефлекс.
Это понятие охватывает рефлекторные процессы, осуществляющиеся по разветвлениям аксона без участия тела нервной клетки. Воз­буждение возникает в одной ветви аксона, затем переходит на другую и по ней направляется к исполнительному органу, вызывая соответствующую реакцию. Есть и другое объяснение возникновению аксон-рефлекса. Экспериментально доказано, что при возбуждении непосредственно рецепторов из рецепторных мембран выделяются биологически активные вещества типа АТФ и разнообразных пеп­тидов, обладающих вазодилататорным действием, которые вызывают соответствующий эффект.


Понятие аксон-рефлекса используется довольно широко. Им, например, объясняют механизм возникновения сосудистой реакции при раздражении кожных болевых рецепторов. Аксон-рефлекс уда­ется воспроизвести даже после удаления спинного мозга, а также дегенерации симпатических волокон, иннервирующих сосудистую стенку исследуемой области.


Висцеросоматический рефлекс также возникает при раздражении внутренних органов и в дополнение к висцеральным вызывает появление соматических реакций. Они выражаются, на­пример, в изменении текущей активности, сокращении или рас­слаблении скелетных мышц. Примером такой реакции может слу­жить торможение общей двигательной активности организма при раздражении чувствительных окончаний синокаротидной зоны, а также сокращение мышц брюшной стенки или подергивание конеч­ностей при раздражении рецепторов пищеварительного тракта.


Висцеросенсорный рефлекс осуществляется по тем же путям, что и висцеросоматический, но для его вызова необходимо продолжительное и сильное воздействие. Реакция возникает не толь­ко во внутренних органах, соматической мышечной системе, но в дополнение к этому изменяется и соматическая чувствительность. Зона повышенного восприятия обычно ограничивается участком ко­жи, иннервируемым сегментом, к которому поступают импульсы от раздражаемого висцерального органа. Механизм этого явления ос­нован на том, что висцеральные и кожные чувствительные волокна конвергируют на одних и тех же нейронах спинно-таламического пути, в промежуточных структурах происходит потеря специфич­ности информации, в результате чего ядерные структуры централь­ной нервной системы и кора большого мозга связывают возникающее возбуждение с раздражением определенной области кожной поверх­ности.


Среди рефлексов этого типа особое значение придается в и с ц е -родермальному рефлексу, при котором раздражение внут­ренних органов сопровождается изменением потоотделения, элект­рического сопротивления (электропроводимости) кожи, изменением кожной чувствительности. Вследствие сегментарной организации ав­тономной и соматической иннервации на ограниченных участках поверхности тела, топография которых различна в зависимости от того, какой орган раздражается, при заболевании внутренних органов возникает повышение тактильной и болевой чувствительности оп­ределенных областей кожи. Эти боли названы отраженными, а области их проявления — зонами Захарьина—Геда.


Существует и соматовисцеральный рефлекс, разно­видностью которого является дермовисцеральный рефлекс.
Он вы­ражается тем, что при раздражении некоторых областей поверхности тела возникают сосудистые реакции и изменения функций опреде­ленных висцеральных органов. Это явление послужило основанием для возникновения целого направления клинической медицины — рефлексотерапии.


Адаптационно-трофическая функция симпатической части ав­тономной нервной системы.
Л. А.
Орбели и сотр. провели исследо­вание функционального значения симпатической иннервации для скелетных мышц, что позволило ему сформулировать учение об адаптационно-трофическом влиянии симпатической части автоном­ной нервной системы. В этом влиянии было выделено два неразрывно связанных компонента: влияния адаптационные и влияния трофи­ческие, лежащие в основе адаптационных.


Под адаптационными понимаются влияния симпатической части автономной нервной системы, в результате которых происходит при­способление органов к выполнению тех или иных функциональных нагрузок. Сдвиги наступают благодаря тому, что симпатические вли­яния оказывают на органы трофическое действие, которое выражается в изменении скорости протекания метаболических процессов.


В 20-х годах А. Г. Гинецинский, изучая влияние симпатических волокон на скелетную мышцу лягушки, обнаружил, что утомленная до полной неспособности сокращаться мышца начинает отвечать на стимуляцию моторных нервов после раздражения ее симпатических волокон вначале слабыми, а потом все более сильными сокращени­ями (рис. 4.29). Оказалось, что при стимуляции симпатических волокон мышца приобретала способность к развитию более сильного напряжения и более длительного его поддержания даже в условиях тетанического возбуждения. В мышце в этот момент происходят укорочение хронаксии, облегчение перехода возбуждения с нерва на мышцу, повышение чувствительности к ацетилхолину, изменение упруговязких свойств и электрической проводимости, повышение потребления кислорода. В миокарде под влиянием раздражения симпатических волокон возникают изменения в потреблении кис­лорода, содержания гликогена, креатинфосфата, АТФ, актомиозина, РНК, ДНК, фосфолипидов, гуанин-, аденин-, урацилнуклеотидов в активности ряда ферментов.


Эти влияния распространяются не только на мышечную деятель­ность, но относятся к работе рецепторов, синапсов, различных от­делов ЦНС, эндокринных желез, к протеканию безусловных спин­номозговых, вазомоторных и дыхательных рефлексов, а также ус-ловнорефлекторной деятельности. Эффекты адаптационно-трофи­ческого влияния, полученные сначала при раздражении симпати­ческих волокон, полностью воспроизводятся раздражением гипота-ламической области. Следовательно, в целом организме адаптаци­онно-трофические влияния могут осуществляться рефлекторно (по­средством стимуляции рецепторов чувствительных путей), а также и путем непосредственного раздражения гипоталамических центров, нейроны которых могут возбуждаться образуемыми местно или при­носимыми с кровью биологически активными веществами. Таким образом, адаптационно-трофическое влияние симпатической части автономной нервной системы, не являясь пусковым, модулирует функциональную активность того или иного органа — рецепцию, проведение возбуждения, медиацию, сокращение, секрецию и др. и приспосабливает его к потребностям организма.


Изучение физиологических и биохимических механизмов, лежа­щих в основе регуляторных влияний симпатической части автоном­ной нервной системы на мышечную ткань, показало, что скелетные мышцы позвоночных животных не имеют специальной симпатиче­ской иннервации и ее влияния осуществляются за счет медиаторов — адреналина и норадреналина. Медиаторы достигают моторных пла­стинок и мышечных волокон путем диффузии. Эти вещества вос­станавливают и облегчают нервно-мышечную передачу, увеличива­ют выделение ацетилхолина волокном двигательного нерва. Меди­аторы участвуют также в мобилизации энергетических ресурсов клетки, оказывая влияние на различные пути метаболизма через систему цАМФ, способствуют восстановлению функции утомленной мышцы. Катехоламины могут также увеличивать силу мышечного сокращения путем усиления процессов транспорта кальция внутри клетки.


В различных органах симпатические окончания по-разному рас­положены по отношению к эффекторным клеткам и другим тканевым элементам. Например, в миокарде одни адренергические окончания


подходят непосредственно к эндотелию капилляров или их перици­там, другие — к миоцитам органа, третьи иннервируют одновре­менно и капилляры, и паренхиматозные клетки, четвертые распо­ложены свободно в межклеточном пространстве. Несмотря на такое разнообразие локализации симпатических окончаний, все клетки во всех тканях испытывают их трофическое влияние. Это связано с тем, что, помимо прямых синаптических контактов, существует еще и несинаптическая доставка медиаторов к клеткам эфферентных органов. Следовательно, адаптационно-трофическое влияние симпа­тической части автономной нервной системы может быть не только прямым, но и косвенным.


Это подтверждается тем, что, во-первых, в период относительного покоя организма в его жидких средах присутствует значительное количество норадреналина, который попадает в межклеточные про­странства, лимфу, цереброспинальную жидкость, кровь из адренер-гических синапсов и содержание его значительно возрастает при нагрузках и чрезвычайных воздействиях на организм. Во-вторых, адаптационно-трофические влияния осуществляются симпатической частью автономной нервной системы еще и через мозговое вещество надпочечников, которое иннервируется ее преганглионарными во­локнами. Это вещество выделяет в кровь адреналин и норадреналин, которые при прямом контакте с органами и тканями вызывают такие же эффекты, как и симпатические окончания. В-третьих, норадреналин и адреналин проникают через гематоэнцефалический барьер в гипоталамическую область. Здесь благодаря наличию спе­цифических рецепторов они воздействуют на передний и задний отделы, аденогипофизарную зону гипоталамуса и включают в про­цесс эндокринные железы. Гормоны этих желез способны влиять не на все виды метаболизма. В-четвертых, симпатические стимулы, поступающие к органу по нервных волокнам или с кровью, содер­жащей норадреналин и адреналин, изменяя его трофическое состо­яние, одновременно изменяют уровень чувствительности органа к гормонам. Следовательно, чувствительность органа к биологически активным веществам является еще одной мерой трофического обес­печения органов и тканей.


Учитывая действие циркулирующих в крови медиаторов на клет­ки, не соприкасающиеся с нервными окончаниями, и роль клеток, связанных с симпатическими волокнами классическими синапсами, можно представить механизм адаптационно-трофических влияний на клеточн

ые популяции следующим образом. Передатчиками вли­яния симпатического медиатора являются встроенные в мембрану клеток адренорецепторы, аденилатциклаза, цАМФ, цГМФ. Медиатор активирует эту систему посредством первичного контакта со своим рецептором. Например, норадреналин активирует аденилатциклазу через beta-адренорецепторы.


Особое значение в механизме адаптационно-трофического дей­ствия отводится в настоящее время неиропептвдам, к числу которых относятся фрагменты АКТГ, аналоги вазопрессина и окситоцина, либерины, соматостатин, энкефалины, эндорфины, вещество Р, бра-


дикинин, нейротензин, холецистокинин, их производные и другие пептиды. Эти вещества модулируют действие медиаторов на пре-синаптическом и постсинаптическом уровне, влияя на их синтез, выведение, инактивацию. Нейропептиды обладают способностью синтезироваться и проникать в нервную клетку и по ее аксонам перемещаться в пресинаптические термина™. Внутриклеточные эф­фекты ряда пептидов связаны с аденилатциклазной системой.


Адаптационно-трофическая функция убедительно демонстриру­ется в опытах с хирургическим, химическим, иммунным удалением симпатической части автономной нервной системы.


Тотальная симпатэктомия в условиях покоя не сопровождается значительными расстройствами висцеральных функций, однако сим-патэктомированные животные не могут осуществлять физические усилия, с большим трудом оправляются от кровотечений, шока, гипогликемии, плохо переносят перегревание и охлаждение. У этих животных отсутствует проявление характерных защитных реакций и показателей агрессивности: расширение зрачков, тахикардия, по­вышение притока крови к скелетным мышцам.


В отличие от симпатической влияния парасимпатической части автономной нервной системы на процессы в организме сравнительно ограничены (см. рис. 4.21). Они могут сказываться либо непосред­ственно на исполнительных органах, либо через метасимпатическую часть автономной нервной системы. В первом случае постганглио-нарный нейрон непосредственно контактирует с эффектом и вызы­ваемое им действие зависит главным образом от прямых влияний центральной нервной системы. Во втором случае преганглионарные парасимпатические волокна оканчиваются на интернейроне или мо­тонейроне функционального модуля метасимпатической части ав­тономной нервной системы, представляющего общий конечный путь для импульсов, поступающих по блуждающему и тазовому нервам (см. рис. 4.18). Здесь они взаимодействуют с импульсами местных метасимпатических сетей.


Центры регуляции висцеральных функций
. Координация дея­тельности всех трех частей автономной нервной системы осущест­вляется сегментарными и надсегментарными центрами (аппаратами) при участии коры большого мозга (см. рис. 4.7). В сложнооргани-зованном отделе промежуточного мозга — гипоталамической обла­сти, находятся ядра, имеющие непосредственное отношение к ре­гуляции висцеральных функций.


Сегментарные центры вследствие особенностей их орга­низации, закономерностей функционирования и медиации являются истинно автономными. В центральной нервной системе они нахо­дятся в спинном мозге и в стволе мозга (отдельные ядра черепных нервов), а на периферии составляют сложную систему из сплетений, ганглиев, волокон.


Надсегментарные центры расположены в головном мозге главным образом на лимбико-ретикулярном уровне. Эти интегра-тивные аппараты мозга обеспечивают целостные формы поведения, адаптацию к меняющимся условиям внешней и внутренней среды.


Задачей этих аппаратов является организация деятельности функ­циональных систем, ответственных за регуляцию психических, со­матических и висцеральных функций.


Все эти сложные механизмы регуляции деятельности висцераль­ных органов и систем условно объединены многоэтажной иерархи­ческой структурой. Ее базовым, или первым, структурным уровнем являются внутриорганные рефлексы, замыкающиеся в интрамуральных ганглиях
и имеющие метасимпатическую природу. Строго говоря, эти ганглии являются низшими рефлекторными цен­трами. Второй структурный уровень представлен экстра-муральными паравертебральными ганглиями брыжеечных и чрев­ного сплетений.
Оба этих низших этажа обладают отчетливо вы­раженной автономностью и могут осуществлять регуляцию деятельности висцеральных органов и тканей относительно незави­симо от центральной нервной системы. Центры спинного мозга
и ствола
представляют третий структурный уровень. На­конец, гипоталамус, ретикулярная формация, лимбическая систе­ма, мозжечок, новая кора
венчают пирамиду иерархии (ч е т в е р -тый структурный уровень).


Каждый следующий более высокий уровень регуляции определяет и более высокую степень интеграции висцеральных функций. На­пример, тонус сосудов отдельных органов или областей тела нахо­дится под контролем спинальных симпатических центров, в то время как общий уровень артериального давления находится в компетенции сосудодвигательного центра продолговатого мозга. Что же касается участия в целом сердечно-сосудистой системы в общих реакциях организма, координации взаимодействия висцеральных и соматиче­ских систем в сложных поведенческих актах, то они координируются и регулируются высшими этажами нервной системы, т. е. верхушкой условной иерархической пирамиды.


Спинальные центры
. В шейной и в начале грудной части (последний шейный, Iи IIгрудные сегменты) располагаются тела преганглионарных симпатических нейронов, иннервирующие глад­кие мышцы глазного яблока: мышцу, расширяющую зрачок, глаз­ничную часть круговой мышцы глаза, одну из мышц верхнего века (см. рис. 4.18). Это образование спинного мозга носит название спиноцилиарного центра.
Вторые нейроны рассматриваемого эффе­рентного пути лежат в верхнем шейном симпатическом узле, а их постганглионарные волокна заканчиваются в мышцах глаза. Раз­дражение центра вызывает расширение зрачка (мидриаз), выпячи­вание глазного яблока (экзофтальм), раскрытие глазной щели. Раз­рушение центра или перерезка постганглионарных симпатических волокон вызывает возникновение синдрома Бернара—Горнера — сужение зрачка (миоз), западение глазного яблока (энофтальм), сужение глазной щели.


Пять верхних грудных сегментов служат местом локализации симпатических нейронов, иннервирующих сердце и бронхи. Эффек-торные нейроны этого пути располагаются в звездчатом ганглии или в узлах пограничного симпатического ствола. Стимуляция этих


волокон и клеток вызывает учащение и усиление сердечных сокра­щений и расширение бронхов.


На уровне всех грудных, а также верхних поясничных сегментов спинного мозга, т. е. на всем протяжении симпатического ядра, расположены нейроны, иннервирующие сосуды и потовые железы. Характерной чертой этих скоплений нейронов является топография клеточных тел и определяемая ею зона иннервации. Поражение клеточных скоплений отдельных сегментов, как и их разрушение, сопровождается исчезновением потоотделения.


Крестцовые отделы спинного мозга занимают парасимпатические нейроны. Их совокупности образуют ряд центров рефлексов моче­испускания, дефекации, эрекции и т. д. Поражение этих центров ведет к выпадению названных функций.


Стволовые центры
. Располагающиеся в продолговатом моз­ге, мосте и среднем мозге скопления парасимпатических нейронов образуют центры, в которых осуществляется замыкание рефлексов сосания, жевания, глотания, чиханья, кашля, рвоты, слюноотделе­ния, слезотечения, торможения сердечной деятельности, секреции желудочных желез и т. д. Эти влияния передаются исполнительным структурам по волокнам блуждающего, языкоглоточного, лицевого и глазодвигательного нервов.


Расположение этих центров непостоянно, составляющие их груп­пы нейронов небольшие и не различаются морфологически. Кроме того, клетки, управляющие какой-либо определенной функцией, располагаются не всегда вместе и рядом. Следовательно, понятие «центр», означающее функционально связанные совокупности ней­ронов, расположенные в одном или нескольких структурах ЦНС и обеспечивающие существование целостной реакции организма или регуляцию определенной функции, может использоваться в этом случае с определенными допущениями. В продолговатом мозге в ядрах блуждающего нерва замыкаются рефлексы с аортальной и синокаротидной рефлексогенных зон, рефлекс снижения частоты сердечных сокращений при раздражении интероцепторов брюшной полости (рефлекс Гольца), глазосердечный рефлекс (рефлекс Аш-нера).


Часто рефлекторные реакции сердца проявляются сопряженно с изменением сосудистого тонуса, что определяется наличием связей между нейронами, которые регулируют сердечную деятельность и сосудистый тонус. Волокна блуждающего нерва несут импульсы, управляющие деятельностью системы дыхания, пищеварения. Цен­тры, регулирующие работу слюнных желез, осуществляют свое вли­яние по нервным волокнам, следующим в составе языкоглоточного и лицевого нервов, а центры зрачкового рефлекса и рефлекса ак­комодации глаза располагаются в среднем мозге, передних буграх четверохолмия. Импульсы к слезной железе следуют по веточкам лицевого нерва.


Сосудодвигательный центр
— морфофункциональное образова­ние продолговатого мозга, играющее ведущую роль в поддержании тонуса сосудов и регуляции кровяного давления. Он координирует


и деятельность спинномозгового симпатического центра, посылаю­щего сосудосуживающие импульсы к сосудистой стенке. Тонус со-судодвигательного центра и, следовательно, уровень общего арте­риального давления регулируется импульсами, возникающими в сосудистых рефлексогенных зонах. Сосудодвигательный центр вхо­дит в состав ретикулярной формации продолговатого мозга и поэтому получает многочисленные коллатеральные возбуждения от всех спе­цифических проводящих путей, что постоянно поддерживает его в состоянии тонического возбуждения.


В ответах всего организма сосудодвигательный центр выступает в качестве исполнительного органа, через который в значительной мере реализуются супрабульбарные влияния на гемодинамику. Влияние самого центра осуществляется через спинной мозг, периферические симпатические образования, блуждающие нервы и обусловливает преимущественно системные изменения гемодинамики. Считают, что в любых случаях нейрогенная гипертензия обусловлена стойким по­вышением возбудимости бульварных сосудосуживающих структур.


Рефлекторные процессы в ядерных образованиях спинного, про­долговатого, среднего мозга и моста находятся под постоянным влиянием гипоталамуса.


Гипоталамические центры
. Гипоталамусу принадлежит ведущая роль в осуществлении многих функций целого организма и прежде всего постоянства внутренней среды. В нем осуществляется интеграция и приспособление различных висцеральных систем к целостной деятельности организма.


В гипоталамусе принято различать три нерезко ограниченные области скопления ядер: переднюю, среднюю и заднюю. Гипота­ламус обладает хорошо развитой сложной системой афферентных и эфферентных путей, а также тесно связан со структурами головного мозга — таламусом, лимбической системой, ретикуляр­ной формацией ствола мозга. Особое значение имеют обширные сосудистые и нервные связи с гипофизом, в результате чего осу­ществляется интегрирование нервной и гуморальной регуляции висцеральных функций. Гипоталамусом она осуществляется двумя путями: парааденогипофизарным (минуя аденогипофиз) и транс-аденогипофизарным (через аденогипофиз). Такие многочисленные связи гипоталамуса с другими образованиями мозга способствуют генерализации возбуждения, возникающего в его нейронах. Воз­буждение в первую очередь распространяется на лимбические структуры мозга и через ядра таламуса на передние отделы коры большого мозга. Результаты раздражения структур гипоталамуса определяются его контактами с ретикулярной формацией, симпа­тическими и парасимпатическими центрами, а также усилением секреции гормонов гипофиза, действующих непосредственно или опосредованно через другие эндокринные железы. Следовательно, при стимуляции гипоталамуса возникают сложные реакции, в которых нервный компонент дополняется гормональным. Регуляция гипоталамо-гипофизарной системой висцеральных функций осуще­ствляется по принципу обратной связи.


Активация гипоталамических ядер зависит не только от поступ­ления к ним возбуждающих влияний из других структур нервной системы, но и избирательной чувствительности их клеток к содер­жанию тех или иных веществ в крови, изменению температуры крови. Например, гипоталамические нейроны чувствительны к ма­лейшим отклонениям рН крови, напряжению 02
, СO2, содержанию ионов, особенно калия и натрия. В супраоптическом ядре
имеются клетки, избирательно чувствительные к изменению осмотического давления крови, в вентромедиальном ядре
— к содержанию глю­козы, в переднем гипоталамусе — половых органов. Таким образом, клетки гипоталамуса наряду с другими свойствами выполняют ре-цепторные функции, воспринимая нарушения гомеостаза. Они об­ладают способностью трансформировать гуморальные изменения внутренней среды в нервный процесс. Кроме того, они могут изби­рательно активироваться нервными импульсами из соответствующих органов.


При стимуляции гипоталамуса возникает комплекс сложных ре­акций, в которых нервный компонент дополняется гормональным. Так, раздражение ядер задней группы
характеризуется эффектами, аналогичными раздражению симпатической части автономной нер­вной системы — расширяются зрачки и глазная щель, возрастает частота сердечных сокращений, повышается кровяное давление, тор­мозится двигательная активность пищеварительного тракта, в крови возрастает концентрация адреналина и норадреналина. Разрушение этой области приводит к гипергликемии, ожирению, нарушению терморегуляции.


Раздражение ядер передней группы
сопровождается реакциями, подобными в определенной мере раздражению парасимпатической части автономной нервной системы, — сужением зрачков и глазных щелей, урежением частоты сердечных сокращений, снижением ар­териального давления, усилением двигательной активности желу­дочно-кишечного тракта. Ядра этой группы участвуют в механизме терморегуляции.


Функция ядер средних групп
состоит преимущественно в регу­ляции метаболизма. Разрушение, например, вентромедиальных ядер сопровождается повышением потребления пищи (гиперфагия) и ожи­рением, двустороннее разрушение латеральных ядер, напротив, при­водит к полному отказу от пищи. Эти показатели явились основанием расценивать вентромедиальные ядра как структуры, связанные с насыщением, а латеральные ядра — с голодом. Наибольшую по­требность в воде (полидипсия) регистрировали при раздражении паравентрикулярного ядра
гипоталамуса. При хронической стиму­ляции ядер этой группы у животных возникают атеросклеротические изменения сосудов.


Стимуляция ядер гипоталамуса независимо от того, к какой топографической группе они относятся, непременно сопровождается сложными гормональными реакциями: увеличиваются выделение тропных гормонов передней доли гипофиза, секреция задней доли. В ответных реакциях организма при раздражении разных областей


гипоталамуса участвуют практически все висцеральные органы, из­меняются поведенческие реакции, эмоциональная деятельность це­лого организма. Используя нейротропные препараты, можно изби­рательно блокировать гипоталамические механизмы формирования состояния голода, жажды, аппетита, страха, половых и агрессивно-оборонительных реакций.


Гипоталамус связан прямыми нервными путями и через рети­кулярную формацию ствола мозга с подкорковыми ядрами, моз­жечком, корой больших полушарий. Его деятельность постоянно контролируется высшими центрами ЦНС. Гипоталамус занимает ведущее место в регуляции функций организма и прежде всего постоянства внутренней среды. Под его контролем находится фун­кция автономной нервной системы и эндокринных желез.


Лимбическая система
. Связь функций лимбической си­стемы с работой внутренних органов послужила основанием для обозначения совокупности ее структур термином «висцеральный мозг».


Лимбическая система обеспечивает взаимодействие экстероцеп-тивных (обонятельных, слуховых и др.) и интероцептивных воздей­ствий. Она регулирует висцерально-гормональные функции, направ­ленные на обеспечение различных форм деятельности, таких, как пищевое, сексуальное, оборонительное поведение, регулирует сис­темы, обеспечивающие сон и бодрствование, внимание, эмоциональ­ную сферу, процессы памяти, осуществляя, таким образом, сома-товисцеральную интеграцию (подробнее см. раздел 4.2.3).


Мозжечок
. Наряду с регуляцией двигательной соматической сферы мозжечок контролирует течение висцеральных процессов. При его раздражении могут быть воспроизведены практически все реакции, возникающие при возбуждении симпатической нервной системы — расширение зрачка, сужение сосудов, сокращение во­лосяных мышц, учащение сердечного ритма. После удаления моз­жечка возникает угнетение периодической моторной деятельности пищеварительного тракта, секреторной функции кишечных желез и т. д. Это указывает на то, что мозжечок благодаря наличию активирующего и тормозного механизмов может оказывать в целом организме стабилизирующее влияние на деятельность висцеральных органов посредством корригирования висцеральных рефлексов.


Ретикулярная формация
. Основной ролью ее нисходя­щей части по отношению к деятельности автономной нервной сис­темы является повышение активности нервных центров, связанных с висцеральными функциями. Ретикулярная формация оказывает на них тонизирующее влияние, обеспечивая высокий уровень их активности. Проводником этих влияний на периферию является симпатическая часть автономной нервной системы. В поддержании активности ретикулярных механизмов значительную роль играют гуморальные раздражения, по отношению к которым она обладает высокой чувствительностью. Сами же функциональные влияния ре­тикулярной формации сказываются и на эндокринном компоненте регуляции поведения висцеральных систем. Действительно при сти-


муляции ретикулярной формации среднего и промежуточного мозга усиливается выброс гипофизарных гормонов, а при нарушении этих ретикулярных образований возникают эндокринные расстройства.


Кора большого мозга
. Еще в середине прошлого столетия благодаря исследованиям В. Я. Данилевского, В. М. Бехтерева, Н. А. Миславского стало известно, что раздражение или выключе­ние отдельных участков коры большого мозга влечет за собой из­менение состояний внутренних органов. При этом могли быть за­регистрированы противоположные по направленности изменения висцеральных функций типа повышения или снижения кровяного давления, усиления или ослабления моторной активности органов пищеварения.


У человека раздражение коры кзади от центральной (роландовой) борозды и вблизи латеральной (сильвиевой) борозды вызывает ощу­щение тошноты, рвоты, возникают позывы на дефекацию. Раздра­жение точек в теменных и других долях сопровождается изменением сердечной деятельности, артериального давления, дыхательного рит­ма, слюноотделения, желудочной и кишечной моторики.


Особое значение в регуляции функций в настоящее время при­дается лобным долям коры большого мозга, поскольку при их сти­муляции можно зарегистрировать изменение практически всех вис­церальных процессов. Именно из-за этого передние отделы больших полушарий считаются высшими центрами автономной иннервации. Однако наряду с этим существует определенная специализация не­которых полей коры. Так, в ее двигательных областях находится представительство тех висцеральных органов, деятельность которых связана со скелетно-мышечной активностью. Посредством такой ор­ганизации достигается необходимая для нормальной жизнедеятель­ности интеграция соматических и висцеральных процессов.


Исследования В. Н. Черниговским интероцепции и представи­тельства в коре большого мозга висцеральных систем показали, что в определенных условиях информация о работе внутренних органов может достигать высших отделов ЦНС. Тем самым было экспери­ментально подтверждено выдвинутое И. П. Павловым понятие о кор­ковом представительстве интероцептивного анализатора.


Известно, что в определенных условиях у человека гипнотиче­ским внушением можно вызвать изменение сердечного ритма, ва-зоконстрикцию и вазодилатацию, усиление пото- и мочеотделения, изменение метаболизма.


К. М. Быков обосновал возможность образования висцеральных условных рефлексов влиянием коры большого мозга на деятельность внутренних органов. Это легло в основу концепции существования кортико-висцеральных отношений. Сейчас они рассматриваются не более как способы модуляции корой деятельности подкорковых структур, имеющих непосредственное отношение к регуляции внут­ренней среды организма.


Г л а в а 5. ГОРМОНАЛЬНАЯ РЕГУЛЯЦИЯ


ФИЗИОЛОГИЧЕСКИХ ФУНКЦИЙ


5.1. ПРИНЦИПЫ ГОРМОНАЛЬНОЙ РЕГУЛЯЦИИ


Все процессы жизнедеятельности организма строго согласованы между собой по скорости, времени и месту протекания. В организме человека эту согласованность осуществляют внутриклеточные и меж­клеточные механизмы регуляции, важнейшую роль в которых иг­рают гормоны и нейромедиаторы. Специфические регуляторы, ко­торые сек ретируются эндокринными железами в кровь или лимфу, а затем попадают на клетки-мишени, называют гормонами. Ве­щества, которые выделяются из пресинаптических нервных окон­чаний в синаптическую щель и вызывают биологический эффект, связываясь с рецепторами постсинаптической мембраны, называют нейромедиаторами.


Функциональная активность эндокринной железы может регу­лироваться «субстратом», на который направлено действие гормона. Так, глюкоза стимулирует секрецию инсулина из beta-клеток панк­реатических островков (островки Лангерганса), а инсулин понижает концентрацию глюкозы в крови, активируя ее транспорт в мышцы и печень. Это происходит следующим образом. Глюкоза входит в beta-клетки поджелудочной железы через переносчик глюкозы и сразу же фосфорилируется глюкокиназой, после чего вовлекается в гли­колиз. Образующийся при этом АТФ ингибирует калиевые каналы, вследствие чего снижается мембранный потенциал beta-клеток и ак­тивируются потенциалзависимые кальциевые каналы. Входящий в beta-клетку кальций стимулирует слияние везикул, содержащих ин­сулин, с плазматической мембраной и секрецию инсулина. Инсулин активирует перенос глюкозы в печень, сердце и скелетные мышцы, вследствие чего уровень глюкозы в крови снижается, замедляется ее вход в beta-клетки и уменьшается секреция инсулина (рис. 5.1).


Такой же механизм лежит в основе секреции паратгормона (паратиреоидный гормон, паратирин) и кальцитонина. Оба гормона влияют на концентрацию кальция и фосфатов в крови. Паратирео­идный гормон вызывает выход минеральных веществ из кости и стимулирует реабсорбцию кальция в почках и кишечнике, в ре­зультате чего возрастает концентрация кальция в плазме крови. Кальцитонин, напротив, стимулирует поступление кальция и фос­фатов в костную ткань, в результате чего концентрация минераль­ных веществ в крови снижается. При высокой концентрации кальция


в крови подавляется секреция паратиреоидного гормона и стимули­руется секреция кальцитонина. В случае снижения концентрации кальция в крови секреция паратиреоидного гормона усиливается, а кальцитонина — ослабляется.


Такая регуляция постоянства внутренней среды организма, про­исходящая по принципу отрицательной обратной связи, очень эффективна для поддержания гомеостаза, однако не может вы­полнять все задачи адаптации организма. Например, кора надпо­чечников продуцирует стероидные гормоны в ответ на голод, болезнь, эмоциональное возбуждение и т. п. Чтобы эндокринная система могла «отвечать» на свет, звуки, запахи, эмоции и т. д., должна существовать связь между эндокринными железами и нер­вной системой.


Основные связи между нервной и эндокринной системами регу­ляции осуществляются посредством взаимодействия гипоталамуса и гипофиза (рис. 5.2). Нервные импульсы, приходящие в гипоталамус, активируют секрецию так называемых рилизинг-факторов (либеринов и статинов): тиреолиберина, соматолиберина, пролактолиберина, гонадолиберина и кортиколиберина, а также со-матостатина и пролактостатина. Мишенью для либеринов и статинов,


секретируемых гипоталамусом, является гипофиз. Каждый из ли-беринов взаимодействует с определенной популяцией клеток гипо­физа и вызывает в них синтез соответствующих тропинов: ти-реотропина, соматотропного гормона (соматотропин — гормон рос­та), пролактина, гонадотропного гормона, (гонадотропины — лютеинизирующий и фолликулостимулирующий), а также адрено-кортикотропного гормона (АКТГ, кортикотропин). Статины оказы­вают на гипофиз влияние, противоположное действию либеринов, — подавляют секрецию тропинов. Тропины, секретируемые гипофизом, поступают в общий кровоток и, попадая на соответствующие железы, активируют в них секреторные процессы.


Молекула соматолиберина является самой крупной среди либе­ринов, она состоит из 15 аминокислотных остатков; самая маленькая


молекула — трипептид — у тиреолиберина. Молекулы тропинов, образующихся в гипофизе, содержат от 13 до 198 аминокислотных остатков.


Регуляция деятельности гипофиза и гипоталамуса, кроме сигна­лов, идущих «сверху вниз», осуществляется гормонами «исполни­тельных» желез (рис. 5.3). Эти «обратные» сигналы поступают в гипоталамус и затем передаются в гипофиз, что приводит к изме­нению секреции соответствующих тропинов. После удаления или атрофии эндокринной железы стимулируется секреция соответству­ющего тропного гормона; при гиперфункции железы секреция со­ответствующего тропина подавляется.


Обратные связи не только позволяют регулировать концентрацию гормонов в крови, но и участвуют в дифференцировке гипоталамуса в онтогенезе. Образование половых гормонов в женском организме происходит циклически, что объясняется циклической секрецией гонадотропных гормонов. Синтез этих гормонов контролируется ги­поталамусом, образующим рилизинг-фактор этих тропинов (гона-


долиберин). Если самке пересадить гипофиз самца, то пересаженный гипофиз начинает функционировать циклично. Половая дифферен-цировка гипоталамуса происходит под действием андрогенов. Если самца лишить половых желез, продуцирующих андрогены, то ги­поталамус будет дифференцироваться по женскому типу.


В железах внутренней секреции иннервированы, как правило, только сосуды, а эндокринные клетки изменяют свою биосинтети­ческую и секреторную активность лишь под действием метаболитов, кофакторов и гормонов, причем не только гипофизарных. Так, ангиотензин IIстимулирует синтез и секрецию альдостерона. От­метим также, что некоторые гормоны гипоталамуса и гипофиза могут образовываться не только в этих тканях. Например, сомато-статин (гормон гипоталамуса, ингибирующий образование и секре­цию гормона роста) обнаружен также в поджелудочной железе, где он подавляет секрецию инсулина и глюкагона.


Большинство нервных и гуморальных путей регуляции сходится на уровне гипоталамуса и благодаря этому в организме образуется единая нейроэндокринная регуляторная система. К клеткам гипо­таламуса подходят аксоны нейронов, расположенных в коре больших полушарий и подкорковых образованиях. Эти аксоны секретируют различные нейромедиаторы, оказывающие на секреторную актив­ность гипоталамуса как активирующее, так и тормозное влияние. Поступающие из мозга нервные импульсы гипоталамус «превращает» в эндокринные стимулы, которые могут быть усилены или ослаблены в зависимости от гуморальных сигналов, поступающих в гипоталамус от желез и тканей, подчиненных ему.


Тропины, образующиеся в гипофизе, не только регулируют де­ятельность подчиненных желез, но и выполняют самостоятельные эндокринные функции. Например, пролактин оказывает лактогенное действие, а также тормозит процессы дифференцировки клеток, повышает чувствительность половых желез к гонадотропинам, сти­мулирует родительский инстинкт. Кортикотропин является не только стимулятором стероидогенеза, но и активатором липолиза в жировой ткани, а также важнейшим участником процесса превращения в мозге кратковременной памяти в долговременную. Гормон роста может стимулировать активность иммунной системы, обмен липидов, Сахаров и т. д.


В задней доле гипофиза (нейрогипофиз) депонируются антиди­уретический гормон (вазопрессин) и окситоцин (см. рис. 5.3). Первый вызывает задержку воды в организме и повышает тонус сосудов, второй стимулирует сокращение матки при родах и секрецию молока. Оба гормона синтезируются в гипоталамусе, затем транспортируются по аксонам в заднюю долю гипофиза, где депонируются и потом секретируются в кровь.


Характер процессов, протекающих в ЦНС, во многом определя­ется состоянием эндокринной регуляции. Так, андрогены и эстрогены формируют половой инстинкт, многие поведенческие реакции. Оче­видно, что нейроны, точно так же как и другие клетки нашего организма, находятся под контролем гуморальной системы регуля-


ции. Нервная система, эволюционно более поздняя, имеет как уп­равляющие, так и подчиненные связи с эндокринной системой. Эти две регуляторные системы дополняют друг друга, образуют функ­ционально единый механизм, что обеспечивает высокую эффектив­ность нейрогуморальной регуляции, ставит ее во главе систем, со­гласующих все процессы жизнедеятельности в многоклеточном ор­ганизме.


5.2. ЖЕЛЕЗЫ ВНУТРЕННЕЙ СЕКРЕЦИИ


Железами внутренней секреции, или эндокринными железами, являются специализированные органы, которые выделяют образу­ющиеся в них продукты секреции непосредственно в кровь или тканевую жидкость. В настоящее время к эндокринным железам относят гипофиз, щитовидную железу, околощитовидные железы, корковое и мозговое вещество надпочечников, островковый аппарат поджелудочной железы, половые железы, тимус, и эпифиз. Эндок­ринной активностью обладает также плацента. Кроме того, эндок­ринные клетки могут присутствовать в некоторых других органах и тканях, в частности в пищеварительном тракте, почках, сердечной мышце, вегетативных ганглиях. Эти клетки образуют так называ­емую диффузную эндокринную систему. Общей функцией для всех желез внутренней секреции является выработка гормонов. Термин «гормон» происходит от греческого слова hormae, что означает «воз­буждаю, побуждаю». Первыми веществами, которые получили на­звание гормонов, были секретин и гастрин; их открытие произошло соответственно в 1902 и 1905 гг. К настоящему времени открыто несколько десятков гормонов.


5.2.1. Методы исследования


Для изучения функций желез внутренней секреции используются различные экспериментальные и клинические методы исследования. К наиболее важным из них следует отнести следующие.


1. Изучение последствий удаления (экстирпации) эндокринных желез. После удаления какой-либо эндокринной железы возникает комплекс расстройств, обусловленных выпадением регуляторных эф­фектов тех гормонов, которые вырабатываются в этой железе. На­пример, предположение о наличии эндокринных функций у подже­лудочной железы нашло подтверждение в опытах И. Меринга и О. Минковского (1889), показавших, что ее удаление у собак при­водит к выраженной гипергликемии и глюкозурии; животные по­гибали в течение 2—3 нед после операции на фоне явлений тяжелого сахарного диабета. В последующем было установлено, что эти из­менения возникают из-за недостатка инсулина — гормона, образу­ющегося в островковом аппарате поджелудочной железы.


Вследствие травматичности оперативного вмешательства вместо хирургического удаления эндокринной железы может быть исполь-


зовано введение химических веществ, нарушающих их гормональ­ную функцию. Например, введение животным аллоксана нарушает функцию beta-клеток поджелудочной железы, что приводит к развитию сахарного диабета, проявления которого практически идентичны расстройствам, наблюдаемым после экстирпации поджелудочной же­лезы.


2. Наблюдение эффектов, возникших при имплантации желез. У животного с удаленной эндокринной железой можно ее имплан­тировать заново в хорошо васкуляризированную область тела, на­пример под капсулу почки или в переднюю камеру глаза. Такая операция называется реимплантацией. Для ее проведения обычно используют эндокринную железу, полученную от животного-донора. После реимплантации постепенно восстанавливается уровень гор­монов в крови, что приводит к исчезновению нарушений, возникших ранее в результате дефицита этих гормонов в организме. Например, Бертольдом (1849) было показано, что у петухов пересадка половых желез в брюшную полость после кастрации предотвращает развитие посткастрационного синдрома. Возможна также пересадка эндок­ринной железы животному, у которого операция экстирпации ранее не производилась. Последнее может быть использовано для изучения эффектов, возникающих при избытке гормона в крови, так как его секреция в данном случае осуществляется не только собственной эндокринной железой животного, но и имплантированной.


3. Изучение эффектов, возникших при введении экстрактов эн­докринных желез. Нарушения, возникшие после хирургического удаления эндокринной железы, могут быть откорректированы по­средством введения в организм достаточного количества экстракта данной железы или индивидуального гормона.


4. Использование радиоактивных изотопов. Иногда для исследо­вания функциональной активности эндокринной железы может быть использована ее способность захватывать из крови и накапливать определенное соединение. Известно, например, что щитовидная же­леза активно поглощает йод, который затем используется для синтеза тироксина и трийодтиронина. При гиперфункции щитовидной же­лезы накопление йода усиливается, при гипофункции наблюдается обратный эффект. Интенсивность накопления йода может быть оп­ределена путем введения в организм радиоактивного изотопа 131
I
с последующей оценкой радиоактивности щитовидной железы. В ка­честве радиоактивной метки могут быть введены также соединения, которые используются для синтеза эндогенных гормонов и включа­ются в их структуру. В последующем можно определить радиоак­тивность различных органов и тканей и оценить таким образом распределение гормона в организме, а также найти его органы-ми­шени.


5. Определение количественного содержания гормона. В ряде случаев для выяснения механизма какого-либо физиологического эффекта целесообразно сопоставить его динамику с изменением количественного содержания гормона в крови или в другом иссле­ дуемом материале.


К наиболее современным относятся методы радиоиммунологиче­ского определения концентрации гормонов в крови. Эти методы основаны на том, что меченный радиоактивной меткой гормон и гормон, содержащийся в исследуемом материале, конкурируют меж­ду собой за связывание со специфическими антителами: чем больше в биологическом материале содержится данного гормона, тем меньше свяжется меченых молекул гормона, так как количество гормон-связывающих участков в образце постоянно.


6. Важное значение для понимания регуляторных функций желез внутренней секреции и диагностики эндокринной патологии имеют клинические методы исследования. К ним относятся диаг­ностика типичных симптомов избытка или недостатка того или иного гормона, использование различных функциональных проб, рентгенологические, лабораторные и другие методы исследо­вания.


5.2.2. Гипофиз


В гипофизе выделяют переднюю (аденогипофиз) и заднюю (нейрогипофиз) доли. У многих животных представлена также промежуточная доля (parsintermedia), однако у человека она практически отсутствует. В аденогипофизе вырабатывается 6 гор­монов, из них 4 являются тройными (адренокортикотропный гор­мон, или кортикотропин, тиреотропный гормон, или тиреотропин, и 2 гонадотропина — фолликулостимулирующий и лютеинизиру-ющий гормоны), а 2 — эффекторными (соматотропный гормон, или соматотропин, и пролактин). В нейрогипофизе происходит депонирование окситоцина и антидиуретического гормона (вазо-прессин). Синтез этих гормонов осуществляется в супраоптическом и
паравентрикулярном ядрах гипоталамуса. Нейроны, составляю­щие эти ядра, имеют длинные аксоны, которые в составе ножки гипофиза образуют гипоталамо-гипофизарный тракт и достигают задней доли гипофиза. Синтезированные в гипоталамусе окситоцин и
вазопрессин доставляются в нейрогипофиз путем аксонального транспорта с помощью специального белка-переносчика, получив­шего название «нейрофизин».


Гормоны аденогипофиза.
Адренокортикотропный гор­мон, или кортикотропин. Основной эффект этого гормона выражается в стимулирующем действии на образование глюкокор-тикоидов в пучковой зоне коркового вещества надпочечников. В меньшей степени выражено влияние гормона на клубочковую и сетчатую зоны. Кортикотропин ускоряет стероидогенез и усиливает пластические процессы (биосинтез белка, нуклеиновых кислот), что приводит к гиперплазии коркового вещества надпочечников. Ока­зывает также вненадпочечниковое действие, проявляющееся в сти­муляции процессов липолиза, анаболическом влиянии, усилении пигментации. Влияние на пигментацию обусловлено частичным сов­падением аминокислотных цепей кортикотропина и меланоцитости-мулирующего гормона.


Выработка кортикотропина регулируется кортиколиберином ги­поталамуса.


Тиреотропный гормон, или тиреотропин. Под влия­нием тиреотропина стимулируется образование в щитовидной железе тироксина и трийодтиронина. Тиреотропин увеличивает секреторную активность тиреоцитов за счет усиления в них пластических про­цессов (синтез белка, нуклеиновых кислот) и увеличенного погло­щения кислорода. В результате ускоряются практически все стадии биосинтеза гормонов щитовидной железы. Под влиянием тиреотро­пина активируется работа «йодного насоса», усиливаются процессы йодирования тирозина. Кроме того, увеличивается активность про-теаз, расщепляющих тиреоглобулин, что способствует высвобожде­нию активного тироксина и трийодтиронина в кровь.


Выработка тиреотропина регулируется тиреолиберином гипота­ламуса.


Гонадотропные гормоны, или гонадотропины. В аденогипофизе вырабатывается 2 гонадотропина — фолликуло-стимулирующий (ФСГ) и лютеинизирующий (ЛГ). ФСГ действует на фолликулы яичников, ускоряя их созревание и подготовку к овуляции. Под влиянием ЛГ происходит разрыв стенки фолликула (овуляция) и образуется желтое тело. Л Г стимулирует выработку прогестерона в желтом теле. Оба гормона влияют также на мужские половые железы. ЛГ действует на яички, ускоряя выработку тес­тостерона в интерстициальных клетках — гландулоцитах (клетки Лейдига).


ФСГ действует на клетки семенных канальцев, усиливая в них процессы сперматогенеза.


Регуляция секреции гонадотропинов осуществляется гипотала-мическим гонадолиберином. Существенное значение имеет также механизм отрицательной обратной связи — секреция обоих гормонов тормозится при повышенном содержании эстрогенов и прогестерона в крови; выработка ЛГ уменьшается при увеличении продукции тестостерона.


Соматотропный гормон, или соматотропин. Является гормоном, специфическое действие которого проявляется в усилении процессов роста и физического развития. Органами-мишенями для него являются кости, а также образования, богатые соединительной тканью, — мышцы, связки, сухожилия, внутренние органы. Сти­муляция процессов роста осуществляется за счет анаболического действия соматотропина. Последнее проявляется в усилении транс­порта аминокислот в клетку, ускорении процессов биосинтеза белка и нуклеиновых кислот. Одновременно происходит торможение ре­акций, связанных с распадом белка. Вероятной причиной этого эффекта является наблюдающаяся под действием соматотропина усиленная мобилизация жира из жировых депо с последующим использованием жирных кислот в качестве основного источника энергии. В связи с этим определенное количество белка сберегается от энергетических трат, поэтому скорость катаболизма белков сни­жается. Поскольку в этой ситуации процессы синтеза белка преоб-


ладают над процессами его распада, в организме происходит задерж­ка азота (положительный азотистый баланс). Благодаря анаболиче­скому действию соматотропин стимулирует активность остеобластов и способствует интенсивному образованию белковой матрицы кости. Кроме того, усиливаются также процессы минерализации костной ткани, в результате чего в организме происходит задержка кальция и фосфора.


Несмотря на то что в организме соматотропин активно стиму­лирует образование костной и хрящевой ткани, при введении данного гормона в изолированную культуру клеток заметного усиления роста последних обычно не наблюдается. В связи с этим возникло пред­положение, что стимуляция процессов роста, наблюдаемая в усло­виях целостного организма, не является результатом прямого дей­ствия этого гормона. Скорее всего под действием соматотропина происходит образование определенных посредников, влияние кото­рых и приводит к анаболическому эффекту. Данные посредники получили название «соматомедины».
К настоящему времени иден­тифицировано по крайней мере 4 различных соматомедина. Все они по своей химической структуре являются белками, образование которых происходит в печени под влиянием соматотропина. Пока­зано, что нарушение синтеза соматомединов может приводить к задержке роста и физического развития, хотя концентрация сома­тотропина в плазме крови при этом может оставаться нормальной или даже повышенной. Влияние соматомединов на углеводный обмен соответствует эффектам, наблюдаемым при введении инсулина, по­этому их называют также «инсулиноподобные факторы роста».


Соматотропин обладает выраженным действием на углеводный обмен. Под влиянием данного гормона увеличивается содержание глюкозы в плазме крови. Механизм данного эффекта имеет не­сколько объяснений. Прежде всего тормозится использование глю­козы на энергетические траты, поскольку, как указывалось выше, основным источником энергии в данных условиях являются жирные кислоты. Кроме того, гормон роста тормозит утилизацию глюкозы в тканях и снижает их чувствительность к действию инсулина. Под влиянием соматотропина увеличивается также активность фермента инсулиназы. Этот гормон обладает «диабетогенным» эффектом. На­блюдаемая при его введении гипергликемия является стимулом для выработки инсулина beta-клетками поджелудочной железы. Выработка инсулина увеличивается также и за счет прямого стимулирующего влияния соматотропина на beta-клетки. В результате может произойти истощение их секреторной функции, которое в сочетании с повы­шенной активностью инсулиназы приводит к развитию так назы­ваемого гипофизарного диабета.


Секреция гормона роста регулируется соматолиберином и сома-тостатином, которые вырыбатываются в гипоталамусе. Отмечено усиление выработки соматотропина при стрессорных воздействиях, истощении запасов белка в организме. Увеличение секреции про­исходит также при сниженном содержании глюкозы и жирных кислот в плазме крови.


Пролактин. Эффекты этого гормона заключаются в следу­ющем:


1) усиливаются пролиферативные процессы в молочных железах и ускоряется их рост;


2) усиливаются процессы образования и выделения молока. Сек­реция пролактина возрастает во время беременности и стимулиру­ется рефлекторно при кормлении грудью. Благодаря специфическому действию на молочную железу пролактин называют маммотропным гормоном;


3) увеличивается реабсорбция натрия и воды в почках, что имеет значение для образования молока. В этом отношении он является синергистом альдостерона;


4) стимулируются образование желтого тела и выработка им прогестерона.


Продукция пролактина регулируется посредством выработки в гипоталамусе пролактостатина и пролактолиберина.


Гормоны нейрогипофиза
. Антидиуретический гормон (АДГ). В общем виде действие АДГ сводится к двум основным эффектам:


1) стимулируется реабсорбция воды в дистальных канальцах почек. В результате увеличивается объем циркулирующей крови, повышается АД, снижается диурез и возрастает относительная плот­ность мочи. В результате усиленного обратного всасывания воды снижается осмотическое давление межклеточной жидкости. Под дей­ствием АДГ происходит активация фермента аденилатциклазы, ло­кализующегося на поверхности базолатеральной (обращенной к ин-терстицию) мембраны клеток эпителия почечных канальцев. Акти­вация аденилатциклазы приводит к накоплению в цитоплазме этих клеток цАМФ. Последний диффундирует в область апикальной (об­ращенной в просвет почечного канальца) мембраны и стимулирует образование в цитоплазме белковых везикул, которые затем вклю­чаются в структуру апикальной мембраны и образуют в ней каналы, высокопроницаемые для воды. В результате вода из просвета по­чечных канальцев поступает в цитоплазму клеток эпителия каналь­цев, перемещается к базолатеральной мембране и, проникая через нее, попадает в интерстициальную ткань. После разрушения АДГ белковые везикулы элиминируются из структуры апикальной мем­браны. В результате этого последняя становится непроницаемой для воды;


2) в больших дозах АДГ вызывает сужение артериол, что при­водит к увеличению АД. Развитию гипертензии способствует также наблюдающееся под влиянием АДГ повышение чувствительности сосудистой стенки к констрикторному действию катехоламинов. В связи с тем что введение АДГ приводит к повышению АД, этот гормон получил также название «вазопрессин». Однако поскольку эффект вазоконстрикции возникает только при действии больших доз АДГ, то считают, что в физиологических условиях значимость его вазоконстрикторного влияния невелика. С другой стороны, раз­витие вазоконстрикции может иметь существенное адаптивное зна-


чение при некоторых патологических состояниях, например при острой кровопотере, сильных болевых воздействиях, поскольку в этих условиях в крови может присутствовать большое количество АДГ.


Основная часть АДГ синтезируется в супраоптическом ядре ги­поталамуса (примерно 5
/6 от общего количества), меньшая часть — в паравентрикулярном ядре. Секреция этого гормона усиливается при повышении осмотического давления крови. Последнее можно продемонстрировать путем введения гипертонического раствора в сосуды, питающие гипоталамус. В этом случае происходит раздра­жение осморецепторов, что приводит к увеличению выработки гор­мона в супраоптическом и паравентрикулярном ядрах и повышенной его секреции из задней доли гипофиза в кровь. Важным стимулом для регуляции секреции АДГ является также изменение объема циркулирующей крови. Показано, что при снижении последнего на 15—20% количество образующегося АДГ может увеличиваться в несколько десятков раз. В этом случае интенсивность секреции гормона меняется в зависимости от характера информации, посту­пающей в гипоталамус от волюморецепторов, реагирующих на рас­тяжение кровью и локализующихся в правом предсердии, и баро-рецепторов, расположенных в аортальной и синокаротидной зонах, а также в легочной артерии.


Недостаточная секреция АДГ приводит к развитию несахарного мочеизнурения (diabetesinsipidus), основными проявлениями кото­рого являются сильная жажда (полидипсия) и потеря большого количества жидкости с выделяемой мочой (полиурия). Наблюдается учащенное мочеиспускание (поллакиурия), в результате которого больной за сутки выделяет до 10—20 л мочи низкой относительной плотности. Симптомы этого заболевания проходят при введении синтетического вазопрессина или препаратов, приготовленных из задней доли гипофиза животных.


Окситоцин. Эффекты этого гормона реализуются главным образом в двух направлениях:


1) окситоцин вызывает сокращение гладкой мускулатуры матки. Установлено, что при удалении гипофиза у животных родовые схват­ки становятся длительными и малоэффективными. Таким образом, окситоцин является гормоном, обеспечивающим нормальное проте­кание родового акта (отсюда произошло и его название — от лат. оху — сильный, tokos— роды). Адекватное проявление этого эф­фекта возможно при условии достаточной концентрации в крови эстрогенов, которые усиливают чувствительность матки к оксито-цину;


2) окситоцин принимает участие в регуляции процессов лактации. Он усиливает сокращение миоэпителиальных клеток в молочных железах и тем самым способствует выделению молока.


Содержание окситоцина в крови возрастает в конце беременности, в послеродовом периоде. Кроме того, его продукция стимулируется рефлекторно при раздражении соска в процессе грудного вскарм­ливания.


5.2.3. Щитовидная
железа


Основной структурно-функциональной единицей щитовидной же­лезы являются фолликулы. Они представляют собой округлые по­лости, стенка которых образована одним рядом клеток кубического эпителия. Фолликулы заполнены коллоидом и содержат гормоны тироксин и трийодтиронин, которые связаны с белком тиреоглобу-лином. В межфолликулярном пространстве проходят капилляры, обеспечивающие обильную васкуляризацию фолликулов. В щито­видной железе объемная скорость кровотока выше, чем в других органах и тканях. В межфолликулярном пространстве находятся также парафолликулярные клетки (С-клетки), в которых выраба­тывается гормон тиреокальцитонин.


Биосинтез тироксина и трийодтиронина осуществля­ется за счет йодирования аминокислоты тирозина, поэтому в щи­товидной железе происходит активное поглощение йода. Содержание йода в фолликулах в 30 раз превышает его концентрацию в крови, а при гиперфункции щитовидной железы это соотношение стано­вится еще больше. Поглощение йода осуществляется за счет актив­ного транспорта. После соединения тирозина, входящего в состав тиреоглобулина, с атомарным йодом образуются монойодтирозин и дийодтирозин. За счет соединения 2 молекул дийодтирозина обра­зуется тироксин; конденсация моно- и дийодтирозина приводит к образованию трийодтиронина. В дальнейшем за счет действия про-теаз, расщепляющих тиреоглобулин, происходит высвобождение в кровь активных гормонов.


Активность тироксина в несколько раз меньше, чем трийодтирони­на. Кроме того, эффекты трийодтиронина имеют меньший латентный период, поэтому его действие развивается значительно быстрее. С другой стороны, содержание тироксина в крови примерно в 20 раз больше, чем трийодтиронина. Тироксин при декодировании может превращаться в трийодтиронин. На основании этих фактов предпола­гают, что основным гормоном щитовидной железы является трийод­тиронин, а тироксин выполняет функцию его предшественника.


Действие гормонов щитовидной железы проявляется резким уси­лением метаболической активности организма. При этом ускоряются все виды обмена веществ (белковый, липидный, углеводный), что приводит к увеличению энергообразования и повышению основного обмена. В детском возрасте это имеет существенное значение для процессов роста, физического развития, а также энергетического обеспечения созревания ткани мозга, поэтому недостаток гормонов щитовидной железы у детей приводит к задержке умственного и физического развития (кретинизм). У взрослых при гипофункции щитовидной железы наблюдается торможение нервно-психической активности (вялость, сонливость, апатия); при избытке гормонов, наоборот, наблюдаются эмоциональная лабильность, возбуждение, бессонница.


В результате активизации всех видов обмена веществ под вли­янием гормонов щитовидной железы изменяется деятельность прак-


тически всех органов. Усиливается теплопродукция, что приводит к повышению температуры тела. Ускоряется работа сердца (тахи­кардия, повышение АД, увеличение минутного объема крови), сти­мулируется деятельность пищеварительного тракта (повышение ап­петита, усиление перистальтики кишечника, увеличение секретор­ной активности). При гиперфункции щитовидной железы обычно снижается масса тела. Недостаток гормонов щитовидной железы приводит к изменениям обратного характера.


Кальцитонин, или тиреокальцитонин, снижает уровень кальция в крови. Он действует на костную систему, почки и ки­шечник, вызывая при этом эффекты, противоположные действию паратирина. В костной ткани тиреокальцитонин усиливает актив­ность остеобластов и процессы минерализации. В почках и кишеч­нике угнетает реабсорбцию кальция и стимулирует обратное вса­сывание фосфатов. Реализация этих эффектов приводит к гипо-кальциемии.


Секреция гормонов щитовидной железы регулируется гипотала-мическим тиреолиберином. Выработка тироксина и трийодтиронина резко усиливается в условиях длительного эмоционального возбуж­дения. Отмечено также, что секреция этих гормонов ускоряется при снижении температуры тела.


5.2.4. Околощитовидные железы


Регуляция обмена кальция осуществляется в основном за счет действия паратирина и кальцитонина.


Паратгормон, или паратирин, паратиреоидный гормон, синтезируется в околощитовидных железах. Он обеспе­чивает увеличение уровня кальция в крови. Органами-мишенями для этого гормона являются кости и почки. В костной ткани пара­тирин усиливает функцию остеокластов, что способствует демине­рализации кости и повышению уровня кальция и фосфора в плазме крови. В канальцевом аппарате почек паратирин стимулирует ре­абсорбцию кальция и тормозит реабсорбцию фосфатов, что приводит к гиперкальциемии и фосфатурии. Развитие фосфатурии может иметь определенное значение в реализации гиперкальциемического эффекта гормона. Это связано с тем, что кальций образует с фос­фатами нерастворимые соединения; следовательно, усиленное вы­ведение фосфатов с мочой способствует повышению уровня свобод­ного кальция в плазме крови. Паратирин усиливает синтез каль-цитриола, который является активным метаболитом витамина D3
. Последний вначале образуется в неактивном состоянии в коже под влиянием ультрафиолетового излучения, а затем под влиянием па­ратирина происходит его активация в печени и почках. Кальцитриол усиливает образование кальцийсвязывающего белка в стенке ки­шечника, что способствует обратному всасыванию кальция и раз­витию гиперкальциемии. Таким образом, увеличение реабсорбции кальция в кишечнике при гиперпродукции паратирина в основном обусловлено его стимулирующим действием на процессы активации


витамина D3. Прямое влияние самого паратирина на кишечную стенку весьма незначительно.


При удалении околощитовидных желез животное погибает от тетанических судорог. Это связано с тем, что в случае низкого содержания кальция в крови резко усиливается нервно-мышечная возбудимость. При этом действие даже незначительных по силе внешних раздражителей приводит к сокращению мышц.


Гиперпродукция паратирина приводит к деминерализации и ре­зорбции костной ткани, развитию остеопороза. Резко увеличивается уровень кальция в плазме крови, в результате чего усиливается склонность к камнеобразованию в органах мочеполовой системы. Гиперкальциемия способствует развитию выраженных нарушений электрической стабильности сердца, а также образованию язв в пищеварительном тракте, возникновение которых обусловлено сти­мулирующим действием ионов Са2+
на выработку гастрина и соляной кислоты в желудке.


Секреция паратирина и тиреокальцитонина (см. раздел 5.2.3) регулируется по типу отрицательной обратной связи в зависимости от уровня кальция в плазме крови. При снижении содержания кальция усиливается секреция паратирина и тормозится выработка тиреокальцитонина. В физиологических условиях это может наблю­даться при беременности, лактации, сниженном содержании кальция в принимаемой пище. Увеличение концентрации кальция в плазме крови, наоборот, способствует снижению секреции паратирина и увеличению выработки тиреокальцитонина. Последнее может иметь большое значение у детей и лиц молодого возраста, так как в этом возрасте осуществляется формирование костного скелета. Адекватное протекание этих процессов невозможно без тиреокальцитонина, оп­ределяющего абсорбцию кальция из плазмы крови и его включение в структуру костной ткани.


5.2.5. Надпочечники


В надпочечниках выделяют корковое и мозговое вещество. Кор­ковое вещество включает клубочковую, пучковую и сетчатую зоны. В клубочковой зоне происходит синтез минералокортикоидов, ос­новным представителем которых является альдостерон. В пучковой зоне синтезируются глюкокортикоиды. В сетчатой зоне вырабаты­вается небольшое количество половых гормонов.


Альдостерон усиливает в дистальных канальцах почек ре-абсорбцию ионов Na+
, одновременно увеличивая при этом выведение с мочой ионов К+
. Аналогичное усиление натрий-калиевого обмена происходит в потовых и слюнных железах, а также в кишечнике. Это приводит к изменению электролитного состава плазмы крови (гипернатриемия и гипокалиемия). Кроме того, под влиянием аль-достерона резко возрастает почечная реабсорбция воды, которая всасывается пассивно по осмотическому градиенту, создаваемому ионами Na+
. Это приводит к существенным изменениям гемодина­мики — увеличивается объем циркулирующей крови, возрастает


АД. Вследствие усиленного обратного всасывания воды уменьшается диурез. При повышенной секреции альдостерона увеличивается склонность к отекам, что обусловлено задержкой в организме натрия и воды, повышением гидростатического давления крови в капиллярах и в связи с этим — усиленной экссудацией жидкости из просвета сосудов в ткани. За счет усиления процессов экссудации и отечности тканей альдостерон способствует развитию воспалительной реакции и является провоспалительным гормоном. Под влиянием альдосте­рона увеличивается также секреция ионов Н+
в канальцевом ап­парате почек, что приводит к снижению их концентрации во вне­клеточной жидкости и изменению кислотно-основного состояния (алкалоз).


Снижение секреции альдостерона вызывает усиленное выведение натрия и воды с мочой, что приводит к дегидратации тканей, снижению объема циркулирующей крови и уровня АД. В результате в организме возникают явления циркуляторного шока. Концентра­ция калия в крови при этом, наоборот, увеличивается, что является причиной нарушения электрической стабильности сердца и развития сердечных аритмий.


Основным фактором, регулирующим секрецию альдостерона, яв­ляется функционирование ренин-ангиотензин-альдостероновой си­стемы.
При снижении уровня АД наблюдается возбуждение сим­патической части автономной нервной системы, что приводит к сужению почечных сосудов. Уменьшение почечного кровотока спо­собствует усиленной выработке ренина в юкстагломерулярных не-фронах почек. Ренин является ферментом, которые действует на плазменный а2
-глобулин ангиотензиноген, превращая его в ангио-тензин I. Образовавшийся ангиотензин Iзатем превращается в ангиотензин II, который увеличивает секрецию альдостерона. Вы­работка альдостерона может усиливаться также по механизму об­ратной связи при изменении электролитного состава плазмы крови, в частности при гипонатриемии или гиперкалиемии. В незначитель­ной степени секреция этого гормона стимулируется кортико-тропином.


Глюкокортикоиды вызывают следующие эффекты:


1. Влияют на все виды обмена веществ:


а) на белковый обмен. Под влиянием глюкокортикоидов стиму­ лируются процессы распада белка. В основе этого эффекта лежит угнетение транспорта аминокислот из плазмы крови в клетки, что вызывает торможение последующих стадий белкового синтеза. Ка­ таболизм белка приводит к снижению мышечной массы, остеопорозу; уменьшается также скорость заживления ран. Распад белка приводит к уменьшению содержания белковых компонентов в защитном му- коидном слое, покрывающем слизистую оболочку пищеварительного тракта. Последнее способствует увеличению агрессивного действия соляной кислоты и пепсина, что может привести к образованию пептических язв (ульцерогенный эффект глюкокортикоидов);


б) на жировой обмен. Глюкокортикоиды усиливают мобилизацию жира из жировых депо и увеличивают концентрацию жирных кислот


в плазме крови. Вместе с тем увеличивается отложение жира в области лица, груди и на боковых поверхностях туловища;


в) на углеводный обмен. Введение глюкокортикоидов приводит к увеличению содержания глюкозы в плазме крови (гипергликемия). В основе этого эффекта лежит стимулирующее действие на процессы глюконеогенеза. Избыток аминокислот, образовавшихся в результате катаболизма белка, используется для синтеза глюкозы в печени. Кроме того, глюкокортикоиды ингибируют активность фермента гексокиназы, что препятствует утилизации глюкозы тканями. По­скольку при избытке глюкокортикоидов основным источником энер­гии являются жирные кислоты, образующиеся за счет усиленной мобилизации жира, определенное количество глюкозы сберегается от энергетических трат, что также способствует гипергликемии. Гипергликемический эффект является одним из компонентов за­щитного действия глюкокортикоидов при стрессе, поскольку в виде глюкозы в организме создается запас энергетического субстрата, расщепление которого помогает преодолеть действие экстремальных стимулов.


Таким образом, по характеру своего влияния на углеводный обмен глюкокортикоиды являются антагонистами инсулина. При длительном приеме этих гормонов с целью лечения или повышенной их выработке в организме может развиться стероидный диабет.


2. Противовоспалительное действие. Глюкокортикоиды угнетают все стадии воспалительной реакции (альтерацию, экссудацию и пролиферацию), стабилизируют мембраны лизосом, что предотвра­щает выброс протеолитических ферментов, способствующих разви­тию воспалительной реакции. Глюкокортикоиды нормализуют по­вышенную проницаемость сосудов и тем самым уменьшают процессы экссудации и отечность тканей, а также выделение медиаторов воспалительной реакции. Глюкокортикоиды угнетают процессы фа­гоцитоза в очаге воспаления. Кроме того, они уменьшают выра­женность лихорадочной реакции, сопутствующей воспалительному процессу, за счет снижения выброса интерлейкина-1 из лейкоцитов, что снижает его стимулирующий эффект на центр теплопродукции в гипоталамусе.


3. Противоаллергическое действие. Изложенные выше эффекты, лежащие в основе противовоспалительного действия, во многом определяют также ингибирующее действие глюкокортикоидов на развитие аллергической реакции (стабилизации лизосом, угнетение образования факторов, усиливающих аллергическую реакцию, сни­жение экссудации и др.). Гиперпродукция глюкокортикоидов при­водит к снижению числа эозинофилов в крови, увеличенное коли­чество которых обычно является «маркером» аллергии.


4. Подавление иммунитета. Глюкокортикоиды угнетают как кле­точный, так и гуморальный иммунитет, что связано со снижением образования антител и процессов фагоцитоза. Длительный прием глюкокортикоидов приводит к инволюции тимуса и лимфоидной ткани, являющихся иммунокомпетентными органами, вследствие чего уменьшается количество лимфоцитов в крови. Подавление


иммунитета может являться серьезным побочным эффектом при длительном приеме глюкокортикоидов, поскольку при этом возра­стает вероятность присоединения вторичной инфекции. С другой стороны, этот эффект может являться терапевтическим при исполь­зовании глюкокортикоидов для подавления роста опухолей, проис­ходящих из лимфоидной ткани, или для торможения реакций от­торжения при трансплантации органов и тканей.


5. Участие в формировании необходимого уровня АД. Глюко-кортикоиды повышают чувствительность сосудистой стенки к дей­ствию катехоламинов, что приводит к гипертензии. Повышению уровня АД способствует также выраженное в небольшой степени минералокортикоидное действие глюкокортикоидов (задержка в ор­ганизме натрия и воды, сопровождающаяся увеличением объема циркулирующей крови). Гипертензивный эффект является одним из компонентов противошокового действия (шок всегда сопровож­дается резким падением АД). Противошоковая активность этих гормонов связана также с гипергликемией. Поскольку утилизация глюкозы мозговой тканью не зависит от инсулина, поступление глюкозы в клетки мозга определяется исключительно ее концент­рацией в плазме крови. В связи с этим вызванная глюкокортико-идами гипергликемия может расцениваться как важный фактор адекватного энергетического обеспечения мозга, что противодейст­вует развитию шока.


В организме существует определенный суточный ритм выработки глюкокортикоидов. Основная масса этих гормонов вырабатывается в утренние часы (6—8 ч утра). Последнее учитывают при распре­делении суточной дозы гормонов в процессе длительного лечения глюкокортикоидами.


Продукция глюкокортикоидов регулируется кортикотропином. Его выделение усиливается при действии на организм стрессорных стимулов различной природы, что является пусковым моментом для развития адаптационного синдрома.


Половые гормоны. При избыточном образовании половых гормонов в сетчатой зоне развивается адреногенитальный синдром двух типов — гетеросексуальный и изосексуальный. Гетеросексу­альный синдром развивается при выработке гормонов противопо­ложного пола и сопровождается появлением вторичных половых признаков, присущих другому полу. Изосексуальный синдром на­ступает при избыточной выработке гормонов одноименного пола и проявляется ускорением процессов полового развития.


Катехоламины. В мозговом веществе надпочечников содер­жатся хромаффинные клетки, в которых синтезируются адреналин
и норадреналин.
Примерно 80% гормональной секреции приходится на адреналин и 20% — на норадреналин. Продукция этих гормонов резко усиливается при возбуждении симпатической части автоном­ной нервной системы. В свою очередь выделение этих гормонов в кровь приводит к развитию эффектов, аналогичных действию сти­муляции симпатических нервов. Разница состоит лишь в том, что гормональный эффект является более длительным. К наиболее важ-


ным
эффектам катехоламинов относятся стимуляция деятельности сердца, вазоконстрикция, торможение перистальтики и секреции кишечника, расширение зрачка, уменьшение потоотделения, уси­ление процессов катаболизма и образования энергии. Адреналин имеет большее сродство к beta-адренорецепторам, локализующимся в миокарде, вследствие чего вызывает положительные инотропный и хронотропный эффекты в сердце. С другой стороны, норадреналин имеет более высокое сродство к сосудистым «-адренорецепторам. Поэтому вызываемые катехоламинами вазоконстрикция и увеличе­ние периферического сосудистого сопротивления в большей степени обусловлены действием норадреналина.


5.2.6.
Поджелудочная железа


Эндокринная активность поджелудочной железы осуществляется панкреатическими островками (островками Лангерганса). В остро-вковом аппарате представлено несколько типов клеток:


1) а-клетки, в которых происходит выработка глюкагона;


2) /?-клетки, вырабатывающие инсулин;


3) &
-клетки, продуцирующие соматостатин, который угнетает секрецию инсулина и глюкагона;


4) G-клетки, вырабатывающие гастрин;


5) ПП-клетки, вырабатывающие небольшое количество панкре­ атического полипептида, который является антагонистом холеци- стокинина.


beta-Клетки составляют большую часть островкового аппарата под­желудочной железы (примерно 60%). Они продуцируют инсу­лин, который влияет на все виды обмена веществ, но прежде всего снижает уровень глюкозы в плазме крови.


Под воздействием инсулина существенно увеличивается прони­цаемость клеточной мембраны для глюкозы и аминокислот, что приводит к усилению биоэнергетических процессов и синтеза белка. Кроме того, в результате подавления активности ферментов, обес­печивающих глюконеогенез, тормозится образование глюкозы из аминокислот, поэтому они могут быть использованы для биосинтеза белка. Под влиянием инсулина уменьшается катаболизм белка. Таким образом, процессы образования белка начинают преобладать над процессами его распада, что обеспечивает анаболический эф­фект. По своему влиянию на белковый обмен инсулин является синергистом соматотропина. Более того, установлено, что адекватная стимуляция роста и физического развития под влиянием сомато­тропина может происходить только при условии достаточной кон­центрации инсулина в крови.


Влияние инсулина на жировой обмен в конечном счете выража­ется в усилении процессов липогенеза и отложении жира в жировых депо. Поскольку под влиянием инсулина возрастает утилизация тканями и использование глюкозы в качестве энергетического суб­страта, определенная часть жирных кислот сберегается от энерге­тических трат и используется в последующем для липогенеза. Кроме


того, дополнительное количество жирных кислот образуется из глю­козы, а также за счет ускорения их синтеза в печени. В жировых депо инсулин угнетает активность липазы и стимулирует образо­вание триглицеридов.


Недостаточная секреция инсулина приводит к развитию сахарного диабета. При этом резко увеличивается содержание глюкозы в плаз­ме крови, возрастает осмотическое давление внеклеточной жидкости, что приводит к дегидратации тканей, появлению жажды. Поскольку глюкоза относится к «пороговым» веществам, то при определенном уровне гипергликемии тормозится ее реабсорбция в почках и воз­никает глюкозурия. Вследствие того что глюкоза является осмоти­чески активным соединением, в составе мочи возрастает также количество воды, что приводит к увеличению диуреза (полиурия). Усиливается липолиз с образованием избыточного количества не­связанных жирных кислот; происходит образование кетоновых тел. Катаболизм белка и недостаток энергии (нарушена утилизация глю­козы) приводит к астении и снижению массы тела.


Избыточное содержание инсулина в крови вызывает резкую гипо­гликемию, что может привести к потере сознания (гипогликемическая кома). Это объясняется тем, что в головном мозге утилизация глюкозы не зависит от действия фермента гексокиназы, активность которой ре­гулируется инсулином. В связи с этим поглощение глюкозы мозговой тканью определяется в основном концентрацией глюкозы в плазме крови. Ее снижение под действием инсулина может привести к нару­шению энергетического обеспечения мозга и потере сознания.


Выработка инсулина регулируется механизмом отрицательной об­ратной связи в зависимости от концентрации глюкозы в плазме крови. Повышение содержания глюкозы способствует увеличению выработ­ки инсулина; в условиях гипогликемии образование инсулина, наобо­рот, тормозится. Секреция инсулина в некоторой степени возрастает при росте содержания аминокислот в крови. Увеличение выхода инсу­лина наблюдается также под действием некоторых гастроинтести-нальных гормонов (желудочный ингибирующий пептид, холецисто-кинин, секретин). Кроме того, продукция инсулина может возрастать при стимуляции блуждающего нерва. В опытах на животных показа­но, что при пропускании крови с высоким содержанием глюкозы через сосуды головы, которая соединена с телом только блуждающими нер­вами, наблюдается увеличение продукции инсулина.


а-Клетки, составляющие примерно 25%
островковой ткани, вы­рабатывают глюкагон, действие которого приводит к гипергли­кемии. В основе этого эффекта лежат усиленный распад гликогена в печени и стимуляция процессов глюконеогенеза. Глюкагон спо­собствует мобилизации жира из жировых депо. Таким образом, действие глюкагона противоположно эффектам инсулина. Установ­лено, что, кроме глюкагона, существует еще несколько гормонов, которые по своему действию на углеводный обмен являются анта­гонистами инсулина. Введение этих гормонов приводит к гипергли­кемии. К ним относятся кортикотропин, соматотропин, глюкокор-тикоиды, адреналин, тироксин.


5.2.7. Половые железы


Мужские половые железы. В
мужских половых железах (яички) происходят процессы сперматогенеза и образование мужских поло­вых гормонов — андрогенов. Сперматогенез осуществляется за счет деятельности сперматогенных эпителиальных клеток, которые со­держатся в семенных канальцах. Выработка андрогенов происходит в интерстициальных клетках — гландулоцитах (клетки Лейдига), локализующихся в интерстиции между семенными канальцами и составляющих примерно 20% от общей массы яичек. Небольшое количество мужских половых гормонов вырабатывается также в сетчатой зоне коркового вещества надпочечников. К андрогенам относится несколько стероидных гормонов, наиболее важным из которых является тестостерон. Продукция этого гормона опре­деляет адекватное развитие мужских первичных и вторичных по­ловых признаков (маскулинизирующий эффект). Под влиянием те­стостерона в период полового созревания увеличиваются размеры полового члена и яичек, появляется мужской тип оволосения, ме­няется тональность голоса. Кроме того, тестостерон усиливает синтез белка (анаболический эффект), что приводит к ускорению процессов роста, физического развития, увеличению мышечной массы. Тесто­стерон влияет на процессы формирования костного скелета — он ускоряет образование белковой матрицы кости, усиливает отложение в ней солей кальция. В результате увеличиваются рост, толщина и прочность кости. При гиперпродукции тестостерона ускоряется обмен веществ, в крови возрастает количество эритроцитов.


Механизм действия тестостерона обусловлен его проникновением внутрь клетки, превращением в более активную форму (дигидро-тестостерон) и дальнейшим связыванием с рецепторами ядра и органел, что приводит к изменению процессов синтеза белка и нуклеиновых кислот. Секреция тестостерона регулируется лютеи-низирующим гормоном аденогипофиза, продукция которого возра­стает в период полового созревания. При увеличении содержания в крови тестостерона по механизму отрицательной обратной связи тормозится выработка лютеинизирующего гормона. Уменьшение продукции обоих гонадотропных гормонов — фолликулостимулиру-ющего и лютеинизирующего, происходит также при ускорении про­цессов сперматогенеза.


У мальчиков в возрасте до 10—11 лет в яичках обычно отсут­ствуют активные гландулоциты (клетки Лейдига), в которых вы­рабатываются андрогены. Однако секреция тестостерона в этих клет­ках происходит во время внутриутробного развития и сохраняется у ребенка в течение первых недель жизни. Это связано со стиму­лирующим действием хорионического гонадотропина, который про­дуцируется плацентой.


Недостаточная секреция мужских половых гормонов приводит к развитию евнухоидизма, основными проявлениями которого явля­ются задержка развития первичных и вторичных половых признаков, диспропорциональность костного скелета (несоразмерно длинные ко-


нечности при относительно небольших размерах туловища), увели­чение отложения жира на груди, в нижней части живота и на бедрах. Нередко отмечается увеличение молочных желез (гинеко­мастия). Недостаток мужских половых гормонов приводит также к определенным нервно-психическим изменениям, в частности к от­сутствию влечения к противоположному полу и утрате других ти­пичных психофизиологических черт мужчины.


Женские половые железы. В
женских половых железах (яич­ники) происходит выработка эстрогенов и прогестерона. Секреция этих гормонов характеризуется определенной циклично­стью, связанной с изменением продукции гипофизарных гонадо-тропинов в течение менструального цикла. Эстрогены, помимо яич­ников, в небольшом количестве могут также вырабатываться в сетчатой зоне коркового вещества надпочечников. Во время бере­менности секреция эстрогенов существенно увеличивается за счет гормональной активности плаценты. Наиболее активным предста­вителем этой группы гормонов является beta-эстрадиол. Прогестерон представляет собой гормон желтого тела; его продукция возрастает в конце менструального цикла.


Под влиянием эстрогенов ускоряется развитие первичных и вто­ричных женских половых признаков. В период полового созревания увеличиваются размеры яичников, матки, влагалища, а также на­ружных половых органов. Усиливаются процессы пролиферации и рост желез в эндометрии. Эстрогены ускоряют развитие молочных желез, что приводит к увеличению их размеров, ускоренному фор­мированию протоковой системы. Эстрогены влияют на развитие костного скелета посредством усиления активности остеобластов. Вместе с тем за счет влияния на эпифизарный хрящ тормозится рост костей в длину. Действие этих гормонов приводит к увеличению биосинтеза белка; усиливается также образование жира, избыток которого откладывается в подкожной основе, что определяет внешние особенности женской фигуры. Под влиянием эстрогенов развивается оволосение по женскому типу: кожа становится более тонкой и гладкой, а также хорошо васкуляризованной.


Основное назначение прогестерона заключается в подготовке эндометрия к имплантации оплодотворенной яйцеклетки. Под дей­ствием этого гормона усиливается пролиферация и секреторная ак­тивность клеток эндометрия, в цитоплазме накапливаются липиды и гликоген, усиливается васкуляризация. Усиление пролиферации и секреторной активности происходит также в молочных железах, что приводит к увеличению их размера.


Недостаточная секреция женских половых гормонов влечет за собой развитие характерного симптомокомплекса, основными при­знаками которого являются прекращение менструаций, атрофия мо­лочных желез, влагалища и матки, отсутствие характерного оволо­сения по женскому типу. Существенные изменения претерпевает костная система — задерживается окостенение зоны эпифизарного хряща, что стимулирует рост кости в длину. Как правило, это больные высокого роста, с несоразмерно удлиненными конечностями,


суженным и уплощенным тазом. Внешний вид приобретает мужские черты, тембр голоса становится низким.


Выработка эстрогенов и прогестерона регулируется гипофизар-ными гонадотропинами, продукция которых возрастает у девочек, начиная с возраста 9—10 лет. Секреция гонадотропинов тормозится при высоком содержании в крови женских половых гормонов.


5.3. ОБРАЗОВАНИЕ, СЕКРЕЦИЯ


И МЕХАНИЗМЫ ДЕЙСТВИЯ ГОРМОНОВ


5.3.1. Регуляция биосинтеза гормонов


В поддержании упорядоченности, согласованности всех физио­логических и метаболических процессов в организме участвует более 100 гормонов и нейромедиаторов. Их химическая природа различна (белки, полипептиды, пептиды, аминокислоты и их производные, стероиды, производные жирных кислот, некоторые нуклеотиды, эфи-ры и т. д.). У каждого класса этих веществ пути образования и распада разные.


Белково-пептидные гормоны. В эту группу входят все тропные гормоны, либерины и статины, инсулин, глюкагон, кальцитонин, гастрин, секретин, холецистокинин, ангиотензин II, антидиурети­ческий гормон (вазопрессин), паратиреоидный гормон и др.


Эти гормоны образуются из белковых предшественников, назы­ваемых прогормонами. Как правило, сначала синтезируется препро-гормон, из которого образуется прогормон, а затем гормон.


Синтез прогормонов осуществляется на мембранах гранулярной эндоплазматическои сети (шероховатый ретикулум) эндокринной клетки (рис. 5.4). Большое значение для этих процессов имеет способность препрогормонов проникать через мембрану эндоплаз­матическои сети в ее внутренние полости за счет того, что первые 20—25 аминокислотных остатков с N-конца у многих белковых предшественников являются одинаковыми, а на наружной мембране эндоплазматическои сети имеются структуры, «узнающие» эту по­следовательность. В результате становится возможным внедрение молекулы препрогормона в липидный бислой мембраны и постепен­ное проникновение белкового предшественника во внутреннее про­странство эндоплазматическои сети.


Везикулы с образующимся прогормоном переносятся затем в пластинчатый комплекс (комплекс Гольджи), где под действием мембранной протеиназы от молекулы прогормона отщепляется оп­ределенная часть аминокислотной цепи. В результате образуется гормон, который поступает в везикулы, содержащиеся в комплексе Гольджи. В дальнейшем эти везикулы сливаются с плаз­матической мембраной и высвобождаются во внеклеточное про­странство.


Различные этапы синтеза гормонов имеют неодинаковую про­должительность. Например, синтез молекулы проинсулина проис-


ходит за 1—2 мин. Транспорт проинсулина от эндоплазматической сети до комплекса Гольджи занимает 10—20 мин. «Созревание» везикул, несущих инсулин от комплекса Гольджи до плазматической мембраны, длится 1—2 ч. При действии глюкозы на beta-клетки пан­креатических островков (см. рис. 5.1) стимулируется главным об­разом слияние инсулиновых везикул с плазматическими мембрана­ми, что и приводит к усиленной секреции инсулина, а скорость предыдущих этапов образования гормонов изменяется в меньшей степени. Концентрация других пептидных гормонов в крови также регулируется не влиянием на скорость их синтеза или внутрикле­точного транспорта, а изменением скорости секреции. Во многом Это обусловлено тем, что в секреторных гранулах содержится такое количество гормона, что его концентрация в крови может много­кратно повышаться без дополнительного синтеза.


Поскольку многие полипептидные гормоны образуются из общего белкового предшественника, изменение синтеза одного из этих гор­монов может приводить к параллельному изменению (ускорению или замедлению) синтеза ряда других гормонов. Так, из белка проопиокортина образуются кортикотропин и beta-липотропин (схе­ма 5.1), из beta-липотропина может образоваться еще несколько гор­монов: у-липотропин, beta-меланоцитостимулирующий гормон, beta-эн-дорфин, у-эндорфин, а-эндорфин, метионин-энкефалин.


При действии специфических протеиназ из кортикотропина могут образовываться а-меланоцитостимулирующий гормон и АКТГ-подо-бный пептид средней доли гипофиза. Благодаря сходству структур кортикотропина и а-меланоцитостимулирующего гормона последний


имеет слабую кортикотропную активность. Кортикотропин обладает незначительной способностью усиливать пигментацию кожи.


Концентрация белково-пептидных гормонов в крови обычно со­ставляет 10^-9—10~10
М. При стимуляции эндокринной железы кон­центрация соответствующего гормона возрастает в 2—5 раз.


Период полураспада белково-пептидных гормонов в крови со­ставляет 10—20 мин. Они разрушаются протеиназами клеток-ми­шеней, крови, печени и почек.


Стероидные гормоны. В эту группу входят тестостерон, эстра­дная, эстрон, прогестерон, кортизол, альдостерон и др. Эти гормоны образуются из холестерина в корковом веществе надпочечников (кортикостероиды), а также в семенниках и яичниках (половые стероиды). В малом количестве половые стероиды могут образовы­ваться в корковом веществе надпочечников, а кортикостероиды — в половых железах. Свободный холестерин поступает в митохондрии, где превращается в прегненолон, который затем попадает в эндо-плазматическую сеть и после этого — в цитоплазму.


В корковом веществе надпочечников синтез стероидных гормонов стимулируется кортикотропином, а в половых железах — лютеи-низирующим гормоном (ЛГ). Эти гормоны ускоряют транспорт эфи-ров холестерина в эндокринные клетки и активируют митохондри-альные ферменты, участвующие в образовании прегненолона. Кроме того, тропные гормоны активируют процессы окисления Сахаров и жирных кислот в эндокринных клетках, что обеспечивает стерои-догенез энергией и пластическим материалом.


Кортикостероиды. Подразделяют на две группы. Глюко-кортикоиды
(типичный представитель — кортизол) индуцируют синтез ферментов глюконеогенеза в печени, препятствуют погло­щению глюкозы мышцами и жировыми клетками, а также способ­ствуют высвобождению из мышц молочной кислоты и аминокислот, тем самым ускоряя глюконеогенез в печени.


Минералокортикоиды
(типичный представитель — альдостерон) задерживают натрий в крови. Снижение концентрации натрия (см. раздел 5.2.5) в выделяемой моче, а также секретах слюнных и потовых желез приводит к меньшим потерям воды, так как вода движется через биологические мембраны в направлении высокой концентрации солей.


Стимуляция синтеза глюкокортикоидов осуществляется через си­стему гипоталамус—гипофиз—надпочечники (см. рис. 5.2). Стресс (эмоциональное возбуждение, боль, холод и т. п), тироксин, адре­налин и инсулин стимулируют секрецию кортиколиберина из ак­сонов гипоталамуса. Этот гормон связывается с мембранными ре­цепторами аденогипофиза и вызывает секрецию кортикотропина, который с током крови попадает в надпочечники и стимулирует там образование глюкокортикоидов — гормонов, повышающих ус­тойчивость организма к неблагоприятным воздействиям.


Кортикотропин влияет слабо на синтез минералокортикоидов. Имеется дополнительный механизм регуляции синтеза минерало­кортикоидов, осуществляющийся через так называемую ренин-ан-гиотензиновую систему. Рецепторы, реагирующие на давление кро­ви, локализованы в артериолах почек. При снижении давления крови эти рецепторы стимулируют секрецию ренина почками. Ренин является специфической эндопептидной, отщепляющей от а2
-глобу-лина крови С-концевой декапептид, который называют «ангиотен-зин Ь. От ангиотензина Iкарбоксипептидаза (ангиотензинпревра-щающий фермент, расположенный на наружной поверхности эндо­телия кровеносных сосудов) отщепляет два аминокислотных остатка и образует октапептид ангиотензин II— гормон, к которому на мембране клеток коркового вещества надпочечников имеются спе­циальные рецепторы. Связываясь с этими рецепторами, ангиотен­зин IIстимулирует образование альдостерона, который действует на дистальные канальцы почек, потовые железы, слизистую обо­лочку кишечника и увеличивает в них реабсорбцию ионов Na+
, Сl~ и НСОз. В результате в крови повышается концентрация ионов Na+
и снижается концентрация ионов К+
. Эти эффекты альдостерона полностью блокируются ингибиторами синтеза белка.


Половые стероиды. Андрогены
(мужские половые гормоны) продуцируются интерстициальными клетками (гландулоцитами) се­менников и в меньшем количестве яичниками и корковым веществом надпочечников. Основным андрогеном является тестостерон (см. раздел 5.2.7). Этот гормон может претерпевать изменения в клет­ке-мишени — превращаться в дигидротестостерон, который обладает большей активностью, чем тестостерон. Следует отметить, что ЛГ, который стимулирует начальные этапы биосинтеза стероидов в эн-


докринной железе, активирует также превращение тестостерона в дигидротестостерон в клетке-мишени, тем самым усиливая андро-генные эффекты.


Эстрогены
(женские половые гормоны) в организме человека в основном представлены эстрадиолом. В клетках-мишенях они не метаболизируются.


Действие андрогенов и эстрогенов направлено в основном на органы воспроизведения, проявление вторичных половых признаков, поведенческие реакции. Андрогенам свойственны также анаболиче­ские эффекты — усиление синтеза белка в мышцах, печени, почках. Эстрогены оказывают катаболическое влияние на скелетные мышцы, но стимулируют синтез белка в сердце и печени. Таким образом, основные эффекты половых гормонов опосредуются процессами ин­дукции и репрессии синтеза белка.


Стероидные гормоны легко проникают через клеточную мемб­рану, поэтому их секреция происходит параллельно с синтезом. Содержание стероидов в крови определяется соотношением скоростей их синтеза и распада. Регуляция этого содержания осуществляется главным образом путем изменения скорости синтеза. Тропные гор­моны (кортикотропин, ЛГ и ангиотензин) стимулируют этот синтез. Устранение тройного влияния приводит к торможению синтеза сте­роидных гормонов.


Действующие концентрации стероидных гормонов составляют 10~11
—10~9
М. Период их полураспада равен 1
/2
—1,5ч.


Тиреоидные гормоны. В эту группу входят тироксин и трийод-тиронин. Синтез этих гормонов осуществляется в щитовидной же­лезе, в которой ионы йода окисляются при участии пероксидазы до йодиниум-иона, способного йодировать тиреоглобулин — тетрамер-ный белок, содержащий около 120 тирозинов. Иодирование тиро-зиновых остатков происходит при участии пероксида водорода и завершается образованием монойодтирозинов и дийодтирозинов. По­сле этого происходит «сшивка» двух йодированных тирозинов. Эта окислительная реакция протекает с участием пероксидазы и завер­шается образованием в составе тиреоглобулина трийодтиронина и тироксина. Для того чтобы эти гормоны освободились из связи с белком, должен произойти протеолиз тиреоглобулина. При расщеп­лении одной молекулы этого белка образуется 2—5 молекул тирок­сина (Т4) и трийодтиронина (Т3
), которые секретируются в молярных соотношениях, равных 4:1.


Синтез и секреция тиреоидных гормонов находятся под контролем гипоталамо-гипофизарной системы. Тиреотропин активирует адени-латциклазу щитовидной железы, ускоряет активный транспорт йода, а также стимулирует рост эпителиальных клеток щитовидной же­лезы. Эти клетки формируют фолликул, в полости которого про­исходит йодирование тирозина.


Выделение Тз и Т4
осуществляется с помощью пиноцитоза. Ча­стички коллоида окружаются мембраной эпителиальной клетки и поступают в цитоплазму в виде пиноцитозных пузырьков. При слиянии этих пузырьков с лизосомами эпителиальной клетки про-


исходит расщепление тиреоглобулина, который составляет основную массу коллоида, что приводит к выделению Т3
и Т4. Тиреотропин и другие факторы, повышающие концентрацию цАМФ в щитовидной железе, стимулируют пиноцитоз коллоида, процесс образования и движения секреторных пузырьков. Таким образом, тиреотропин ус­коряет не только биосинтез, но и секрецию Тз и Т4. При повышении уровня Тз и Т4 в крови подавляется секреция тиреолиберина и тиреотропина.


Тиреоидине гормоны могут циркулировать в крови в неизмен­ном виде в течение нескольких дней. Такая устойчивость гормонов объясняется, по-видимому, образованием прочной связи с Т4
-свя-зывающими глобулинами и преальбуминами в плазме крови. Эти белки имеют в 10—100 раз большее сродство к Т4
, чем к Тз, поэтому в крови человека содержится 300—500 мкг Т4 и лишь 6—12 мкг Т3
.


Катехоламины. В эту группу входят адреналин, норадреналин и дофамин. Источником катехоламинов, как и тиреоидных гормонов, служит тирозин, однако при синтезе катехоламинов метаболизму подвергается свободная аминокислота. Синтез катехоламинов про­исходит в аксонах нервных клеток, запасание — в синаптических пузырьках. Катехоламины, образующиеся в мозговом веществе над­почечников, выделяются в кровь, а не в синаптическую щель, т. е. являются типичными гормонами.


В некоторых клетках синтез катехоламинов заканчивается об­разованием дофамина, а адреналин и норадреналин образуются в меньшем количестве. Такие клетки есть в составе гипоталамуса. Предполагают, что пролактостатином, т. е. гормоном гипоталамуса, подавляющим секрецию пролактина, является дофамин. Известны и другие структуры мозга (например, стриарная система), которые находятся под влиянием дофамина и нечувствительны, например, к адреналину.


В симпатических нервных волокнах дофамин не накапливается, а быстро превращается в норадреналин, который хранится в синап­тических пузырьках. Адреналина в этих волокнах значительно мень­ше, чем норадреналина. В мозговом слое надпочечников биосинтез завершается образованием адреналина, поэтому норадреналина об­разуется в 4—6 раз меньше, а дофамина сохраняются лишь следы.


Синтез катехоламинов в мозговом веществе надпочечников сти­мулируется нервными импульсами, поступающими по чревному сим­патическому нерву. Выделяющийся в синапсах ацетилхолин взаи­модействует с холинергическими рецепторами никотинового типа и возбуждает нейросекреторную клетку надпочечника. Благодаря су­ществованию нервно-рефлекторных связей надпочечники отвечают усилением синтеза и выделения катехоламинов в ответ на болевые и эмоциональные раздражители, гипоксию, мышечную нагрузку, охлаждение и т. д. Существуют и гуморальные пути регуляции активности клеток мозгового вещества надпочечников: синтез и выделение катехоламинов могут возрастать под действием инсулина, глюкокортикоидов, при гипогликемии.


Катехоламины подавляют как собственный синтез, так и выде­ление. В адренергических синапсах на пресинаптической мембране есть alfa-адренергические рецепторы. При выбросе катехоламинов в синапс эти рецепторы активируются и начинают оказывать инги-бирующее влияние на секрецию катехоламинов. Аутоингибирование секреции обнаружено практически во всех тканях, секретирующих эти гормоны или нейромедиаторы.


В отличие от холинергических синапсов, постсинаптическая мем­брана которых содержит как рецепторы, так и ацетилхолинэстеразу, разрушающую медиатор, удаление катехоламинов из синапса про­исходит в результате обратного захвата медиатора нервными окон­чаниями. Поступающие в нервное окончание из синапса катехол­амины вновь концентрируются в специальных гранулах и могут повторно участвовать в синаптической передаче.


Определенное количество катехоламинов может диффундировать из синапсов в межклеточное пространство, а затем в кровь, поэтому содержание норадреналина в крови больше, чем адреналина, не­смотря на то что мозговое вещество надпочечников секретирует в кровь адреналин, а норадреналин секретируется преимущественно в синапсах. При стрессе содержание катехоламинов повышается в 4—8 раз. Период полураспада катехоламинов в крови равен 1—3 мин.


Катехоламины могут инактивироваться в тканях-мишенях, пе­чени и почках. Решающее значение в этом процессе играют два фермента — моноаминоксидаза, расположенная на внутренней мем­бране митохондрий, и катехол-О-метилтрансфераза, цитозольный фермент.


Эйкозаноиды. В эту группу входят простагландины, тромбоксаны и лейкотриены. Эйкозаноиды называют гормоноподобными вещест­вами, так как они могут оказывать только местное действие, со­храняясь в крови в течение нескольких секунд. Образуются во всех органах и тканях практически всеми типами клеток.


Биосинтез большинства эйкозаноидов начинается с отщепления арахидоновой кислоты от мембранного фосфолипида или диацил-глицерина в плазматической мембране. Синтетазный комплекс представляет собой полиферментную систему, функционирующую преимущественно на мембранах эндоплазматической сети. Обра­зующиеся эйкозаноиды легко проникают через плазматическую мембрану клетки, а затем через межклеточное пространство пе­реносятся на соседние клетки или выходят в кровь и лимфу. Скорость синтеза эйкозаноидов увеличивается под влиянием гор­монов и нейромедиаторов, активирующих аденилатциклазу или повышающих концентрацию ионов Са2+
в клетке. Наиболее ин­тенсивно образование простагландинов происходит в семенниках и яичниках.


Простагландины могут активировать аденилатциклазу, тромбок­саны увеличивают активность фосфоинозитидного обмена, а лей­котриены повышают проницаемость мембран для ионов Са2+
. По­скольку цАМФ и ионы Са2+
стимулируют синтез эйкозаноидов,


замыкается положительная обратная связь в синтезе этих специ­фических регуляторов.


Во многих тканях кортизол тормозит освобождение арахидоновой кислоты, что приводит к подавлению образования эйкозаноидов, и тем самым оказывает противовоспалительное действие. Простаглан-дин Јiявляется мощным пирогеном. Подавлением синтеза этого простагландина объясняют терапевтическое действие аспирина.


Период полураспада эйкозаноидов составляет 1—20 с. Ферменты, инактивирующие их, имеются практически во всех тканях, но на­ибольшее их количество содержится в легких.


5.3.2. Секреция и перенос гормонов


Гормоны, имеющие гидрофильную природу (катехоламины, се-ротонин, белково-пептидные и др.), синтезируются «впрок» и вы­деляются в кровь определенными порциями за счет опустошения секреторных везикул. Уровень этих гормонов в крови возрастает при увеличении частоты выброса гормона из клеток эндокринной железы. В отличие от этого стероидные и тиреоидные гормоны, а также эйкозаноиды не накапливаются в специальных структурах клетки, а благодаря своей липофильности свободно проходят через плазматическую мембрану эндокринной клетки и попадают в кровь. Содержание этих гормонов в крови регулируется ускорением или замедлением их синтеза.


Поступая в кровь, гормоны связываются с белками плазмы. Обычно лишь 5
—10% молекул гормонов находится в крови в сво­бодном состоянии и только они могут взаимодействовать с рецеп­торами. К числу специфических гормонсвязывающих белков отно­сятся транскортин, связывающий кортикостероиды, тестостерон-эс-трогенсвязывающий глобулин, тироксинсвязывающий глобулин и т. д. Альдостерон, по-видимому, не имеет специфических «транс­портных» белков, поэтому находится преимущественно в связи с альбумином.


Сравним механизмы выделения и переноса к клеткам-мишеням гормонов и нейромедиаторов. Нервное окончание подходит к одной клетке и возбуждение передается только на эту клетку. Гормон активирует всю популяцию клеток, имеющих рецепторы этого гор­мона. Передача возбуждения с нерва на другую клетку осуществ­ляется путем диффузии нейромедиатора к постсинаптической мем­бране, что завершается его связыванием с рецепторами иннервиру-емой клетки. Это самый медленный процесс в проведении нервного сигнала, однако и он проходит очень быстро по сравнению с гор­мональной регуляцией, поскольку расстояние от места выделения до места рецепции нейромедиатора (ширина синаптической щели) составляет всего 20—30 нм. Гормон проходит путь от места выде­ления до места рецепции в миллион раз больший (десятки санти­метров). При этом выделившееся количество гормона разбавляется кровью и поэтому концентрация гормона составляет всего 10-11
— 10~8
М. Кроме того, гормональные рецепторы, которых в


тканях содержится очень мало, чаще всего не сконцентрированы в определенном участке, а распределены в клетке равномерно. В отличие от этого концентрация нейромедиатора в синаптической щели достигает 10~4
— 10~3
М, а рецепторы в постсинаптической мембране сконцентрированы на очень маленькой площади, причем точно напротив тех мест пресинаптической мембраны, из которых выбрасывается нейромедиатор. От момента секреции до связывания с рецептором у гормона проходят минуты или десятки минут, а у нейромедиатора — миллисекунды. Нейромедиаторы устраняются из постсинаптической щели или ферментами, сконцентрированными на постсинаптической мембране (ацетилхолин), или специальными механизмами «обратного захвата» нейромедиатора нервным окон­чанием (катехоламины). Этот процесс занимает несколько милли­секунд или секунд.


Гашение гормонального сигнала происходит медленно, так как гормоны растворены во всем объеме крови или лимфы и для пони­жения их концентрации необходимо «прогнать» большое количество крови через ткани-мишени, печень или почки, где происходит раз­рушение гормонов.


5.3.3. Механизмы действия гормонов на клетку


Влияние гормонов и нейромедиаторов на клетку осуществляется обычно по одному из трех путей: а) изменение распределения веществ в клетке; б) химическая модификация клеточных белков; в) индукция или репрессия процессов белкового синтеза. В после­дующем эти первичные эффекты приводят к изменению количества и активности регуляторных белков клетки, а также скорости фер­ментативных процессов, что вызывает физиологический ответ тканей на гормональный сигнал.


Одним из основных механизмов, лежащих в основе гормонального влияния на распределение (компартментализацию) веществ в клет­ке, является изменение ионной проницаемости клеточных мембран. Ионные каналы, работа которых регулируется нейромедиаторами, представляют собой олигомерные белковые комплексы, пронизыва­ющие клеточную мембрану. Свойства этих олигомерных образований таковы, что молекула нейромедиатора, связываясь со специфическим участком на ионном канале, вызывает открывание или закрывание канала. Регуляторное влияние белково-пептидных гормонов, про-стагландинов, катехоламинов и др. опосредовано через систему вто­ричных посредников. В качестве последних могут выступать цик­лический АМФ (цАМФ), циклический ГМФ (цГМФ), инозитол-1,4,5-трифосфэт, диацилглицерин или ионы Са2+
. Диацилглицерин и инозитол-1,4,5-трифосфат образуются при активации фосфолипа-зы С, гидролизующей фосфоинозитиды. Образование этих посред­ников приводит к выходу ионов Са2+
из эндоплазматической сети и стимуляции протеинкиназы С.


На рис. 5.5 показан молекулярный механизм действия катехол­аминов на клетку. Характер и степень выраженности эффекта гор-


мона будут определяться соотношением в клетке числа активиро­ванных beta-адренорецепторов, сопряженных с G1-белком, а2
-рецепто-ров, сопряженных с Gj-белком, и а1-рецепторов, сопряженных с Gq-белком. Gs- и Gj-белки могут соответственно активировать или ингибировать аденилатциклазу, синтезирующую цАМФ из АТФ. Gq-белок может активировать фосфолипазу С, которая из трифос-фоинозитида (ТФИ) синтезирует диацилглицерин (ДАГ) и инози-толтрифосфат (ИФ3
). цАМФ активирует протеинкиназу, фосфори-лирующую соответствующие субстраты. ИФз, имеющий фосфат в положениях 1, 4 и 5 инозитола, связывается с рецептором — каналоформером, расположенным на эндоплазматической сети, и вызывает выход ионов Са2+
в цитоплазму. Ион Са2+
взаимодействует с кальмодулином (КМ), в результате чего он присоединяется к кальцийзависимой протеинкиназе и тем самым активирует ее. ДАГ остается в мембране и присоединяется к протеинкиназе С, вызывая ее активацию.


Разрушение или удаление из цитоплазмы клетки вторичных посредников блокирует гормональное влияние. В подавляющем боль­шинстве случаев эти процессы также стимулируются гормонами. Через один и тот же биохимический механизм гормон может как вызвать, так и погасить определенный биологический эффект.


В каждой клетке функционирует система, регулирующая чувст­вительность рецепторов к гормону. Проиллюстрируем ее на примере


рецептора, сопряженного с G-белками, отметив, что основные за­кономерности этой регуляции присущи любому типу мембранного рецептора. Обычно уровень гормонов, действующих через активацию этих рецепторов, повышается на несколько минут. Этого времени достаточно, чтобы произошло образование нужного количества вто­ричных посредников (цАМФ, ионы Са2+
, диацилглицерин и т. п.), которые вызовут активацию соответствующих протеинкиназ и по­следующее за этим фосфорилирование белков. Если же уровень гормона сохраняется повышенным в течение десятков минут или нескольких часов (из-за сверхмощного влияния внешних или внут­ренних сигналов на эндокринную железу, патологического состояния или фармакологического влияния), то развивается десенсибилизация соответствующего рецептора. Сначала протеинкиназа, которая есть в плазматической мембране практически всех клеток, фосфорили-рует рецептор, в результате чего его сродство к гормону снижается в 2—5 раз. Фосфорилирование рецептора может происходить также под действием протеинкиназы, активированной вторичными посред­никами. В результате этих реакций нарушается сопряжение рецеп­торов с G-белками. По этой причине связывание гормона с рецеп­тором не приводит к активации внутриклеточных эффекторов (аде-нилатциклазы, фосфолипазы и др.). Если эти механизмы десенсибилизации не устраняют регуляторный сигнал, то происходит интернализация гормон-рецепторных комплексов, они переходят с поверхности внутрь клетки. При снижении концентрации гормона в крови эти рецепторы могут вновь встроиться в плазматическую


мембрану. Если же этого не происходит, то интернализованные рецепторы разрушаются под действием лизосомальных ферментов. На определенных стадиях онтогенеза или при достижении кри­тического отклонения от нормы того или иного фактора гомеостаза (гипотермия, гипогликемия, гипоксия, потеря крови и др.) вклю­чается медленная, но наиболее мощная система эндокринной регу­ляции, действующая через стероидные и тиреоидные гормоны. Мо­лекулы этих регуляторов, будучи липофильными, легко проникают через липидный бислой и связываются со своими рецепторами в цитоплазме или ядре (рис. 5.6). Затем гормон-рецепторный комплекс связывается с ДНК и белками хроматина, что стимулирует транс­крипцию определенных генов. Трансляция мРНК приводит к появ­лению в клетке новых белков, которые вызывают биологический эффект этих гормонов. Стероидные и тиреоидные гормоны могут также репрессировать некоторые гены, что реализуется в биологи­ческий эффект путем уменьшения количества соответствующих бел­ков в клетке. Эффект действия этих гормонов на содержание того или иного белка в клетке реализуется не путем ускорения-замед­ления транскрипции функционирующих генов, а за счет включе­ния-выключения новых генов.


Глава
6. СИСТЕМА КРОВИ


Внутренняя среда организма представлена тканевой (интерсти-циальной) жидкостью, лимфой и кровью, состав и свойства которых теснейшим образом связаны между собой. Однако истинной внут­ренней средой организма является тканевая жидкость, так как лишь она контактирует с клетками организма. Кровь же, соприкасаясь непосредственно с эндокардом и эндотелием сосудов, обеспечивает их жизнедеятельность и лишь косвенно через тканевую жидкость вмешивается в работу всех без исключения органов и тканей. Через сосудистую стенку в кровоток транспортируются гормоны и различ­ные биологически активные соединения.


Основной составной частью тканевой жидкости, лимфы и крови является вода. В организме человека вода составляет 75% от массы тела. Для человека массой тела 70 кг тканевая жидкость и лимфа составляют до 30% (20—21 л), внутриклеточная жидкость — 40% (27—29 л) и плазма — около 5% (2,8—3,0 л).


Между кровью и тканевой жидкостью происходят постоянный об­мен веществ и транспорт воды, несущей растворенные в ней продукты обмена, гормоны, газы, биологически активные вещества. Следова­тельно, внутренняя среда организма представляет собой единую сис­тему гуморального транспорта, включающую общее кровообращение и движение в последовательной цепи: кровь — тканевая жидкость — ткань (клетка) — тканевая жидкость — лимфа — кровь.


Из этой простой схемы видно, насколько тесно связан состав крови не только с тканевой жидкостью, но и с лимфой. В организме важная роль отводится лимфатической системе, начало которой составляют лимфатические капилляры, дренирующие все тканевые пространства и сливающиеся в более крупные сосуды. По ходу лимфатических сосудов располагаются лимфатические узлы, при прохождении которых изменяется состав лимфы и она обогащается лимфоцитами. Свойства лимфы, как и тканевой жидкости, во многом определяются органом, от которого она оттекает. После приема пищи состав лимфы резко изменяется, так как в нее всасываются жиры, углеводы и даже белки.


Следует заметить, что внутриклеточная жидкость, плазма крови, тканевая жидкость и лимфа имеют различный состав, что в зна­чительной степени определяет интенсивность водного, ионного и электролитного обмена, катионов, анионов и продуктов метаболизма между кровью, тканевой жидкостью и клетками.


Еще в 1878 г. К. Бернар писал, что «... поддержание постоянства условий жизни в нашей внутренней среде — необходимый элемент свободной и независимой жизни». Это положение легло в основу учения о гомеостазе, создателем которого является американский физиолог У. Кеннон (см. раздел 1.3). Между тем в основе пред­ставлений о гомеостазе лежат динамические процессы, ибо «посто­янство внутренней среды организма» редко бывает постоянным. Под влиянием внешних воздействий и сдвигов, происходящих в самом организме, состав тканевой жидкости, лимфы и крови на короткое время может изменяться в широких пределах, однако благодаря регуляторным воздействиям, осуществляемым нервной системой и гуморальными факторами, сравнительно быстро возвращается к нор­ме. Более длительные сдвиги в гомеостазе не только сопровождают развитие патологического процесса, но и зачастую несовместимы с жизнью.


Говоря о внутренней среде организма в этом разделе, мы коснемся лишь физиологии системы крови. Что же касается функций тканевой жидкости и лимфы, то они будут рассмотрены в специальной главе учебника.


6.1. ПОНЯТИЕ
О СИСТЕМЕ КРОВИ


Отечественный клиницист Г. Ф. Ланг считал, что в систему крови входят кровь, органы кроветворения и кроверазрушения, а также аппарат регуляции. Кровь как ткань обладает следующими особен­ностями: 1) все ее составные части образуются за пределами сосу­дистого русла; 2) межклеточное вещество ткани является жидким; 3) основная часть крови находится в постоянном движении.


Кровь животных заключена в систему замкнутых трубок — кровеносных сосудов. Кровь состоит из жидкой части — плазмы и


Форменных элементов — эритроцитов, лейкоцитов и тромбоцитов, взрослого человека форменные элементы крови составляют около 40—48%, а плазма — 52—60%. Это соотношение получило название гематокритного числа (от греч. haima— кровь, kritos— показатель). В практической деятельности для характеристики гематокритного числа указывается лишь показатель плотной части крови.


6.1.1.
Основные функции крови


Основными функциями крови являются транспортная, защитная и регуляторная, остальные функции, приписываемые системе крови, являются лишь производными основных ее функций. Все три ос­новные функции крови связаны между собой и неотделимы друг от друга.


Транспортная функция. Кровь переносит необходимые для жиз­недеятельности органов и тканей различные вещества, газы и про­дукты обмена. Транспортная функция осуществляется как плазмой, так и форменными элементами. Последние могут переносить все


вещества, входящие в состав крови. Многие из них переносятся в неизмененном виде, другие вступают в нестойкие соединения с различными белками. Благодаря транспорту осуществляется дыха­тельная функция крови. Кровь осуществляет перенос гор­монов, питательных веществ, продуктов обмена, ферментов, раз­личных биологически активных веществ, солей, кислот, щелочей, катионов, анионов, микроэлементов и др. С транспортом связана и экскреторная функция крови — выделение из организма метаболитов, отслуживших свой срок или находящихся в данный момент в избытке веществ.


Защитные функции.
Чрезвычайно разнообразны. С наличием в крови лейкоцитов связана специфическая (иммунитет) и неспе­цифическая (главным образом фагоцитоз) защита организма. В со­ставе крови содержатся все компоненты так называемой системы комплемента, играющей важную роль как в специфической, так и неспецифической защите. К защитным функциям относится сохранение циркулирующей крови в жидком состоянии и остановка кровотечения (гемостаз) в случае нарушения целостно­сти сосудов.


Гуморальная регуляция деятельности организма. В
первую очередь связана с поступлением в циркулирующую кровь гормонов, биологически активных веществ и продуктов обмена. Благодаря регуляторной функции крови осуществляется сохранение постоян­ства внутренней среды организма, водного и солевого баланса тканей и температуры тела, контроль за интенсивностью обменных процессов, регуляция гемопоэза и других физиологических фун­кций.


6.1.2. Количество крови в организме


У человека кровь составляет 6—8% от массы тела, т. е. в среднем 5—6 л.


Определение количества крови в организме заключается в сле­дующем: в кровь вводят нейтральную краску, радиоактивные изо­топы или коллоидный раствор и через определенное время, когда вводимый маркер равномерно распределится, определяют его кон­центрацию. Зная количество введенного вещества, легко рассчитать количество крови в организме. При этом следует учитывать, рас­пределяется ли вводимый субстрат в плазме или полностью про­никает в эритроциты. В дальнейшем определяют гематокритное число, после чего производят расчет общего количества крови в организме.


6.1.3. Состав плазмы крови


Плазма представляет собой жидкую часть крови желтоватого цвета, слегка опалесцирующую, в состав которой входят различные соли (электролиты), белки, липиды, углеводы, продукты обмена, гор­моны, ферменты, витамины и растворенные в ней газы (табл. 6.1).


Состав плазмы отличается лишь относительным постоянством и во многом зависит от приема пищи, воды и солей. В то же время концентрация глюкозы, белков, всех катионов, хлора и гидрокар­бонатов удерживается в плазме на довольно постоянном уровне и лишь на короткое время может выходить за пределы нормы. Зна­чительные отклонения этих показателей от средних величин на длительное время приводят к тяжелейшим последствиям для орга­низма, зачастую несовместимым с жизнью. Содержание же других составных элементов плазмы — фосфатов, мочевины, мочевой кис­лоты, нейтрального жира может варьировать в довольно широких пределах, не вызывая расстройств функции организма. В общей сложности минеральные вещества плазмы составляют около 0,9%. Содержание глюкозы в крови 3,3—5,5
ммоль/л.


Растворы, имеющие одинаковое с кровью осмотическое давление, получили название изотонических,
или физиологических.
К таким растворам для теплокровных животных и человека относится 0,9% раствор натрия хлорида и 5% раствор глюкозы. Растворы, имеющие большее осмотическое давление, чем кровь, называются гиперто­ническими,
а меньшее — гипотоническими.


Для обеспечения жизнедеятельности изолированных органов и тканей, а также при кровопотере используют растворы, близкие по ионному составу к плазме крови (табл. 6.2).


Из-за отсутствия коллоидов (белков) растворы Рингера—Локка и Тироде неспособны на длительное время задерживать воду в крови — вода быстро выводится почками и переходит в ткани. Поэтому в клинической практике эти растворы применяются в качестве кровезамещающих лишь в случаях, когда отсутствуют коллоидные растворы, способные на длительное время восполнить недостаток жидкости в сосудистом русле.


Важнейшей составной частью плазмы являются белки, содержа­ние которых составляет 7—8% от массы плазмы. Белки плазмы — альбумины, глобулины и фибриноген. К альбуминам относятся белки с относительно малой молекулярной массой (около 70 000), их 4— 5%, к глобулинам — крупномолекулярные белки (молекулярная масса до 450 000) — количество их доходит до 3 %. На долю глобулярного белка фибриногена (молекулярная масса 340 000) при­ходится 0,2—0,4%. С помощью метода электрофореза, основанного на различной скорости движения белков в электрическом поле, глобулины могут быть разделены на а1-, а2
-
и у-глобулины.


Функции белков плазмы крови весьмaразнообразны: белки обес­печивают онкотическое давление крови, от которого в значительной степени зависит обмен воды и растворенных в ней веществ между кровью и тканевой жидкостью; регулируют рН крови благодаря наличию буферных свойств; влияют на вязкость крови и плазмы, что чрезвычайно важно для поддержания нормального уровня кро­вяного давления, обеспечивают гуморальный иммунитет, ибо явля­ются антителами (иммуноглобулинами); принимают участие в свер­тывании крови; способствуют сохранению жидкого состояния крови, так как входят в состав противосвертывающих веществ, именуемых естественными антикоагулянтами; служат переносчиками ряда гор­монов, липидов, минеральных веществ и др.; обеспечивают процессы репарации, роста и развития различных клеток организма.


6.1.4. Физико-химические свойства крови


Цвет крови
. Определяется наличием в эритроцитах особого бел­ка — гемоглобина. Артериальная кровь характеризуется ярко-крас­ной окраской, что зависит от содержания в ней гемоглобина, на­сыщенного кислородом (оксигемоглобин). Венозная кровь имеет тем­но-красную с синеватым оттенком окраску, что объясняется наличием в ней не только окисленного, но и восстановленного гемоглобина. Чем активнее орган и чем больше отдал кислорода тканям гемоглобин, тем более темной выглядит венозная кровь.


Относительная плотность крови. Колеблется от 1,058 до 1,062 и зависит преимущественно от содержания эритроцитов. Относи­тельная плотность плазмы крови в основном определяется концен­трацией белков и составляет 1,029—1,032.


Вязкость крови. Определяется по отношению к вязкости воды и соответствует 4,5—5,0. Вязкость крови зависит главным образом от содержания эритроцитов и в меньшей степени от белков плазмы. Вязкость венозной крови несколько больше, чем артериальной, что


обусловлено поступлением в эритроциты СO2, благодаря чему не­значительно увеличивается их размер. Вязкость крови возрастает при опорожнении депо крови, содержащей большее число эритро­цитов. Вязкость плазмы не превышает 1,8—2,2. При обильном белковом питании вязкость плазмы, а следовательно, и крови может повышаться.


Осмотическое давление крови.
Осмотическим давлением назы­вается сила, которая заставляет переходить растворитель (для крови это вода) через полупроницаемую мембрану из менее в более кон­центрированный раствор. Осмотическое давление крови вычисляют криоскопическим методом с помощью определения депрессии (точки замерзания), которая для крови составляет 0,56—0,58°С. Депрессия молярного раствора (раствор, в котором растворена 1 грамм-моле­кула вещества в 1 л воды) соответствует 1,86°С. Подставив значения в
уравнение Клапейрона, легко рассчитать, что осмотическое дав-


:' ление крови равно приблизительно 7,6 атм.


Осмотическое давление крови зависит в основном от растворен­ных в ней низкомолекулярных соединений, главным образом солей. Около 60% этого давления создается NaCl. Осмотическое давление в
крови, лимфе, тканевой жидкости, тканях приблизительно оди­наково и отличается постоянством. Даже в случаях, когда в кровь поступает значительное количество воды или соли, осмотическое давление не претерпевает существенных изменений. При избыточ­ном поступлении в кровь вода быстро выводится почками и переходит в
ткани и клетки, что восстанавливает исходную величину осмо­тического давления. Если же в крови повышается концентрация солей, то в сосудистое русло переходит вода из тканевой жидкости, а почки начинают усиленно выводить соли. Продукты переваривания белков, жиров и углеводов, всасывающиеся в кровь и лимфу, а также низкомолекулярные продукты клеточного метаболизма могут изменять осмотическое давление в небольших пределах.


Поддержание постоянства осмотического давления играет чрез­вычайно важную роль в жизнедеятельности клеток.


Онкотическое давление
. Является частью осмотического и за­висит от содержания крупномолекулярных соединений (белков) в


: растворе. Хотя концентрация белков в плазме довольно велика,


| общее количество молекул из-за их большой молекулярной массы относительно мало, благодаря чему онкотическое давление не пре­вышает 30 мм рт. ст. Онкотическое давление в большей степени зависит от альбуминов (80% онкотического давления создают аль­бумины) , что связано с их относительно малой молекулярной массой и большим количеством молекул в плазме.


Онкотическое давление играет важную роль в регуляции водного


: обмена. Чем больше его величина, тем больше воды удерживается в сосудистом русле и тем меньше ее переходит в ткани и наоборот. Онкотическое давление влияет на образование тканевой жидкости, лимфы, мочи и всасывание воды в кишечнике. Поэтому кровеза-мещающие растворы должны содержать в своем составе коллоидные


вещества, способные удерживать воду.


При снижении концентрации белка в плазме развиваются отеки, так как вода перестает удерживаться в сосудистом русле и переходит в ткани.


Температура крови
. Во многом зависит от интенсивности обмена веществ того органа, от которого оттекает кровь, и колеблется в пределах 37—40°С. При движении крови не только происходит некоторое выравнивание температуры в различных сосудах, но и создаются условия для отдачи или сохранения тепла в организме.


Концентрация водородных ионов и регуляция рН крови
. В нор­ме рН крови соответствует 7,36, т. е. реакция слабоосновная. Колебания величины рН крови крайне незначительны. Так, в условиях покоя рН артериальной крови соответствует 7,4, а ве­нозной — 7,34. В клетках и тканях рН достигает 7,2 и даже 7,0, что зависит от образования в них в процессе обмена веществ «кислых» продуктов метаболизма. При различных физиологических состояниях рН крови может изменяться как в кислую (до 7,3), так и в щелочную (до 7,5) сторону. Более значительные откло­нения рН сопровождаются тяжелейшими последствиями для орга­низма. Так, при рН крови 6,95 наступает потеря сознания, и если эти сдвиги в кратчайший срок не ликвидируются, то неми­нуема смерть. Если же концентрация ионов Н+
уменьшается и рН становится равным 7,7, то наступают тяжелейшие судороги (тетания), что также может привести к смерти.


В процессе обмена веществ ткани выделяют в тканевую жидкость, а следовательно, и в кровь «кислые» продукты обмена, что должно приводить к сдвигу рН в кислую сторону. Так, в результате ин­тенсивной мышечной деятельности в кровь человека может поступать в течение нескольких минут до 90 г молочной кислоты. Если это количество молочной кислоты прибавить к объему дистиллированной воды, равному объему циркулирующей крови, то концентрация ионов Н+
возросла в ней в 40 000 раз. Реакция же крови при этих условиях практически не изменяется, что объясняется наличием буферных систем крови. Кроме того, в организме постоянство рН сохраняется за счет работы почек и легких, удаляющих из крови СO2, избыток солей, кислот и оснований (щелочей).


Постоянство рН крови поддерживается буферными системами: гемоглобиновой, карбонатной, фосфатной и белками плазмы.


Самой мощной является буферная система гемоглобина.
На ее долю приходится 75% буферной емкости крови. Эта система вклю­чает восстановленный гемоглобин (ННЬ) и калиевую соль восста­новленного гемоглобина (КНЬ). Буферные свойства системы обус­ловлены тем, что КНЬ как соль слабой кислоты отдает ион К+
и присоединяет при этом ион H+, образуя слабодиссоциированную кислоту:


H+ + KHb = K+ + HHb


Величина рН крови, притекающей к тканям, благодаря восста­новленному гемоглобину, способному связывать СO2
и Н+
-ионы,


остается постоянной. В этих условиях ННЬ выполняет функции основания. В легких гемоглобин ведет себя как кислота (оксигемог-лобин ННЬO2 является более сильной кислотой, чем С02
), что предотвращает защелачивание крови.


Карбонатная буферная система
(ЬЬСОэ/ЫаНСОз) по своей мощности занимает второе место. Ее функции осуществляются следующим образом: NaHCOaдиссоциирует на ионы Na+
и НСОГ Если в кровь поступает кислота более сильная, чем уголь­ная, то происходит обмен ионами Na* с образованием слабодис-социированной и легко растворимой угольной кислоты, что пред­отвращает повышение концентрации ионов Н+
в крови. Увеличение же концентрации угольной кислоты приводит к ее распаду (это происходит под влиянием фермента карбоангидразы, находящегося в эритроцитах) на H2O и СO2. Последний поступает в легкие и выделяется в окружающую среду. Если в кровь поступает осно­вание, то она реагирует с угольной кислотой, образуя натрия гидрокарбонат (NaHCO3) и воду, что опять-таки препятствует сдвигу рН в щелочную сторону.


Фосфатная буферная система
образована натрия дигидрофос-фатом (NaH2PO4) и натрия гидрофосфатом (Na2HPO4). Первое со­единение ведет себя как слабая кислота, второе — как соль слабой кислоты. Если в кровь попадает более сильная кислота, то она реагирует с Na2HPO4, образуя нейтральную соль, и увеличивает количество слабодиссоциируемого Na2HPO4:


Н+
+

NaHP
04~=
Na
+

+
H
2
PO
4~


Избыточное количество натрия дигидрофосфата при этом будет удаляться с мочой, благодаря чему соотношение NaH2PO4/Na2HPO4 не изменится.


Белки плазмы крови
играют роль буфера, так как обладают амфотерными свойствами: в кислой среде ведут себя как основания, а в основной — как кислоты.


Важная роль в поддержании постоянства рН крови отводится нервной регуляции. При этом преимущественно раздражаются хе-морецепторы сосудистых рефлексогенных зон, импульсы от которых поступают в продолговатый мозг и другие отделы ЦНС, что ре-флекторно включает в реакцию периферические органы — почки, легкие, потовые железы, желудочно-кишечный тракт и др., дея­тельность которых направлена на восстановление исходной величины рН. Так, при сдвиге рН в кислую сторону почки усиленно выделяют с мочой анион Н2РО4~. При сдвиге рН крови в щелочную сторону увеличивается выделение почками анионов НРО 2~и НСО3- Потовые железы человека способны выводить избыток молочной кислоты, а легкие — СO2.


Буферные системы крови более устойчивы к действию кислот, чем оснований. Основные соли слабых кислот, содержащиеся в крови, образует так называемый щелочной резерв крови. Его величина определяется по тому количеству СО2, которое может


бытьсвязано 100 мл крови при напряжении С02
,
равному 40 мм рт. ст.


При различных патологических состояниях может наблюдаться сдвиг рН как в кислую, так и в щелочную сторону. Первый из них носит название ацидоза, второй — алкалоза.


Суспензионная устойчивость крови
(скорость оседания эритро­цитов — СОЭ). Кровь представляет собой суспензию, или взвесь, так как форменные элементы ее находятся в плазме во взвешенном состоянии. Взвесь эритроцитов в плазме поддерживается гидрофиль­ной природой их поверхности, а также тем, что эритроциты (как и другие форменные элементы) несут отрицательный заряд, благо­даря чему отталкиваются друг от друга. Если отрицательный заряд форменных элементов уменьшается, что может быть обусловлено адсорбцией таких положительно заряженных белков, как фибрино­ген, у-глобулины, парапротеины и др., то снижается электростати­ческий «распор» между эритроцитами. При этом эритроциты, скле­иваясь друг с другом, образуют так называемые монетные столбики. Одновременно положительно заряженные белки выполняют роль межэритроцитарных мостиков. Такие «монетные столбики», застре­вая в капиллярах, препятствуют нормальному кровоснабжению тка­ней и органов.


Если кровь поместить в пробирку, предварительно добавив в нее вещества, препятствующие свертыванию, то через некоторое время можно увидеть, что кровь разделилась на два слоя: верхний состоит из плазмы, а нижний представляет собой форменные элементы, главным образом эритроциты. Исходя из этих свойств, Фарреус предложил изучать суспензионную устойчивость эритроцитов, оп­ределяя скорость их оседания в крови, свертываемость которой устранялась предварительным добавлением цитрата натрия. Этот показатель получил наименование «скорость оседания эритроцитов (СОЭ)».


Величина СОЭ зависит от возраста и пола. У новорожденных СОЭ равна 1—2 мм/ч, у детей старше 1 года и у мужчин — 6—12 мм/ч, у женщин — 8—15 мм/ч, у пожилых людей обоего пола — 15—20 мм/ч. Наибольшее влияние на величину СОЭ ока­зывает содержание фибриногена: при увеличении его концентрации более 4 г/л СОЭ повышается. СОЭ резко увеличивается во время беременности, когда содержание фибриногена в плазме значительно возрастает. Повышение СОЭ наблюдается при воспалительных, ин­фекционных и онкологических заболеваниях, а также при значи­тельном уменьшении числа эритроцитов (анемия). Уменьшение СОЭ у взрослых людей и детей старше 1 года является неблагоприятным признаком.


Величина СОЭ зависит в большей степени от свойств плазмы, чем эритроцитов. Так, если эритроциты мужчины с нормальной СОЭ поместить в плазму беременной женщины, то эритроциты мужчины оседают с такой же скоростью, как и у женщин при беременности.


6.2. ФОРМЕННЫЕ ЭЛЕМЕНТЫ КРОВИ


Все форменные элементы крови — эритроциты, лейкоциты и тромбоциты — образуются в костном мозге из единой полипотентной, или плюрипотентной, стволовой клетки (ПСК).


В костном мозге все кроветворные клетки собраны в грозди, которые окружены фибробластами и эндотелиальными клетками. Созревшие клетки пробивают себе путь среди расщелин, образо­ванных фибробластами и эндотелием, в синусы, откуда поступают затем в венозную кровь.


Несмотря на то что все клетки крови являются потомками единой кроветворной клетки, они несут различные специфические функции, в то же время общность происхождения наделила их и общими свойствами. Так, все клетки крови, независимо от их специфики, участвуют в транспорте различных веществ, выполняют защитные и
регуляторные функции.


6.2.1. Эритроциты


Эритроциты, или красные кровяные диски, впервые обнару­жил в крови лягушки Мальпиги (1661), а Левенгук (1673) показал, что они также присутствуют в крови человека и млекопитающих.


В крови человека эритроциты имеют преимущественно форму двояковогнутого диска. Поверхность диска в 1,7 раза больше, чем поверхность тела такого же объема, но сферической формы; при этом диск умеренно изменяется без растяжения мембраны клетки. Несомненно, форма двояковогнутого диска, увеличивая поверхность эритроцита, обеспечивает транспорт большего количества различных веществ. Кроме того, такая форма позволяет эритроцитам закреп­ляться в фибриновой сети при образовании тромба. Но главное преимущество заключается в том, что форма двояковогнутого диска обеспечивает прохождение эритроцита через капилляры. При этом эритроцит перекручивается в средней узкой части, его содержимое из более широкого конца перетекает к центру, благодаря чему эритроцит свободно входит в узкий капилляр. Форма эритроцитов здоровых людей весьма вариабельна — от двояковогнутой линзы до тутовой ягоды.


Эритроцит окружен плазматической мембраной, структура ко­торой мало отличается от таковой других клеток. Наряду с тем, что мембрана эритроцита проницаема для катионов Naи К , она особенно хорошо пропускает O2, СO2, С1~ и HCO3~. Цитоскелет в виде проходящих через клетку трубочек и микрофиламентов в эритроците отсутствует, что придает ему эластичность и деформи­руемость — столь необходимые свойства при прохождении через узкие капилляры.


Размеры эритроцита весьма изменчивы, но в большинстве случаев их диаметр равен 7,5—8,3 мкм, толщина — 2,1 мкм, площадь поверхности — 145 мкм2
, объем — 86 мкм3
.


В норме число эритроцитов у мужчин равно 4—5*10^12
/л, или


4 000 000—5 000 000 в 1 мкл. У женщин число эритроцитов меньше и, как правило, не превышает 4,5 1012
/л. При беременности число эритроцитов может снижаться до 3,5-1012
/л и даже до 3,0*1012
/л, и это многие исследователи считают нормой.


У человека с массой тела 60 кг общее число эритроцитов равняется 25 триллионам. Если положить все эритроциты одного человека один на другой, то получится «столбик» высотой более 60 км.


В норме число эритроцитов подвержено незначительным коле­баниям. При различных заболеваниях количество эритроцитов мо­жет уменьшаться. Подобное состояние носит название «эритро-пения» и часто сопутствует малокровию или анемии. Увеличение числа эритроцитов обозначается как «эритроцитоз».


6.2.1.1. Гемоглобин и его соединения


Основные функции эритроцитов обусловлены наличием в их составе особого белка хромопротеида — гемоглобина. Молеку­лярная масса гемоглобина человека равна 68 800. Гемоглобин состоит из белковой (глобин) и железосодержащей (гем) частей. На 1 мо­лекулу глобина приходится 4 молекулы гема.


В крови здорового человека содержание гемоглобина составляет 120—165 г/л (120—150 г/л для женщин и 130—160 г/л для мужчин). У беременных содержание гемоглобина может понижаться до 110 г/л, что не является патологией.


Основное назначение гемоглобина — транспорт О2 и СO2. Кроме того, гемоглобин обладает буферными свойствами, а также способ­ностью связывать некоторые токсичные вещества.


Гемоглобин человека и различных животных имеет разное стро­ение. Это касается белковой части — глобина, так как гем у всех представителей животного мира имеет одну и ту же структуру. Гем состоит из молекулы порфирина, в центре которой расположен ион Fe2+
, способный присоединять О2. Структура белковой части гемо­глобина человека неоднородна, благодаря чему белковая часть раз­деляется на ряд фракций. Большая часть гемоглобина взрослого человека (95—98%) состоит из фракции А (от лат. adultus— взрослый); от 2 до 3% всего гемоглобина приходится на фракцию А2
; наконец, в эритроцитах взрослого человека находится так на­зываемый фетальный гемоглобин (от лат. fetus— плод), или ге­моглобин F, содержание которого в норме подвержено значительным колебаниям, хотя редко превышает 1—2%. Гемоглобины А и А2
обнаруживаются практически во всех эритроцитах, тогда как ге­моглобин Fприсутствует в них не всегда.


Гемоглобин Fсодержится преимущественно у плода. К моменту рождения ребенка на его долю приходится 70—90%. Гемоглобин Fимеет большее сродство к O2, чем гемоглобин А, что позволяет тканям плода не испытывать гипоксии, несмотря на относительно низкое напряжение O2 в его крови. Эта приспособительная реакция объясняется тем, что гемоглобин Fтруднее вступает в связь с 2,3-дифосфоглицериновой кислотой, которая уменьшает способность


гемоглобина переходить в оксигемоглобин, а следовательно, и обес­печивать легкую отдачу O2 тканям.


Гемоглобин обладает способностью образовывать соединения с O2, СO2 и СО. Гемоглобин, присоединивший О2, носит наименование оксигемоглобина
(ННЬO2); гемоглобин, отдавший O2, называется восстановленным,
или редуцированным
(ННЬ). В артериальной кро­ви преобладает содержание оксигемоглобина, от чего ее цвет при­обретает алую окраску. В венозной крови до 35% всего гемоглобина приходится на ННЬ. Кроме того, часть гемоглобина через аминную группу связывается с СO2, образуя карбогемоглобин
(ННЬС02
), благодаря чему переносится от 10 до 20% всего транспортируемого кровью СO2.


Гемоглобин способен образовывать довольно прочную связь с СО. Это соединение называется карбоксигемоглобином
(ННЬСО). Сродство гемоглобина к СО значительно выше, чем к O2, поэтому гемоглобин, присоединивший СО, неспособен связываться с O2. Од­нако при вдыхании чистого O2 резко возрастает скорость распада карбоксигемоглобина, чем пользуются на практике для лечения отравлений СО.


Сильные окислители (ферроцианид, бертолетова соль, пероксид, или перекись, водорода и др.) изменяют заряд от Fe2+
до Fe3+
, в результате чего возникает окисленный гемоглобин — прочное сое­динение гемоглобина с O2, носящее наименование метгемоглобина.
При этом нарушается транспорт O2, что приводит к тяжелейшим последствиям для человека и даже смерти.


6.2.1.2. Цветовой показатель


О содержании в эритроцитах гемоглобина судят по так назы­ваемому цветовому показателю, или фарб-индексу (Fi, от farb— цвет, index— показатель) — относительной величине, характе­ризующей насыщение в среднем одного эритроцита гемоглобином. Fi— процентное соотношение гемоглобина и эритроцитов, при этом за 100% (или единиц) гемоглобина условно принимают величину, равную 166,7 г/л, а за 100% эритроцитов — 5-10 /л. Если у человека содержание гемоглобина и эритроцитов равно 100%, то цветовой показатель равен 1. В норме Fiколеблется в пределах 0,75—1,0 и очень редко может достигать 1,1. В этом случае эритроциты называются нормохромными. Если Fiменее 0,7, то такие эритроциты недонасыщены гемоглобином и называются гипохромными. При Fiболее 1,1 эритроциты име­нуются гиперхромными. В этом случае объем эритроцита значительно увеличивается, что позволяет ему содержать большую концентрацию гемоглобина. В результате создается ложное впе­чатление, будто эритроциты перенасыщены гемоглобином. Гипо-и гиперхромия встречаются лишь при анемиях. Определение цве­тового показателя важно для клинической практики, так как позволяет провести дифференциальный диагноз при анемиях раз­личной этиологии.


6.2.1.3. Гемолиз


Гемолизом называется разрыв оболочки эритроцитов и выход гемоглобина в плазму, благодаря чему кровь приобретает лаковый цвет. В искусственных условиях гемолиз эритроцитов может быть вызван помещением их в гипотонический раствор. Для здоровых людей минимальная граница осмотической стойкости соответствует раствору, содержащему 0,42—0,48% NaCl, полный же гемолиз (мак­симальная граница стойкости) происходит при концентрации 0,30— 0,34% NaCl. При анемиях границы минимальной и максимальной стойкости смещаются в сторону повышения концентрации гипото­нического раствора.


Причины гемолиза.
Гемолиз может быть вызван химическими агентами (хлороформ, эфир, сапонин и др.), разрушающими мем­брану эритроцитов. В клинике нередко встречается гемолиз при отравлении уксусной кислотой. Гемолизирующими свойствами об­ладают яды некоторых змей (биологический гемолиз).


При сильном встряхивании ампулы с кровью также наблюдается разрушение мембраны эритроцитов — механический гемолиз.
Он может проявляться у больных с протезированием клапанного аппа­рата сердца и сосудов. Кроме того, механический гемолиз иногда возникает при длительной ходьбе (маршевая гемоглобинурия) из-за травмирования эритроцитов в капиллярах стоп.


Если эритроциты заморозить, а потом отогреть, то возникает гемолиз, получивший наименование термического.
Наконец, при переливании несовместимой крови и наличии аутоантител к эрит­роцитам развивается иммунный гемолиз.
Последний является при­чиной возникновения анемий и нередко сопровождается вы­делением гемоглобина и его производных с мочой (гемоглобину­рия).


6.2.1.4. Функции эритроцитов


Эритроцитам присущи три основные функции: транспортная, защитная и регуляторная.


Транспортная функция эритроцитов
заключается в том, что они транспортируют O2
и СO2, аминокислоты, полипептиды, белки, углеводы, ферменты, гормоны, жиры, холестерин, различные био­логически активные соединения (простагландины, лейкотриены и др.), микроэлементы и др.


Защитная функция эритроцитов
заключается в том, что они играют существенную роль в специфическом и неспецифическом иммунитете и принимают участие в сосудисто-тромбоцитарном ге­мостазе, свертывании крови и фибринолизе.


Регуляторную функцию
эритроциты осуществляют благодаря со­держащемуся в них гемоглобину; регулируют рН крови, ионный состав плазмы и водный обмен. Проникая в артериальный конец капилляра, эритроцит отдает воду и растворенный в ней O2
и уменьшается в объеме, а переходя в венозный конец капилляра,


забирает воду, СO2 и продукты обмена, поступающие из тканей и увеличивается в объеме.


Благодаря эритроцитам во многом сохраняется относительное постоянство состава плазмы. Это касается не только солей. В случае увеличения концентрации в плазме белков эритроциты их активно адсорбируют. Если же содержание белков в крови уменьшается, то эритроциты отдают их в плазму.


Эритроциты являются носителями глюкозы и гепарина, облада­ющего выраженным противосвертывающим действием. Эти соеди­нения при увеличении их концентрации в крови проникают через мембрану внутрь эритроцита, а при снижении — вновь поступают в плазму.


Эритроциты являются регуляторами эритропоэза, так как в их составе содержатся эритропоэтические факторы, поступающие при разрушении эритроцитов в костный мозг и способствующие обра­зованию эритроцитов. В случае разрушения эритроцитов из осво­бождающегося гемоглобина образуется билирубин, являющийся од­ной из составных частей желчи.


6.2.1.5. Эритрон. Регуляция эритропоэза


Понятие «эритрон» введено английским терапевтом Каслом для обозначения массы эритроцитов, находящихся в циркулирующей крови, в кровяных депо и костном мозге. Принципиальная разница между эритроном и другими тканями организма заключается в том, что разрушение эритроцитов осуществляется преимущественно мак­рофагами за счет процесса, получившего наименование «эритрофа-гоцитоз». Образующиеся при этом продукты разрушения и в первую очередь железо используются на построение новых клеток. Таким образом, эритрон является замкнутой системой, в которой в условиях нормы количество разрушающихся эритроцитов соответствует числу вновь образовавшихся.


Развитие эритроцитов происходит в замкнутых капиллярах крас­ного костного мозга. Как только эритроцит достигает стадии ре-тикулоцита, он растягивает стенку капилляра, благодаря чему сосуд раскрывается и ретикулоцит вымывается в кровоток, где и превращается за 35—45 ч в молодой эритроцит — нормоцит. В норме в крови содержится не более 1—2% ретикулоцитов.


В кровотоке эритроциты живут 80—120 дней. Продолжительность жизни эритроцитов у мужчин несколько больше, чем у женщин.


Для нормального эритропоэза необходимо железо.
Последнее поступает в костный мозг при разрушении эритроцитов, из депо, а также с пищей и водой. Взрослому человеку для нормального эритропоэза требуется в суточном рационе 12— 15 мг железа. Железо откладывается в различных органах и тканях, главным образом в печени и селезенке. Если железа в организм поступает недостаточно, то развивается железодефицитная анемия.


Всасыванию железа в кишечнике способствует аскорбиновая кис­лота,
переводящая Fe3+
в Fe2+
, который сохраняет растворимость


при нейтральных и щелочных значениях рН. На участке слизистой оболочки тонкой кишки имеются рецепторы, облегчающие переход железа в энтероцит, а оттуда в плазму. В слизистой оболочке тонкой кишки находится белок-переносчик железа — трансферрин.
Он доставляет железо в ткани, имеющие трансферриновые рецепторы. В клетке комплекс трансферрина и железа распадается, и железо вступает в связь с другим белком-переносчиком — ферритином.
Клетки-предшественники зрелых эритроцитов накапливают железо в ферритине. В дальнейшем оно используется, когда клетка начинает образовывать большое количество гемоглобина.


Важным компонентом эритропоэза является медь,
которая усва­ивается непосредственно в костном мозге и принимает участие в синтезе гемоглобина. Если медь отсутствует, то эритроциты созре­вают лишь до стадии ретикулоцита. Медь катализирует образование гемоглобина, способствуя включению железа в структуру гема. Не­достаток меди приводит к анемии.


Для нормального эритропоэза необходимы витамины
и в пер­вую очередь витамин В12
и фолиевая кислота. Эти витамины оказывают сходное взаимодополняющее действие на эритропоэз. Витамин B12 (внешний фактор кроветворения) синтезируется мик­роорганизмами, лучистыми грибками и некоторыми водорослями. Для его образования необходим кобальт. В организм человека витамин B12 поступает с пищей — особенно его много в печени, мясе, яичном желтке.


Для всасывания витамина В12 требуется внутренний фактор кро­ветворения, который носит наименование «гастромукопротеин». Это вещество является комплексным соединением, образующимся в же­лудке.


Фолиевая кислота, или витамин В7, является водорастворимым витамином, содержащимся во многих растительных продуктах, а также в печени, почках, яйцах.


Витамин В12 и фолиевая кислота принимают участие в синтезе глобина. Они обусловливают образование в эритробластах нуклеи­новых кислот, являющихся одним из основных строительных мате­риалов клетки.


Немаловажную роль в регуляции эритропоэза играют другие витамины группы В, а также железы внутренней секреции. Все гормоны, регулирующие обмен белков (соматотропный гормон ги­пофиза, гормон щитовидной железы — тироксин и др.) и кальция (паратгормон, тиреокальцитонин), необходимы для нормального эритропоэза. Мужские половые гормоны (андрогены) стимулируют эритропоэз, тогда как женские (эстрогены) — тормозят его, что обусловливает меньшее число эритроцитов у женщин по сравнению с мужчинами.


Особо важную роль в регуляции эритропоэза играют специфи­ческие вещества, получившие наименование «эритропоэтины».
Еще в 1906 г. показано, что сыворотка крови кроликов, перенесших кровопотерю, стимулирует электропоэз. В дальнейшем было уста­новлено, что эритропоэтины присутствуют в крови животных и


людей, испытывающих гипоксию — недостаточное поступление к тканям кислорода, что наблюдается при анемиях, подъеме на высоту, мышечной работе, снижении парциального давления кислорода в барокамере, заболеваниях сердца и легких. В небольшой концент­рации эритропоэтины обнаружены в крови здоровых людей, что позволяет считать их физиологическими регуляторами эритропоэза. Вместе с тем при анемиях, сопровождающих заболевания почек, эритропоэтины отсутствуют или их концентрация значительно сни­жается. Эти данные позволили предположить, что местом синтеза эритропоэтинов являются почки. Эритропоэтины образуются также в печени, селезенке, костном мозге. Получены факты, свидетель­ствующие о том, что мощной эритропоэтической активностью об­ладают полипептиды эритроцитов, молекулярная масса которых не превышает 10 000.


Эритропоэтины оказывают действие непосредственно на клетки-предшественники эритроидного ряда (КОЕ-Э)1
. Функции эритропо­этинов сводятся к следующему: 1) ускорение и усиление перехода стволовых клеток костного мозга в эритробласты; 2) увеличение числа митозов клеток эритроидного ряда; 3) исключение одного или нескольких циклов митотических делений; 4) ускорение созревания неделящихся клеток — нормобластов, ретикулоцитов.


Ряд гемопоэтических факторов образуется стромой костного мозга и костномозговыми фибробластами. «Микроокружение» костного мозга является важнейшей частью кроветворного механизма. Эрит-роидные предшественники, размещенные на ячеистой сети костно­мозговых фибробластов, быстро развиваются и втискиваются между ними. Это объясняется тем, что для дифференцировки эритроидных клеток требуется их плотное прикрепление (адгезия) к окружающим структурам. Кроме того, фибробласты и эндотелиальные клетки являются источником ростковых факторов кроветворения.


На эритропоэз действуют соединения, синтезируемые моноцита­ми, макрофагами, лимфоцитами и другими клетками, получившие название «интерлейкины».
Согласно международной классифика­ции, они обозначаются арабскими цифрами (ИЛ-1, ИЛ-2 и т. д.). На полипотентную стволовую клетку (ПСК) непосредственно вли­яют и способствуют ее дифференцировке ИЛ-3, ИЛ-6, ИЛ-11 и ИЛ-12. В частности, активированные макрофаги выделяют ИЛ-1, а также фактор некроза опухолей (ФНО). ИЛ-1 и ФНО стимулируют фибробласты и эндотелиальные клетки, благодаря чему они усиленно продуцируют так называемый белковый фактор Стила, оказываю­щий влияние непосредственно на ПСК и способствующий ее диф­ференцировке. Кроме того, фибробласты, эндотелиальные клетки и активированные Т-лимфоциты способны выделять ИЛ-6, ИЛ-11 и гранулоцитарно-макрофагальный колониестимулирующий фактор (ГМ-КСФ). Фактор Стила, ИЛ-3, ИЛ-6, ИЛ-11, ИЛ-1 и ГМ-КСФ относятся к раннедействующим гемопоэтическим ростовым факто-


рам. По мере того как родоначальники нескольких линий крове­творных клеток дифференцируются в родоначальники одной линии, в реакцию вступают позднедействующие гемопоэтические ростовые факторы и эритропоэтин.


Важная роль в эритропоэзе принадлежит ядерным факторам — ГАТА-1 (внутриядерный регулятор транскрипции в эритроне) и НФЕ-2. Отсутствие ГАТА-1 предотвращает образование эритроци­тов, недостаток НФЕ-2 нарушает всасывание железа в кишечнике и синтез глобина.


6.2.2. Лейкоциты


Лейкоциты, или белые кровяные тельца, представляют собой образования различной формы и величины. По строению лейкоциты делят на две большие группы: зернистые,
или гранулоциты,
и незернистые,
или агранулоциты.
К гранулоцитам относятся нейт-рофилы, эозинофилы и базофилы, к агранулоцитам — лимфоциты и моноциты. Свое наименование клетки зернистого ряда получили от способности окрашиваться красками: эозинофилы воспринимают кислую краску (эозин), базофилы — щелочную (гематоксилин), а нейтрофилы — и ту, и другую.


В норме количество лейкоцитов у взрослых людей колеблется от 4,5 до 8,5 тыс в 1 мм3
, или 4,5—8,5*109
/л.


Увеличение числа лейкоцитов носит название лейкоцитоза,
уменьшение — лейкопении.
Лейкоцитозы могут быть физиологиче­ские и патологические, тогда как лейкопении встречаются только при патологии.


6.2.2.1. Физиологические лейкоцитозы. Лейкопении


Различают следующие виды физиологических лейкоцитозов:


Пищевой.
Возникает после приема пищи. При этом число лей­коцитов увеличивается незначительно (в среднем на 1—3 тыс. в мкл) и редко выходит за границу верхней физиологической нормы. При пищевом лейкоцитозе большое количество лейкоцитов скапли­вается в подслизистой основе тонкой кишки. Здесь они осуществляют защитную функцию — препятствуют попаданию чужеродных аген­тов в кровь и лимфу. Пищевой Лейкоцитоз носит перераспредели­тельный характер и обеспечивается поступлением лейкоцитов в кровоток из депо крови.


Миогенный.
Наблюдается после выполнения тяжелой мышечной работы. Число лейкоцитов при этом может возрастать в 3—5 раз. O2ромное количество лейкоцитов при физической нагрузке скапли­вается в мышцах. Миогенный лейкоцитоз носит как перераспреде­лительный, так и истинный характер, так как при нем наблюдается усиление костномозгового кроветворения.


Эмоциональный.
Как и лейкоцитоз при болевом раздражении, носит перераспределительный характер и редко достигает высоких показателей.


При беременности.
Большое количество лейкоцитов скаплива­ется в подслизистой основе матки. Этот лейкрцитоз в основном носит местный характер. Его физиологический смысл состоит не только в предупреждении попадания инфекции в организм роженицы, но ив стимулировании сократительной функции матки.


Лейкопении встречаются только при патологических состо­яниях. Особенно тяжелая лейкопения может наблюдаться в случае поражения костного мозга — острых лейкозах и лучевой болезни. При этом изменяется функциональная активность лейкоцитов, что приводит к нарушениям в специфической и неспецифической за­щите, попутным заболеваниям, часто инфекционного характера, и даже смерти.


6.2.2.2. Лейкоцитарная формула


В норме и патологии учитывается не только количество лей­коцитов, но и их процентное соотношение, получившее наимено-вение лейкоцитарной формулы, или лейкограммы (табл. 6.3).


В крови здорового человека могут встречаться зрелые и юные формы лейкоцитов, однако в норме обнаружить их удается лишь у самой многочисленной группы — нейтрофилов. К ним относятся юные и палочкоядерные нейтрофилы. Юные нейтрофилы, или ми-елоциты, имеют довольно крупное бобовидное ядро, палочкоядер­ные — содержат ядро, не разделенное на отдельные сегменты. Зре­лые, или сегментоядерные, нейтрофилы имеют ядро, разделенное на 2 или 3 сегмента. Чем больше сегментов в ядре, тем старее нейтрофил. Увеличение количества юных и палочкоядерных нейт­рофилов свидетельствует об омоложении крови и носит название сдвига лейкоцитарной формулы влево,
снижение количества этих клеток свидетельствует о старении крови и называется сдвигом лейкоцитарной формулы вправо.
Сдвиг влево часто наблюдается при лейкозах (белокровие), инфекционных и воспалительных забо­леваниях.


6.2.2.3. Характеристика отдельных видов лейкоцитов


Нейтрофилы.
Созревая в костном мозге, задерживаются в нем на 3—5 дней, составляя костномозговой резерв гранулоцитов.


Лейкопоэз осуществляется экстраваскулярно и лейкоциты, в том числе и нейтрофилы, попадают в сосудистое русло благодаря аме­бовидному движению и выделению протеолитических ферментов, способных растворять белки костного мозга и капилляров. В цир­кулирующей крови нейтрофилы живут от 8 ч до 2 сут. Находящиеся в кровотоке нейтрофилы могут быть условно разделены на 2 группы: 1) свободно циркулирующие и 2) занимающие краевое положение в сосудах. Между обеими группами существует динамическое рав­новесие и постоянный обмен. Следовательно, в сосудистом русле нейтрофилов содержится приблизительно в 2 раза больше, чем определяется в вытекающей крови.


Предполагают, что разрушение нейтрофилов происходит за пре­делами сосудистого русла. По-видимому, все лейкоциты уходят в ткани, где и погибают. Обладая фагоцитарной функцией, нейтро­филы поглощают бактерии и продукты разрушения тканей. В составе нейтрофилов содержатся ферменты, разрушающие бактерии. Ней­трофилы способны адсорбировать антитела и переносить их к очагу воспаления, принимают участие в обеспечении иммунитета.


Под влиянием продуктов, выделяемых нейтрофилами, усили­вается митотическая активность клеток, ускоряются процессы ре­парации, стимулируется гемопоэз и растворение фибриновогр сгу­стка.


Базофилы
. В крови базофилов очень мало (40—60 в 1 мкл), однако в различных тканях, в том числе сосудистой стенке, содер­жатся тучные клетки, иначе называемые «тканевые базофилы». Функция базофилов обусловлена наличием в них ряда биологически активных веществ. К ним в первую очередь принадлежит гдетамин, расширяющий кровеносные сосуды. В базофилах содержатся проти-восвертывающее вещество гепарин, а также гиалуроновая кислота, влияющая на проницаемость сосудистой стенки. Кроме того, базо- филы содержат фактор активации тромбоцитов — ФАТ (соединение, обладающее чрезвычайно широким спектром действия), тромбоксаны (соединения, способствующие агрегации тромбоцитов), лейкотриены и простагландины — производные арахидоновой кислоты и др. Особо важную роль играют эти клетки при аллергических реакциях (брон­хиальная астма, крапивница, глистные инвазии, лекарственная бо­лезнь и др.), когда под влиянием комплекса антиген — антитело происходит дегрануляция базофилов и биологически активные со­единения поступают в кровь, обусловливая клиническую картину перечисленных заболеваний.


Количество базофилов резко возрастает при лейкозах, стрессовых ситуациях и слегка увеличивается при воспалении.


Эозинофилы.
Длительность пребывания эозинофилов в кровотоке не превышает нескольких часов, после чего они проникают в ткани, где и разрушаются. Эозинофилы обладают фагоцитарной активно-


стью. Особенно интенсивно они фагоцитируют кокки. В тканях эозинофилы скапливаются преимущественно в тех органах, где со­держится гистамин — в слизистой оболочке и подслизистой основе желудка и
тонкой кишки, в легких. Эозинофилы захватывают ги­стамин и разрушают его с помощью фермента гистаминазы. В со­ставе эозинофилов находится фактор, тормозящий выделение гис-тамина тучными клетками и базофилами. Эозинофилы играют важ­ную роль в разрушении токсинов белкового происхождения, чужеродных белков и иммунных комплексов.


Чрезвычайно велика роль эозинофилов, осуществляющих цито-токсический эффект, в борьбе с гельминтами, их яйцами и личин­ками. В частности, при контакте активированного эозинофила с личинками происходит его дегрануляция с последующим выделением большого количества белка и ферментов, например пероксидаз, на поверхность личинки, что приводит к разрушению последней. Уве­личение числа эозинофилов, наблюдаемое при миграции личинок, является одним из важнейших механизмов в ликвидации гельмин-тозов.


Содержание эозинофилов резко возрастает при аллергических заболеваниях, когда происходит дегрануляция базофилов и выделе­ние анафилактического хемотаксического фактора, который привле­кает эозинофилы. При этом эозинофилы выполняют роль «чистиль­щиков», фагоцитируя и инактивируя продукты, выделяемые базо­филами.


В эозинофилах содержатся катионные белки, которые активируют компоненты калликреин-кининовой системы и влияют на сверты­вание крови. Предполагают, что катионные белки, повреждая эн­дотелий, играют важную роль при развитии некоторых видов па­тологии сердца и сосудов.


При тяжело протекающих инфекционных заболеваниях число эозинофилов резко снижается, а иногда при подсчете лейкрци-тарной формулы они вообще не выявляются (развивается анэо-зинопения).


Моноциты.
Циркулируют до 70 ч, а затем мигрируют в ткани, где образуют обширное семейство -тканевых макрофагов. Функции их весьма многообразны. Моноциты являются чрезвычайно актив­ными фагоцитами, распознают антиген и переводят его в так на­зываемую иммуногенную форму, образуют ^биологически активные соединения — монокины (действующие в основном на лимфоциты), играют существенную роль в противоинфекционном и противора­ковом иммунитете, синтезируют отдельные компоненты системы комплемента, а также факторы, принимающие участие в сосуди-сто-тромбоцйтарном гемостазе, процессе свертывания крови и рас­творении кровяного сгустка.


Лимфоциты.
Как и другие виды лейкоцитов, образуются в ко­стном мозге, а затем поступают в сосудистое русло. Здесь одна популяция лимфоцитов направляется в вилочковую железу, где превращается в так называемые Т-лимфоциты (от слова thymus).


Популяция Т-лимфоцитов гетерогенна и представлена следую-


щими классами клеток. Т-киллеры, или убийцы (от англ. tokill — убивать), осуществляющие лизис клеток-мишеней, к которым можно отнести возбудителей инфекционных болезней, грибки, микобакте-рии, опухолевые клетки и др. Т-хелперы,
или помощники имму­нитета. Различают Т
—Т-хелперы,
усиливающие клеточный имму­нитет, и Т
—В-хелперы,
облегчающие течение гуморального имму­нитета. Т-амплифайеры усиливают функцию Т- и В-лимфоцитов, однако в большей степени влияют на Т-лимфоциты. Т-супрессоры —
лимфоциты, препятствующие иммунному ответу. Различают T—Т-супрессоры,
подавляющие клеточный иммунитет, и Т—В-супрессо-ры,
угнетающие гуморальный иммунитет. Т-дифференцирующие,
или Td-лимфоциты, регулируют функцию стволовых кроветворных клеток, т. е. влияют на соотношение эритроцитарного, лейкоцитар­ного и тромбоцитарного (мегакариоцитарного) ростков костного моз­га. Т-контрсупрессоры
препятствуют действию Т-супрессоров и, следовательно, усиливают иммунный ответ. Т-клетки памяти
хра­нят информацию о ранее действующих антигенах и таким образом регулируют так называемый вторичный иммунный ответ, который проявляется в более короткие сроки, так как минует основные стадии этого процесса.


Другая популяция лимфоцитов образует В-л имфоциты (от слова bursa), окончательное формирование которых у человека и млекопитающих, по-видимому, происходит в костном мозге или системе лимфоидно-эпителиальных образований, расположен­ных по ходу тонкой кишки (лимфоидные, или пейеровы бляшки и др.).


Большинство В-лимфоцитов в ответ на действие антигенов и цитокинов переходит в плазматические клетки, вырабатывающие антитела и потому именуемые антителопродуцентами. Среди В-лимфоцитов также различают В-киллеры, В-хелперы и В-супрес-соры.


В-киллеры
выполняют те же функции, что и Т-киллеры. Что касается В-хелперов, то они способны представлять антиген, уси­ливать действие Td-лимфоцитов и Т-супрессоров, а также участ­вовать в других реакциях клеточного и гуморального иммунитета. Функция В-
cynpeccopoe
заключается в торможении пролиферации антителопродуцентов, к которым принадлежит основная масса i
В-лимфоцитов.


Существует группа клеток, получивших наименование «ни Т-ни В-лимфоциты». К ним относятся так называемые 0-лим-фоциты, являющиеся предшественниками Т- и В-клеток и состав­ляющие их резерв. Большинство исследователей относят к 0-лим-фоцитам особые клетки, именуемые натуральными (природными) киллерами, или НК-лимфоцитами. Как и другие цитотоксические лимфоциты (ЦТЛ), НК-лимфоциты секретируют белки, способные «пробуравливать» отверстия (поры) в мембране чужеродных клеток и потому названные перфоринами. ЦТЛ содержат протеолитические ферменты (цитолизины), которые проникают в чужеродную клетку через образующиеся поры и разрушают ее.


3 Существуют клетки, несущие на своей поверхности маркеры Т-и В-лимфоцитов (двойные клетки). Они способны заменять как те, так и другие.


6.2.2.4. Регуляция лейкопоэза


Все лейкоциты образуются в красном костном мозге из единой стволовой клетки, однако родоначальницей миелопоэза является бипотенциальная колониеобразующая единица гранулоцитарно-мо-ноцитарная
(КОЕ-ГМ) или клетка-предшественница. Для ее роста и дифференцировки необходим особый колониестимулирующий фак­тор
(КСФ), вырабатываемый у человека моноцитарно-макрофа-гальными клетками, костным мозгом и лимфоцитами.


КСФ является гликопротеидом и состоит из двух частей — стимулятора продукции эозинофилов (Эо-КСФ) и стимулятора про­дукции нейтрофилов и моноцитов (ГМ-КСФ), относящихся к ранним гемопоэтическим ростовым факторам. Содержание ГМ-КСФ стиму­лируется Т-хелперами и подавляется Т-супрессорами. На более поздних этапах на лейкопоэз влияют гранулоцитарныи колониести­мулирующий фактор — Г-КСФ (способствует развитию нейтрофи­лов) и макрофагальный колониестимулирующий фактор — М-КСФ (приводит к образованию моноцитов), являющиеся позднодейству-ющими специфическими ростовыми факторами.


Установлено, что Td-лимфоциты стимулируют дифференцировку клеток в гранулоцитарном направлении. В регуляции размножения ранних поли- и унипотентных клеток имеет важное значение их взаимодействие с Т-лимфоцитами и макрофагами. Эти клетки влия­ют на клетки-предшественницы с помощью лимфокинов и моноки-нов, содержащихся в мембране и отделяющихся от нее в виде «пузырьков» при тесном контакте с клетками-мишенями.


Из костного мозга и отдельных видов лейкоцитов (гранулоцитов и агранулоцитов) выделен комплекс полипептидных факторов, вы­полняющих функции специфических лейкопоэтинов.


Важная роль в регуляции лейкопоэза отводится интерлейкинам. В частности, ИЛ-3 не только стимулирует гемопоэз, но и является фактором роста и развития базофилов. ИЛ-5 необходим для роста и развития эозинофилов. Многие интерлейкины (ИЛ-2, ИЛ-4, ИЛ-6, ИЛ-7 и др.) являются факторами роста и дифференцировки Т- и В-лимфоцитов (см. раздел 6.2.2.8).


Лейкоциты являются наиболее «подвижной» частью крови, быстро реагирующей на различные изменения в окружающей среде и ор­ганизме развитием лейкоцитоза, что обеспечивается существованием клеточного резерва. Известны два типа гранулоцитарных резервов — сосудистый и костномозговой. Сосудистый гранулоцитарныи резерв
представляет собой большое количество гранулоцитов, расположен­ных вдоль стенок сосудистого русла, откуда они мобилизуются при повышении тонуса симпатического отдела автономной (вегетатив­ной) нервной системы.


Количество клеток костномозгового гранулоцитарного резерва


в 30—50 раз превышает их количество в кровотоке. Мобилизация этого резерва происходит при инфекционных заболеваниях, сопро­вождается сдвигом лейкоцитарной формулы влево и обусловлена в основном воздействием эндотоксинов.


Своеобразные изменения претерпевают лейкоциты в разные ста­дии адаптационного синдрома, что обусловлено действием гормонов гипофиза (АКТГ) и надпочечника (адреналина, кортизона, дезок-сигидрокортизона). Уже через несколько часов после стрессорного воздействия развивается лейкоцитоз, который обусловлен выбросом нейтрофилов, моноцитов и лимфоцитов из депо крови. При этом число лейкоцитов не превышает 16—18 тыс. в 1 мкл. В стадии резистентности число и состав лейкоцитов мало отличаются от нормы. В стадии истощения развивается лейкоцитоз, сопровожда­ющийся увеличением числа нейтрофилов и снижением числа лим­фоцитов и эозинофилов.


6.2.2.5. Неспецифическая резистентность и иммунитет


Основное назначение лейкоцитов — участие в защитных реак­циях организма против чужеродных агентов, способных нанести ему вред. Различают специфическую защиту, или иммунитет, и неспе­цифическую резистентность организма. Последняя в отличие от иммунитета направлена на уничтожение любого чужеродного агента. К неспецифической резистентности относятся фагоцитоз и пиноци-тоз, система комплемента, естественная цитотоксичность, действие интерферонов, лизоцима, /3-лизинов и других гуморальных факторов защиты.


Фагоцитоз. Это поглощение чужеродных частиц или клеток и их дальнейшее уничтожение. Явление фагоцитоза открыто И. И. Мечниковым, за что ему была присуждена Нобелевская пре­мия 1908 г. Фагоцитоз присущ нейтрофилам, эозинофилам, моно­цитам и макрофагам.


И. И. Мечников выделил следующие стадии фагоцитоза: 1) при­ближение фагоцита к фагоцитируемому объекту, или лиганду; 2) контакт лиганда с мембраной фагоцита; 3) поглощение лиганда; 4) переваривание или уничтожение фагоцитированного объекта.


Всем фагоцитам присуща амебовидная подвижность. Сцепление с субстратом, к которому движется лейкоцит, носит название ад­гезии. Только фиксированные, или адгезированные, лейкоциты спо­собны к фагоцитозу.


Фагоцит может улавливать отдаленные сигналы (хемотаксис) и мигрировать в их направлении (хемокинез). Хотя сотни продуктов метаболизма влияют на подвижность лейкоцитов, их действие про­является лишь в присутствии особых соединений — хемоаттрактан-тов. К хемоаттрактантам относят продукты распада соединительной ткани, иммуноглобулинов, фрагменты активных компонентов ком­племента, некоторые факторы свертывания крови и фибринолиза, простагландины, лейкотриены, лимфокины и монокины. Благодаря хемотаксису, фагоцит целенаправленно движется в сторону повреж-


дающего агента. Чем выше концентрация хемоаттрактанта, тем большее число фагоцитов устремляется в зону повреждения и тем с большей скоростью они движутся. Для взаимодействия с хемоат-трактантом у фагоцита имеются специфические гликопротеиновые образования — рецепторы; их число на одном нейтрофиле достигает 2* 10^3
—2 * 10^s
. Движение фагоцитов осуществляется в результате вза­имодействия актина и миозина и сопровождается выдвижением псев­доподий, которые служат точкой опоры при перемещении фагоцита. Прикрепляясь к субстрату, псевдоподия перетягивает фагоцит на новое место.


Двигаясь таким образом, лейкоцит проходит через эндотелий капилляра; прилипая к сосудистой стенке, он выпускает псевдопо­дию, которая пронизывает стенку сосуда. В этот выступ постепенно «переливается» тело лейкоцита. После этого лейкоцит отделяется от стенки сосуда и может передвигаться в тканях.


Контакт фагоцита с фагоцитируемым объектом может быть обус­ловлен разностью электрических зарядов, повышенной степенью гидрофобности или гидрофильностью лиганда, наличием на его по­верхности лектинов, способных специфически связываться с мемб­ранной манозой или инсулином макрофага. В большинстве случаев контакт опосредуется особыми соединениями — опсонинами, зна­чительно усиливающими фагоцитоз. К последним относятся иммун­ные комплексы, некоторые фрагменты системы комплемента (см. раздел 6.2.2.6), С-реактивный белок, агрегированные белки, фиб-ронектины и др. Наиболее детально опосредованный фагоцитоз изу­чен с участием гликопротеина фибронектина (молекулярная масса 440 000), обладающего значительной клейкостью, что облегчает вза­имодействие фагоцита и лиганда. Фибронектин находится в нера­створимой форме в соединительной ткани и в растворимой — в а2
-глобулиновой фракции плазмы. Кроме того, во взаимодействии фагоцита и фагоцитируемого объекта принимают участие близкий по строению к фибронектину белок ламинин, а также ионы Са2+
и Mg. Эта реакция обеспечивается наличием на мембране фаго­цитов специфических рецепторов.


Как только лиганд взаимодействует с рецептором, наступает конформация последнего и сигнал передается на фермент, связанный с рецептором в единый комплекс, благодаря чему осуществляется поглощение фагоцитируемого объекта.


Существует несколько механизмов поглощения, но все они сво­дятся к тому, что лиганд оказывается заключенным в мембрану фагоцита. Образующаяся при этом фагосома передвигается к центру клетки, где сливается с лизосомами, в результате чего появляется фаголизосома. В последней фагоцитируемый объект может погиб­нуть. Это так называемый завершенный фагоцитоз.
Но нередко встречается незавершенный фагоцитоз,
когда фагоцитируемый объ­ект может жить и развиваться в фагоците. Подобное явление на­блюдается при некоторых инфекционных заболеваниях — туберку­лезе, гонорее, менингококковой и вирусной инфекциях.


Последняя стадия фагоцитоза — уничтожение лиганда. Основным


«оружием» фагоцитов являются продукты частичного восстановления кислорода — пероксид водорода, и свободные радикалы. Они вы­зывают пероксидное окисление липидов, белков и нуклеиновых кислот, благодаря чему повреждается мембрана клетки.


В момент контакта рецепторов с фагоцитируемым объектом на­ступает активация оксидаз — мембранных ферментов, переносящих электроны на кислород и отнимающих их у восстановленных мо­лекул. При образовании фаголизосомы происходит резкое усиление окислительных процессов внутри нее, в результате чего наступает гибель бактерий.


В процессе фагоцитоза утилизируемый клетками кислород пре­вращается в супероксидный анион-радикал (02
). В результате окисления НАДФ*Н2 усиленно генерируется пероксид водорода, ко­торому присуще сильное окислительное действие. Фагоциты обла­дают универсальным свойством высвобождать супероксидные ради­калы, прежде всего О2~.


На фагоцитируемый объект, заключенный в фагосому или фа-голизосому, по системе микротрубочек изливаются содержимое гра­нул, а также образовавшиеся метаболиты. В частности, миелопе-роксидаза нейтрофилов, окисляя мембранные белки, способна инак-тивировать грамположительные и грамотрицательные бактерии, вирусы, грибки, микоплазмы при обязательном участии галогенов (анионов С1~) и пероксида водорода (Н2O2). В уничтожении бактерий внутри фагоцита принимает участие фермент лизоцим (мурамида-за), вызывающий гидролиз гликопротеидов оболочки. В гранулоци-тах содержится уникальная субстанция — фагоцитин, обладающая антибактериальным действием и способная уничтожить грамотри-цательную и грамположительную микрофлору.


К другим механизмам, приводящим к гибели фагоцитируемого объекта, относятся действие катионных белков, меняющих поверх­ностные свойства мембраны; влияние лактоферрина, конкурирую­щего за ионы железа; действие различных амилолитических, про-теолитических и липолитических ферментов, содержащихся в гра­нулах фагоцитов и разрушающих мембрану бактерий и вирусов.


Система комплемента. Комплемент — ферментная система, со­стоящая более чем из 20 белков, играющая важную роль в осуще­ствлении защитных реакций, течении воспаления и разрушения (лизиса) мембран бактерий и различных клеток.


При активации системы комплемента усиливается разрушение чужеродных и старых клеток, активируются фагоцитоз и течение иммунных реакции, повышается проницаемость сосудистой стенки, ускоряется свертывание крови, что в конечном итоге приводит к более быстрой ликвидации патологического процесса.


Иммунитет. Это комплекс реакций, направленных на поддер­жание гомеостаза при встрече организма с агентами, которые рас­цениваются как чужеродные независимо от того, образуются ли они в самом организме или поступают в него извне.


Чужеродные для данного организма соединения, способные вы­зывать иммунный ответ, получили наименование «антигены»


(АГ). Теоретически любая молекула может быть АГ. В результате действия АГ в организме образуются антитела (AT), сенсиби­лизируются (активируются) лимфоциты, благодаря чему они при­обретают способность принимать участие в иммунном ответе. Спе­цифичность АГ заключается в том, что он избирательно реагирует с определенными ATили лимфоцитами, появляющимися после по­падания АГ в организм.


Способность АГ вызывать специфический иммунный ответ обус­ловлена наличием на его молекуле многочисленных детерминант (эпитонов), к которым специфически, как ключ к замку, подходят активные центры (антидетерминанты) образующихся AT. АГ, вза­имодействуя со своими AT, образуют иммунные комплексы (ИК). Как правило, АГ — это молекулы с высокой молекулярной массой; существуют потенциально активные в иммунологическом отношении вещества, величина молекулы которых соответствует одной отдель­ной антигенной детерминанте. Такие молекулы носят наименование гаптенов.
Последние способны вызывать иммунный ответ, только соединяясь с полным АГ, т. е. белком.


Органы, принимающие участие в иммунитете, делят на четыре группы.


1. Центральные — тимус, или вилочковая железа, и, по-види­мому, костный мозг.


2. Периферические, или вторичные, — лимфатические узлы, селезенка, система лимфоэпителиальных образований, расположен­ных в слизистых оболочках различных органов.


3. Забарьерные — ЦНС, семенники, глаза, паренхима тимуса и при беременности — плод.


4. Внутрибарьерные — кожа.


Различают клеточный и гуморальный иммунитет. Клеточный иммунитет направлен на уничтожение чужеродных клеток и тканей и обусловлен действием Т-киллеров. Типичным примером клеточного иммунитета является реакция отторжения чужеродных органов и тканей, в частности кожи, пересаженной от человека человеку.


Гуморальный иммунитет обеспечивается образованием ATи обусловлен в основном функцией В-лимфоцитов.


Иммунный ответ. В иммунном ответе принимают участие им-мунокомпетентные клетки, которые могут быть разделены на ан-тигенпрезентирующие (представляющие АГ), регуляторные (регу­лирующие течение иммунных реакций) и эффекторы иммунного ответа (осуществляющие заключительный этап в борьбе с АГ).


Кантигенпрезентирующим клеткам относятся моно­циты и макрофаги, эндотелиальные клетки, пигментные клетки кожи (клетки Лангерганса) и др. К регуляторным клеткам относятся Т- и В-хелперы, супрессоры, контрсупрессоры, Т-лимфоциты па­мяти. Наконец, к эффекторам иммунного ответа при­надлежат Т- и В-киллеры и В-лимфоциты, являющиеся в основном антителопродуцентами.


Важная роль в иммунном ответе отводится особым цитокинам, получившим наименование интерлейкинов (ИЛ). Из названия видно, что ИЛ обеспечивает взаимосвязь отдельных видов лейкоцитов в иммунном ответе. Они представляют собой малые белковые моле­кулы с молекулярной массой 15 000—30 000.


ИЛ-1

— соединение, выделяемое при антигенной стимуляции моноцитами, макрофагами и другими антигенпрезентирующими клетками. Его действие в основном направлено на Т-хелперы (ам-плифайеры) и макрофаги-эффекторы. ИЛ-1 стимулирует гепатоци-ты, благодаря чему в крови возрастает концентрация белков, полу­чивших наименование реактантов острой фазы,
так как их со­держание всегда увеличивается в острую фазу воспаления. К таким белкам относятся фибриноген, С-реактивный белок,

alfa
1-антитрипсин | и др. Белки острой фазы воспаления играют важную роль в репа-рации тканей, связывают протеолитические ферменты, регулируют клеточный и гуморальный иммунитет. Увеличение концентрации реактантов острой фазы является приспособительной реакцией, на­правленной на ликвидацию патологического процесса. Кроме того, ИЛ-1 усиливает фагоцитоз, а также ускоряет рост кровеносных сосудов в зонах повреждения.


ИЛ-2

выделяется Т-амплифайерами под воздействием ИЛ-1 и АГ; является стимулятором роста для всех видов Т-лимфоцитов (киллеров, хелперов, супрессоров) и активатором НК-клеток.


ИЛ-3

выделяется стимулированными Т-хелперами, моноцитами и макрофагами. Его действие направлено преимущественно на рост и развитие тучных клеток и базофилов, а также предшественников Т- и В-лимфоцитов.


ИЛ-4

продуцируется в основном стимулированными Т-хелперами и обладает чрезвычайно широким спектром действия, так как спо­собствует росту и дифференцировке В-лимфоцитов, активирует мак­рофаги, Т-лимфоциты и тучные клетки, индуцирует продукцию иммуноглобулинов отдельных классов.


ЙЛ-5

выделяется стимулированными Т-хелперами и является фактором пролиферации и дифференцировки эозинофилов, а также В-лимфоцитов.


ИЛ-6

продуцируется стимулированными моноцитами, макрофа­гами, эндотелием, Т-хелперами и фибробластами; вместе с ИЛ-4 обеспечивает рост и дифференцировку В-лимфоцитов, способствуя их переходу в антителопродуценты, т. е. плазматические клетки.


ИЛ-7

первоначально выделен из стромальных клеток костного мозга; усиливает рост и пролиферацию Т- и В-лимфоцитов, а также влияет на развитие тимоцитов в тимусе.


ИЛ-8

образуется стимулированными моноцитами и макрофагами. Его назначение сводится к усилению хемотаксиса и фагоцитарной активности нейтрофилов.


ИЛ-9

продуцируется Т-лимфоцитами и тучными клетками. Дей­ствие его направлено на усиление роста Т-лимфоцитов. Кроме того, он способствует развитию эритроидных колоний в костном мозге.


ИЛ-10

образуется макрофагами и усиливает пролиферацию зре-


лых и незрелых тимоцитов, а также способствует дифференцировке Т-киллеров.


ИЛ-11
продуцируется стромальными клетками костного мозга. Играет важную роль в гемопоэзе, особенно тромбоцитопоэзе.


ИЛ-12
усиливает цитотоксичность Т-киллеров и Н К-лимфоцитов.


Иммунный ответ начинается с взаимодействия антигенпрезен-тирующих клеток с АГ, после чего происходят его фагоцитоз и переработка до продуктов деградации, которые выделяются наружу и оказываются за пределами антигенпрезентирующей клетки.


Специфичность иммунного ответа обеспечивается наличием осо­бых антигенов, получивших у мышей наименование la-белка. У че­ловека его роль выполняют человеческие лейкоцитарные антигены IIкласса, тип DR (HumanLeukocyteAntigens, или HLA).


Ia-белок находится практически на всех кроветворных клетках, но отсутствует на зрелых Т-лимфоцитах; под влиянием интерлей-кинов происходит экспрессия белка и на этих клетках.


Роль la-белка в иммунном ответе сводится к следующему. АГ могут быть распознаны иммунокомпетентными клетками лишь при контакте со специфическими рецепторами, однако количество АГ слишком велико и природа не заготовила для них соответствующего числа рецепторов, вот почему АГ («чужое») может быть узнан лишь в комплексе со «своим», функцию которого и несет la-белок или антигены HLA-DR.


Продукты деградации АГ, покинув макрофаг, частично вступают во взаимодействие с la-белком, образуя с ним комплекс, стимули­рующий деятельность антигенпрезентирующей клетки. При этом макрофаг начинает секретировать ряд интерлейкинов. ИЛ-1 дейст­вует на Т-амплифайер, в результате чего у последнего появляется рецептор к комплексу la-белок + АГ. Именно эта реакция, как и все последующие, обеспечивает специфичность иммунного ответа.


Активированный Т-амплифайер выделяет ИЛ-2, действующий на различные клоны Т-хелперов и цитотоксические лимфоциты, принимающие участие в клеточном иммунитете. Стимулированные клоны Т-хелперов секретируют ИЛ-3, ИЛ-4, ИЛ-5 и ИЛ-6, оказы­вающие преимущественное влияние на эффекторное звено иммун­ного ответа и тем самым способствующие переходу В-лимфоцитов в антителопродуценты. Благодаря этому образуются AT, или им­муноглобулины. Другие интерлейкины (ИЛ-7, ИЛ-9, ИЛ-10, ИЛ-12) влияют преимущественно на рост и дифференцировку Т- и В-лим­фоцитов и являются факторами надежности, обеспечивающими им­мунный ответ.


Клеточный иммунитет зависит от действия гуморальных факторов, выделяемых цитотоксическими лимфоцитами (Т-килле-рами). Эти соединения получили наименование «перфорины»
и «цитолизины».


Установлено, что каждый Т-эффектор способен лизировать не­сколько чужеродных клеток-мишеней. Этот процесс осуществляется в три стадии: 1) распознавание и контакт с клетками-мишенями; 2) летальный удар; 3) лизис клетки-мишени. Последняя стадия не


требует присутствия Т-эффектора, так как осуществляется под вли­янием перфоринов и цитолизинов. В стадию летального удара пер-форины и цитолизины действуют на мембрану клетки-мишени и образуют в ней поры, через которые проникает вода, разрывающая клетки.


Среди гуморальных факторов, выделяемых в процессе иммунного ответа, следует указать на фактор некроза опухолей (ФНО) и интерфероны.


Действие интерферонов
неспецифично, так как они обладают различными функциями — стимулируют деятельность НК-клеток и макрофагов, влияют непосредственно на ДНК- и РНК-содержащие вирусы, подавляя их рост и активность, задерживают рост и раз­рушают злокачественные клетки, возможно, за счет усиления про­дукции ФНО (схема 6.1).


Гуморальный иммунный ответ обеспечивается AT, или иммуноглобулинами. У человека различают пять основных классов иммуноглобулинов: IgA, IgG, IgM, IgE, IgD. Все они имеют как общие, так и специфические детерминанты.


Иммуноглобулины класса
G
.
У человека являются наиболее важ­ными. Концентрация IgGв крови достигает 9—18 г/л. Иммуно­глобулины класса Gобеспечивают противоинфекционную защиту, связывают токсины, усиливают фагоцитарную активность, активи­руют систему комплемента, вызывают агглютинацию бактерий и вирусов, они способны переходить через плаценту, обеспечивая новорожденному ребенку так называемый пассивный иммунитет. Это означает, что если мать перенесла «детские инфекции» (корь, коклюш, скарлатина и др.), то новорожденный ребенок в течение 3—6 мес к этим заболеваниям невосприимчив, так как содержит к возбудителям данных инфекций материнские AT.


Иммуноглобулины класса А.
Делят на две разновидности: сыво­роточные и секреторные. Первые из них находятся в крови, вторые — в различных секретах. Соответственно этому сывороточный
IgA
принимает участие в общем иммунитете, а секреторный
IgA
обес­печивает местный иммунитет, создавая барьер на пути проникно­вения инфекций и токсинов в организм.


Секреторный IgAнаходится в наружных секретах — в слюне, слизи трахеобронхиального дерева, мочеполовых путей, молоке, молозиве. Молекулы IgA, присутствующие во внутренних секретах и жидкостях (синовиальная, амниотическая, плевральная, цереб­роспинальная и др.), существенно отличаются от молекул IgA, присутствующего в наружных секретах. Секреторный компонент, по всей видимости, образуется в эпителиальных клетках и в даль­нейшем присоединяется к молекуле IgA.


IgAнейтрализуют токсины и вызывают агглютинацию микроор­ганизмов и вирусов. Концентрация сывороточных IgAколеблется от 1,5 до 4,0 г/л.


Содержание IgAрезко возрастает при заболеваниях верхних дыхательных путей, пневмониях, инфекционных заболеваниях же­лудочно-кишечного тракта и др.


Иммуноглобулины класса
IgM
.
Принимают участие в нейтрали­зации токсинов, опсонизации, агглютинации и бактериолизисе, осу­ществляемом комплементом. К этому классу также относятся не­которые природные AT, например к чужеродным (не свойстенным человеку) эритроцитам. Содержание IgMповышается при инфек­ционных заболеваниях у взрослых и детей.


Иммуноглобулины класса
IgD
.
Обладают свойством фиксировать­ся на базофилах и тучных клетках и вызывать в случае образования иммунных комплексов их дегрануляцию. Содержание увеличивается при так называемых аллергических заболеваниях — бронхиальной астме, вазомоторном рините, гельминтозах, аллергических дерма­титах и др.


Иммуноглобулины класса
IgE
.
Представляют собой антитела, локализующиеся в мембране плазматических клеток, в сыворотке концентрация их невелика. Значение IgEне выяснено. Предпола­гают, что IgEпринимает участие в аутоиммунных процессах.


Регуляция иммунитета. Интенсивность иммунного ответа во мно­гом определяется состоянием нервной и эндокринной систем. Уста­новлено, что раздражение различных подкорковых структур (тала-мус, гипоталамус, серый бугор) может сопровождаться как усиле­нием, так и торможением иммунной реакции на введение антигенов. Показано, что возбуждение симпатического отдела автономной (ве­гетативной) нервной системы, как и введение адреналина, усиливает фагоцитоз и интенсивность иммунного ответа. Повышение тонуса парасимпатического отдела вегетативной нервной системы приводит к противоположным реакциям.


Стресс, а также депрессии угнетают иммунитет, что сопровож­дается не только повышенной восприимчивостью к различным за­болеваниям, но и создает благоприятные условия для развития злокачественных новообразований.


За последние годы установлено, что гипофиз и эпифиз с помощью особых пептидных биорегуляторов, получивших наименование «ци-томедины», контролируют деятельность тимуса. Передняя доля ги­пофиза является регулятором преимущественно клеточного, а зад­няя — гуморального иммунитета.


Иммунная регуляторная система. В последнее время высказано предположение, что существуют не две системы регуляции (нервная и гуморальная), а три (нервная, гуморальная и иммунная). Имму-нокомпетентные клетки способны вмешиваться в морфогенез, а также регулировать течение физиологических функций. Не подле­жит сомнению, что Т-лимфоциты играют чрезвычайно важную роль в регенерации тканей. Многочисленные исследования показывают, что Т-лимфоциты и макрофаги осуществляют «хелперную» и «суп-рессорную» функции в отношении эритропоэза и лейкопоэза. Лим-фокины и монокины, выделяемые лимфоцитами, моноцитами и макрофагами, способны изменять деятельность центральной нервной системы, сердечно-сосудистой системы, органов дыхания и пищева­рения, регулировать сократительные функции гладкой и попереч­нополосатой мускулатуры.


Особенно важная роль в регуляции физиологических функций принадлежит интерлейкинам, которые являются «семьей молекул на все случаи жизни», так как вмешиваются во все физиологические процессы, протекающие в организме.


Иммунная система является регулятором гомеостаза. Эта функция осуществляется за счет выработки аутоантител, связывающих актив­ные ферменты, факторы свертывания крови и избыток гормонов.


Иммунологическая регуляция, с одной стороны, является неотъ­емлемой частью гуморальной, так как большинство физиологических и биохимических процессов осуществляется при непосредственном участии гуморальных посредников. Однако нередко иммунологиче­ская регуляция носит прицельный характер и тем самым напоминает нервную. Лимфоциты и моноциты, а также другие клетки, прини­мающие участие в иммунном ответе, отдают гуморальный посредник непосредственно органу-мишени. Отсюда предложение назвать им­мунологическую регуляцию клеточно-гуморальной. Основную роль в ней следует отвести различным популяциям Т-лимфоцитов, осу­ществляющих «хелперные» и «супрессорные» функции по отноше­нию к различным физиологическим процессам.


Учет регуляторных функций иммунной системы позволяет врачам различных специальностей по-новому подойти к решению многих проблем клинической медицины.


6.2.3. Тромбоциты


Тромбоциты, или кровяные пластинки, образуются из ги­гантских клеток красного костного мозга — мегакариоцитов. В ко­стном мозге мегакариоциты плотно прижаты к промежуткам между фибробластами и эндотелиальными клетками, через которые их цитоплазма выдается наружу и служит материалом для образования тромбоцитов. В кровотоке тромбоциты имеют круглую или слегка овальную форму, диаметр их не превышает 2—3 мкм. У тромбоцита нет ядра, но имеется большое количество гранул (до 200) различного строения. При соприкосновении с поверхностью, отличающейся по своим свойствам от эндотелия, тромбоцит активируется, распласты­вается и у него появляется до 10 зазубрин и отростков, которые могут в 5—10 раз превышать диаметр тромбоцита. Наличие этих отростков важно для остановки кровотечения.


В норме число тромбоцитов у здорового человека составляет 2-4-10^11/л, или 200—400 тыс. в 1 мкл. Увеличение числа тром­боцитов носит наименование «тромбоцитов»,
уменьшение — «тромбоцитопения».
В естественных условиях число тромбоцитов подвержено значительным колебаниям (количество их возрастает при болевом раздражении, физической нагрузке, стрессе), но редко выходит за пределы нормы. Как правило, тромбоцитопения является признаком патологии и наблюдается при лучевой болезни, врож­денных и приобретенных заболеваниях системы крови.


Основное назначение тромбоцитов — участие в процессе гемо­стаза (см. раздел 6.4). Важная роль в этой реакции принадлежит


так называемым тромбоцитарным факторам, которые со­средоточены главным образом в гранулах и мембране тромбоцитов. Часть из них обозначают буквой Р (от слова platelet— пластинка) и арабской цифрой (P1, Р2
и т. д.). Наиболее важными являются P3 или частичный
(неполный) тромбопластин,
представляющий осколок клеточной мембраны; Р4 или антигепариновый фактор;
Ps
или фибриноген тромбоцитов;
АДФ; коитрактильный белок тромбастенин (напоминающий актомиозин), вазоконстрикторные факторы — серотонин, адреналин, норадреналин и др. Значительная роль в гемостазе отводится тромбоксану
А2
(ТхА2
), который син­тезируется из арахидоновой кислоты, входящей в состав клеточных мембран (в том числе и тромбоцитов) под влиянием фермента тромбоксансинтетазы.


На поверхности тромбоцитов находятся гликопротеиновые обра­зования, выполняющие функции рецепторов. Часть из них «зама­скирована» и экспрессируется после активации тромбоцита стиму­лирующими агентами — АДФ, адреналином, коллагеном, микро­фибриллами и др.


Тромбоциты принимают участие в защите организма от чуже­родных агентов. Они обладают фагоцитарной активностью, содержат IgG, являются источником лизоцима и beta-лизинов, способных раз­рушать мембрану некоторых бактерий. Кроме того, в их составе обнаружены пептидные факторы, вызывающие превращение «нуле­вых» лимфоцитов (О-лимфоциты) в Т- и В-лимфоциты. Эти соеди­нения в процессе активации тромбоцитов выделяются в кровь и при травме сосудов защищают организм от попадания болезнетвор­ных микроорганизмов.


Регуляторами тромбоцитопоэза являются тромбоцитопоэ­тины кратковременного и длительного действия. Они образуются в костном мозге, селезенке, печени, а также входят в состав мега-кариоцитов и тромбоцитов. Тромбоцитопоэтины кратковременного действия
усиливают отшнуровку кровяных пластинок от мегака-риоцитов и ускоряют их поступление в кровь; тромбоцитопоэтины длительного действия
способствуют переходу предшественников гигантских клеток костного мозга в зрелые мегакариоциты. На активность тромбоцитопоэтинов непосредственное влияние оказы­вают ИЛ-6 и ИЛ-11.


6.3. ГРУППЫ КРОВИ


6.3.1. Система АВО


Учение о группах крови возникло из потребностей клинической медицины. Переливая кровь от животных человеку или от человека человеку, врачи нередко наблюдали тяжелейшие осложнения, иногда заканчивавшиеся гибелью реципиента (лицо, которому переливают кровь).


С открытием венским врачом К. Ландштейнером (1901) групп крови стало понятно, почему в одних случаях трансфузии крови


проходят успешно, а в других заканчиваются трагически для боль­ного. К. Ландштейнер впервые обнаружил, что плазма, или сыво­ротка, одних людей способна агглютинировать (склеивать) эритро­циты других людей. Это явление получило наименование изогемаг-глютинации.
В основе ее лежит наличие в эритроцитах антигенов, названных агглютиногенами
и обозначаемых буквами А и В, а в плазме — природных антител, или агглютининов,
именуемых а
и р
Агглютинация эритроцитов наблюдается лишь в том случае, если встречаются одноименные агглютиноген и агглютинин: А и а,
В и /3.


Установлено, что агглютинины, являясь природными антителами (AT), имеют два центра связывания, а потому одна молекула агг­лютинина способна образовать мостик между двумя эритроцитами. При этом каждый из эритроцитов может при участии агглютининов связаться с соседним, благодаря чему возникает конгломерат (аг-глютинат) эритроцитов.


В крови одного и того же человека не может быть одноименных агглютиногенов и агглютининов, так как в противном случае про­исходило бы массовое склеивание эритроцитов, что несовместимо с жизнью. Возможны только четыре комбинации, при которых не встречаются одноименные агглютиногены и агглютинины, или че­тыре группы крови: I— alfabeta, II— Аbeta, III— Ваlfa, IV— АВ.


Кроме агглютининов, в плазме, или сыворотке, крови содержатся гемолизины:
их также два вида и они обозначаются, как и агглю­тинины, буквами а
и beta. При встрече одноименных агглютиногена и гемолизина наступает гемолиз эритроцитов. Действие гемолизинов проявляется при температуре 37—40 "С. Вот почему при перелива­нии несовместимой крови у человека уже через 30—40 с наступает гемолиз эритроцитов. При комнатной температуре, если встречаются одноименные агглютиногены и агглютинины, происходит агглюти­нация, но не наблюдается гемолиз.


В плазме людей с II, III, IVгруппами крови имеются антиагглюти­нины — это покинувшие эритроциты и ткани агглютиногены. Обозна­чаются они, как и агглютиногены, буквами А и В (табл. 6.4).


Как видно из приводимой таблицы, Iгруппа крови не имеет агглю­тиногенов, а потому по международной классификации обозначается как группа 0, II— носит наименование А, III— В, IV— АВ.


Для решения вопроса о совместимости групп крови пользуются следующим правилом: среда реципиента должна быть пригодна для жизни эритроцитов донора (человек, который отдает кровь). Такой средой является плазма, следовательно, у реципиента должны учи­тываться агглютинины и гемолизины, находящиеся в плазме, а у донора — агтлютиногены, содержащиеся в эритроцитах. Для реше­ния вопроса о совместимости групп крови смешивают исследуемую кровь с сывороткой, полученной от людей с различными группами крови (табл. 6.5).


Из таблицы видно, что агглютинация происходит в случае сме­шивания сыворотки Iгруппы с эритроцитами II, IIIи IVгрупп, сыворотки IIгруппы — с эритроцитами IIIи IVгрупп, сыворотки IIIгруппы — с эритроцитами IIи IVгрупп.


Следовательно, кровь Iгруппы совместима со всеми другими группами крови, поэтому человек, имеющий Iгруппу крови, на­зывается универсальным донором.
С другой стороны, при перели­вании крови людям с IVгруппой их эритроциты не должны давать реакции агглютинации при смешивании с плазмой (сывороткой) людей с любой группой крови, поэтому люди с IVгруппой крови называются универсальными реципиентами.


Почему же при решении вопроса о совместимости не принимают в расчет агглютинины и гемолизины донора? Это объясняется тем, что агглютинины и гемолизины при переливании небольших доз крови (200—300 мл) разводятся в большом объеме плазмы (2500— 2800 мл) реципиента и связываются его антиагглютининами, а потому не должны представлять опасности для эритроцитов.


В повседневной практике для решения вопроса о группе пере­ливаемой крови пользуются иным правилом: переливаться должны одногруппная кровь и только по жизненным показаниям, когда человек потерял много крови. Лишь в случае отсутствия одногруп-пной крови с большой осторожностью можно перелить небольшое количество иногруппной совместимой крови. Объясняется это тем, что приблизительно у 10—20% людей имеется высокая концентра-


ция очень активных агглютининов и гемолизинов, которые не могут быть связаны антиагглютининами даже в случае переливания не­большого количества иногруппной крови.


Посттрансфузионные осложнения иногда возникают из-за ошибок при определении групп крови. Установлено, что агглютиногены А и В существуют в разных вариантах, различающихся по своему строению и антигенной активности. Большинство из них получило цифровое обозначение (Аь
А2, А3
и т. д., В1 В2
и т. д.). Чем больше порядковый номер агглютиногена, тем меньшую активность он про­являет. И хотя разновидности агтлютиногенов А и В встречаются относительно редко, при определении групп крови они могут быть не обнаружены, что может привести к переливанию несовместимой крови.


Следует также учитывать, что большинство человеческих эрит­роцитов несет антиген Н. Этот АГ всегда находится на поверхности клеточных мембран у лиц с группой крови 0, а также присутствует в качестве скрытой детерминанты на клетках людей с группами крови А, В и АВ. Н — антиген, из которого образуются антигены А и В. У лиц с Iгруппой крови антиген доступен действию анти-Н-антител, которые довольно часто встречаются у людей со IIи IVгруппами крови и относительно редко у лиц с IIIгруппой. Это обстоятельство может послужить причиной гемотрансфузионных ос­ложнений при переливании крови Iгруппы людям с другими груп­пами крови.


Концентрация агтлютиногенов на поверхности мембраны эрит­роцитов чрезвычайно велика. Так, один эритроцит группы крови A1 содержит в среднем 900 000—1 700 000 антигенных детерминант, или рецепторов, к одноименным агглютининам. С увеличением порядкового номера агглютиногена число таких детерминант умень­шается. Эритроцит группы А2
имеет всего 250 000—260 000 анти­генных детерминант, что также объясняет меньшую активность этого агглютиногена.


В настоящее время система AB0 часто обозначается как АВН, а вместо терминов «агглютиногены» и «агглютинины» применяются термины «антигены» и «антитела» (например, АВН-антигены и АВН-антитела).


6.3.2. Система резус (Rh-hr) и другие


К.Ландштейнер и А.Винер (1940) обнаружили в эритроцитах обезьяны макаки резус АГ, названный ими резус-фактором.
В даль­нейшем оказалось, что приблизительно у 85% людей белой расы также имеется этот АГ. Таких людей называют резус-положитель­ными (Rh+
). Около 15% людей этот АГ не имеют и носят название резус-отрицательных (Rh).


Известно, что резус-фактор — это сложная система, включающая более 40 антигенов, обозначаемых цифрами, буквами и символами. Чаще всего встречаются резус-антигены типа D(85%), С (70%), Е (30%), е (80%) — они же и обладают наиболее выраженной


антигенностыо. Система резус не имеет в норме одноименных аг­глютининов, но они могут появиться, если резус-отрицательному человеку перелить резус-положительную кровь.


Резус-фактор передается по наследству. Если женщина Rh', aмужчина Rh+
, то плод в 50—100% случаев унаследует резус-фактор от отца и тогда мать и плод будут несовместимы по резус-фактору. Установлено, что при такой беременности плацента обладает по­вышенной проницаемостью по отношению к эритроцитам плода. Последние, проникая в кровь матери, приводят к образованию ан­тител (антирезусагглютининов). Проникая в кровь плода, антитела вызывают агглютинацию и гемолиз его эритроцитов.


Тяжелейшие осложнения, возникающие при переливании несов­местимой крови и резус-конфликте, обусловлены не только обра­зованием конгломератов эритроцитов и их гемолизом, но и интен­сивным внутрисосудистым свертыванием крови, так как в эритро­цитах содержится набор факторов, вызывающих агрегацию тромбоцитов и образование фибриновых сгустков. При этом страдают все органы, но особенно сильно повреждаются почки, так как сгустки забивают «чудесную сеть» клубочка почки, препятствуя образованию мочи, что может быть несовместимо с жизнью.


Согласно современным представлениям, мембрана эритроцита рассматривается как набор самых различных АГ, которых насчи­тывается более 500. Только из этих АГ можно составить более 400 млн комбинаций, или групповых признаков крови. Если же учитывать и все остальные АГ, встречающиеся в крови, то число комбинаций достигнет 700 млрд, т. е. значительно больше, чем людей на земном шаре. Разумеется, далеко не все АГ важны для клинической практики. Однако при переливании крови со сравни­тельно редко встречающимся АГ могут возникнуть тяжелейшие гемотрансфузионные осложнения и даже смерть больного.


Нередко при беременности возникают серьезные осложнения, в том числе выраженная анемия, что может быть объяснено несов­местимостью групп крови по системам мало изученных антигенов матери и плода. При этом страдает не только беременная, но в неблагополучных условиях находится и будущий ребенок. Несов­местимость матери и плода по группам крови может быть причиной выкидышей и преждевременных родов.


Гематологи выделяют наиболее важные антигенные системы: ABO, Rh, MNSs, Р, Лютеран (Lu), Келл-Келлано (Кк), Льюис (Le), Даффи (Fy) и Кид (Jk). Эти системы антигенов учитываются в судебной медицине для установления отцовства и иногда при транс­плантации органов и тканей.


В настоящее время переливание цельной крови производится сравнительно редко, так как пользуются трансфузией различных компонентов крови, т. е. переливают то, что больше всего требуется организму: плазму или сыворотку, эритроцитную, лейкоцитную или тромбоцитную массу. В подобной ситуации вводится меньшее ко­личество антигенов, что снижает риск посттрансфузионных ослож­нений.


6.3.3. Группы крови и заболеваемость


Люди, имеющие различные группы крови, в неодинаковой мере подвержены тем или иным заболеваниям. Так, у людей с I(0) группой крови чаше встречается язвенная болезнь желудка и двенадцатиперстной кишки. Эти факты объясняются тем, что аг-глютиногены А и В, выделяясь в составе желудочного и подже­лудочного сока, предохраняют стенку от повреждения протеоли-тическими ферментами. Люди, имеющие II(А) группу крови, чаще страдают и тяжелее переносят сахарный диабет, у них повышена свертываемость крови, из-за чего возникают инфаркты миокарда и инсульты. Согласно статистическим данным, у лиц с II(А) группой крови чаще встречаются раковые заболевания желудка и половых органов, а у лиц III(В) группы — рак толстой кишки. Вместе с тем лица, имеющие Iи IVгруппы крови, менее восприимчивы к возбудителям чумы, но у них тяжелее протекает натуральная оспа.


У резус-отрицательных людей различные заболевания крови встречаются приблизительно в 6 раз чаще, чем у резус-положи­тельных.


6.4. СИСТЕМА ГЕМОСТАЗА


Под термином «гемостаз» понимают комплекс реакций, направленных на остановку кровотечения при травме сосудов. Значение системы гемостаза намного сложнее и шире. Факторы гемостаза принимают участие в сохранении жидкого состояния крови, регуляции транскапиллярного обмена, резистентности со­судистой стенки, влияют на интенсивность репаративных процессов и др.


Принято различать сосудисто-тромбоцитарный гемостаз и процесс свертывания крови. В первом случае речь идет об остановке кро­вотечения из мелких сосудов с низким кровяным давлением, диаметр которых не превышает 100 мкм, во втором — о борьбе с кровопотерей при повреждениях артерий и вен. Такое деление носит условный характер, потому что при повреждении как мелких, так и крупных кровеносных сосудов всегда наряду с образованием тромбоцитарной пробки осуществляется свертывание крови.


6.4.1.
Сосудисто-тромбоцитарный гемостаз


Сосудисто-тромбоцитарный гемостаз сводится к образованию тромбоцитарной пробки, или тромбоцитарного тромба. Условно его разделяют на три стадии: 1) временный (первичный) спазм сосудов; 2) образование тромбоцитарной пробки за счет адгезии (прикреп­ления к поврежденной поверхности) и агрегации (склеивания между собой) тромбоцитов; 3) ретракция (сокращение и уплотнение) тром­боцитарной пробки.


Сразу после травмы наблюдается первичный спазм кровеносных сосудов,
благодаря чему кровотечение в первые секунды может не возникнуть или носит ограниченный характер. Первичный спазм сосудов обусловлен выбросом в кровь в ответ на болевое раздражение адреналина и норадреналина и длится не более 10—15 с. В даль­нейшем наступает вторичный спазм,
обусловленный активацией тромбоцитов и отдачей в кровь сосудосуживающих агентов — се-ротонина, ТхА2
, адреналина и др.


Повреждение сосудов сопровождается немедленной активацией тромбоцитов, что обусловлено появлением высоких концентраций АДФ (из разрушающихся эритроцитов и травмированных сосудов), а также с обнажением субэндотелия, коллагеновых и фибриллярных структур. В результате «раскрываются» вторичные рецепторы и создаются оптимальные условия для адгезии, агрегации и образо­вания тромбоцитарной пробки.


Адгезия обусловлена наличием в плазме и тромбоцитах особого белка — фактора Виллебранда (FW), имеющего три активных цен­тра, два из которых связываются с экспрессированными рецепторами тромбоцитов, а один — с рецепторами субэндотелия и коллагеновых волокон. Таким образом, тромбоцит с помощью FWоказывается «подвешенным» к травмированной поверхности сосуда.


Одновременно с адгезией наступает агрегация тромбоцитов, осу­ществляемая с помощью фибриногена — белка, содержащегося в плазме и тромбоцитах и образующего между ними связующие мо­стики, что и приводит к появлению тромбоцитарной пробки.


Важную роль в адгезии и агрегации играет комплекс белков и полипептидов, получивших наименование «интегрины». Последние служат связующими агентами между отдельными тромбоцитами (при склеивании друг с другом) и структурами поврежденного сосуда. Агрегация тромбоцитов может носить обратимый характер (вслед за агрегацией наступает дезагрегация, т. е. распад агрегатов), что зависит от недостаточной дозы агрегирующего (активирующего) агента.


Из тромбоцитов, подвергшихся адгезии и агрегации, усиленно секретируются гранулы и содержащиеся в них биологически актив­ные соединения — АДФ, адреналин, норадреналин, фактор Р.», ТхА2
и др. (этот процесс получил название реакции высвобождения), что приводит к вторичной, необратимой агрегации. Одновременно с высвобождением тромбоцитарных факторов происходит образовани­ем тромбина, резко усиливающего агрегацию и приводящего к по­явлению сети фибрина, в которой застревают отдельные эритроциты и лейкоциты.


Благодаря контрактильному белку тромбостенину тромбоциты подтягиваются друг к другу, тромбоцитарная пробка сокращается и уплотняется, т. е. наступает ее ретракция.


В норме остановка кровотечения из мелких сосудов занимает 2—4 мин.


Важную роль для сосудисто-тромбоцитарного гемостаза играют производные арахидоновой кислоты — простагландин IHPgh), или


простациклин, и ТхА2
. При сохранении целости эндотелиального покрова действие Pglпреобладает над ТхА2
, благодаря чему в сосудистом русле не наблюдается адгезии и агрегации тромбоцитов. При повреждении эндотелия в месте травмы синтез Pglне проис­ходит, и тогда проявляется влияние ТхА2
, приводящее к образованию тромбоцитарной пробки.


6.4.2.
Процесс свертывания крови


При повреждении крупных кровеносных сосудов (артерий, вен, артериол), также происходит образование тромбоцитарной пробки, но она неспособна остановить кровотечение, так как легко вымы­вается током крови. Основное значение в этом процессе принадлежит свертыванию крови, сопровождающемуся в конечном итоге образо­ванием плотного фибринового сгустка.


6.4.2.1. Плазменные и клеточные факторы свертывания крови


В свертывании крови принимает участие комплекс белков, на­ходящихся в плазме (плазменные факторы гемокоагуляции), боль­шинство из которых является проферментами. В отличие от тром-боцитарных факторов они обозначаются римскими цифрами.


ПЛАЗМЕННЫЕ ФАКТОРЫ СВЕРТЫВАНИЯ КРОВИ


I, или фибриногенБелок. Образуется в печени. Под влиянием


тромбина переходит в фибрин. Участвует в агрегации тромбоцитов. Необходим для репарации тканей


II, или протромбинГликопротеид. Образуется в печени в присутствии


витамина К. Под влиянием протромбииазы переходит в тромбин (фактор На)


III, или тромбопластинСостоит из белка апопротеина IIIи комплекса


фосфолипидов. Входит в состав мембран многих тканей. Является матрицей для развертывания ре­акций, направленных на образование протромбиназы по внешнему механизму


IV, или ион СаУчаствует в образовании комплексов, входит в со-


став протромбиназы. Способствует агрегации тромбо­цитов. Связывает гепарин. Принимает участие в ре­тракции сгустка и тромбоцитарной пробки. Тормозит фибринолиз


V, или акцелератор-глобу-
Белок. Образуется в печени. Активизируется тром-лин
бином (фактор Па). Создает оптимальные условия для


взаимодействия фактора Ха и протромбина (фактор Н)


(VI, исключен из класси­фикации)


VII, или проконвертииГликопротеид. Образуется в печени под влиянием


витамина К. Принимает участие в формировании про­тромбиназы по внешнему механизму. Активируется факторами Xlla, Ха, (Ха, На и при взаимодействии с тромбопластином (фактор III)


Продолжение


VIII
, или антигемофиль-ный глобулин (АГГ), анти-гемофильный глобулин А


VIII
:
FW


IX,
или Кристмас-фактор, антигемофильный фактор В


X,
или Стюарт Прауэр-фактор


XI
, или плазменный пред­ шественник тромбопласти- на


XII
, или фактор Хагемана


XIII
, или фибринстабили-зирующий фактор (ФСФ), фибриназа


Фактор Флетчера , или прекалликреин


Фактор Фитцджеральда, высокомолекулярный ки-ниноген (ВМК)


Гликопротеид. Синтезируется в печени, селезенке, лейкоцитах. Образует комплексную молекулу с фак­тором Виллебранда (
FW
) и специфическим антигеном. Активируется тромбином. Создает оптимальные усло­вия для взаимодействия факторов 1Ха и
X
. При его отсутствии возникает заболевание гемофилия А


Компонент комплекса фактора
VIII
: Образуется эндотелиальными клетками. Обеспечивает устойчи­вость фактора
VIII
: С в кровотоке и необходим для адгезии тромбоцитов. При его недостатке развивается болезнь Виллебранда, сопровождающаяся нарушением сосудисто-тромбоцитарного гемостаза


Гликопротеид. Образуется в печени под влиянием витамина К. Активируется факторами
XIa
,
Vila
и На. Переводит фактор
X
в Ха. При его отсутствии возни­кает заболевание гемофилия В


Гликопротеид. Образуется в печени, под влиянием витамина К. Фактор Ха, являясь протромбиназой, ак­тивируется факторами
Vila
и 1Ха. Переводит фактор
II
в Па


Гликопротеид. Предполагают, что образуется в пе­чени. Активируется фактором ХПа, калликреином со­вместно с высокомолекулярным кининогеном (ВМК)


Белок. Предполагают, что образуется эндотелиаль­ными клетками, лейкоцитами, макрофагами. Активи­руется отрицательно заряженными поверхностями, ад­реналином, калликреином. Запускают внешний и внут­ренний механизм образования протромбиназы и фибринолиза, активирует фактор
XI
и прекалликреин


Глобулин. Синтезируется фибробластами и мега-кариоцитами. Стабилизирует фибрин. Необходим для нормального течения репаративных процессов


Белок. Участвует в активации фактора
XII
, плаз-миногена и ВМК


Образуется в тканях. Активируется калликреином, принимает участие в активации факторов
XII
,
XI
и фибринолиза


Является компонентом калликреин-кининовой системы.


Активация плазменных факторов происходит главным образом за счет протеолиза и сопровождается отщеплением пептидных ин­гибиторов. Активное состояние фактора обозначается присоедине­нием к его номеру буквы «а» (фактор На, Va, Vilaи т.д.). Плаз­менные факторы делят на 2 группы: витамин К-зависимые (обра­зуются преимущественно в печени под влиянием витамина К) и витамин К-независимые (для синтеза которых витамин К не тре­буется) .


В эритроцитах обнаружены многие соединения, аналогичные тромбоцитарным факторам (см. раздел 6.2.3). Важнейшим из них является фосфолипидный фактор, или частичный тромбопластин (напоминает фактор Рз), который входит в состав мембраны. Кроме того, эритроциты содержат большое количество АДФ, фибриназу и


другие факторы. При травме сосуда около 1 %
наименее стойких эритроцитов вытекающей крови разрушается, что способствует об­разованию тромбоцитарной пробки и фибринового сгустка.


Особенно велика роль эритроцитов в свертывании крови в случае их массового разрушения (переливание несовместимой крови, ре­зус-конфликт матери и плода, гемолитические анемии и др.)


Лейкоциты содержат факторы свертывания, получившие наиме­нование лейкоцитарных. В частности, моноциты и макрофаги при стимуляции антигеном синтезируют белковую часть тромбопласти­на — апопротеин III, что значительно ускоряет свертывание крови. Эти же клетки являются продуцентами витамин К-зависимых фак­торов свертывания — II, VII, IXи X. Приведенные факторы являются одной из основных причин возникновения диссеминированного (рас­пространенного) внутрисосудистого свертывания крови (ДВС-синд­ром) при многих воспалительных и инфекционных заболеваниях, что значительно отягощает течение патологического процесса, а иногда служит причиной смерти больных.


Важная роль в процессе свертывания крови отводится тканевым факторам, к которым в первую очередь относится тромбопластин (фактор 3). Концентрация тромбопластина высока в коре большого мозга, легких, плаценте и стимулированном антигенами эндотелии сосудов. При разрушении тканей и стимуляции эндотелия большое количество тромбопластина поступает в кровоток, что может вы­зывать развитие ДВС-синдрома.


6.4.2.2. Механизм свертывания крови


Процесс свертывания крови представляет собой преимущественно проферментно-ферментный каскад, в котором проферменты, пере­ходя в активное состояние, приобретают способность активировать другие факторы свертывания крови. Подобная активация может носить последовательный и ретроградный характер.


Процесс свертывания крови может быть разделен на три фазы: первая включает комплекс последовательных реакций, приводящих к образованию протромбиназы, во вторую фазу осуществляется переход протромбина (фактор II) в тромбин (фактор Па) и в третью фазу из фибриногена образуется фибрин.


Первая фаза — образованиепротромбиназы может происходить по внешнему и внутреннему механизму. Внешний ме­ханизм
предполагает обязательное присутствие тромбопластина (фактор III), внутренний же связан с участием тромбоцитов (фактор Рз) или разрушенных эритроцитов. Вместе с тем внутренний и внешний пути образования протромбиназы имеют много общего, так как активируются одними и теми же факторами (фактор ХИа, калликреин, ВМК и др.), а также приводят в конечном итоге к появлению одного и того же активного фермента — фактора Ха, выполняющего функции протромбиназы.
При этом и полный, и частичный тромбопластин служат матрицами, на которых в при­сутствии ионов Са2+
развертываются ферментативные реакции.


Формирование протромбиназы по внешнему пути начинается с активации фактора VIIпри его взаимодействии с тромбопластином и фактором ХПа. Кроме того, фактор VIIможет переходить в деятельное состояние под влиянием факторов XIa, IXa, Ха, Па и калликреина. В свою очередь фактор VIIaне только переводит фактор Xв Ха (ведет к появлению протромбиназы), но и активирует фактор IX, участвующий в образовании протромбиназы по внут­реннему механизму.


Образование протромбиназы по внешнему пути происходит чрезвычайно быстро (за 20—30 с), ведет к появлению небольших порций тромбина (На), который способствует необратимой агре­гации тромбоцитов, активации факторов VIIIи Vи значительно ускоряет формирование протромбиназы по внутреннему механизму. Инициатором внутреннего механизма образования протромбиназы является фактор XII, который активируется травмированной по­верхностью стенки сосуда, кожей, коллагеном, адреналином, в лабораторных условиях — при контакте со стеклом, после чего переводит фактор XIв XIa. В этой реакции может принимать участие калликреин (активируется фактором ХПа) и ВМК (ак­тивируется калликреином). Фактор XIaоказывает непосредствен­ное влияние на фактор IX, переводя его в фактор IXa. Специ­фическая деятельность последнего направлена на протеолиз фак­тора Xи протекает при обязательном участии фактора VIII(или Villa).


Следует заметить, что активация фактора Xпод влиянием комплекса факторов VIIIи IXaполучила название теназной реакции.


Вторая фаза процесса свертывания крови — переход фак­тора IIв фактор Па осуществляется под влиянием протром­биназы (фактор Ха) в присутствии фактора V (Va) и сводится к протеолитическому расщеплению протромбина, благодаря чему по­является фермент тромбин, обладающий свертывающей активно­стью.


Третья стадия процесса свертывания крови — переход фибриногена в фибрин — носит этапный характер. Под влиянием фактора Па от фибриногена отщепляются фибрино-пептиды и образуется, фибрин-мономер (фактор Im). Из него бла­годаря процессу полимеризации формируютсяДолигомеры и димеры фибрина (фактор 1о и Id), из которых за счет продольного и поперечного связывания образуются протофибриллы — легкораст­воримый фибрин, или фибрин S, быстро лизирующийся под влиянием протеаз (плазмина, трипсина). В дальнейшем в процесс образования фибрина вмешивается фактор XIII(фибриназа, фибринстабилизи-рующий фактор), который после активации тромбином в присутст­вии ионов Са +
«прошивает» фибринполимеры дополнительными перекрестными связями, в результате чего появляется труднораст­воримый фибрин, или фибрин i (insoluble). В результате этой ре­акции сгусток становится резистентным к фибринолитическим (про-теолитическим) агентам и плохо поддается разрушению (схема 6.2).


Образовавшийся фибриновый сгусток благодаря тромбоцитам, входящим в его структуру, сокращается и уплотняется (наступает ретракция) и прочно закупоривает поврежденный сосуд.


6.4.3. Естественные антикоагулянты


Несмотря на то что в циркулирующей крови имеются все фак­торы, необходимые для образования тромба, в естественных условиях при наличии целостности сосудов кровь остается жидкой. Это обус­ловлено наличием в кровотоке противосвертывающих веществ, полу­чивших название естественныхантикоагулянтов, или фибринолитического звена системы гемостаза.


Естественные антикоагулянты делят на первичные и вторичные. Первичные антикоагулянты всегда присутствуют в циркулирующей крови, вторичные — образуются в результате протеолитического расщепления факторов свертывания крови в процессе образования и растворения фибринового сгустка.


Первичные антикоагулянты
можно разделить на три основные группы: 1) антитромбопластины — обладающие антитромбопласти-ческим и антипротромбиназным действием; 2) антитромбины — связывающие тромбин; 3) ингибиторы самосборки фибрина — да­ющие переход фибриногена в фибрин.


Следует заметить, что при снижении концентрации первичных естественных антикоагулянтов создаются благоприятные условия для развития тромбозов и ДВС-синдрома.


ОСНОВНЫЕ ЕСТЕСТВЕННЫЕ АНТИКОАГУЛЯНТЫ


(по Баркагану 3. С. и Бишевскому К. М.)


ПервичныеАнтитромбин
III
у2~Глобулин. Синтезируется в печени. Прогрессив-


но действующий ингибитор тромбина, факторов Ха, 1Ха, Х1а, ХПа, калликреина и в меньшей степени — плазмина и трипсина. Плазменный кофактор гепарина


Гепарин
Сульфатированный полисахарид. Трансформирует


антитромбин III
из прогрессивного в антикоагулянт немедленного действия, значительно повышая его ак­тивность. Образует с тромбогенными белками и гор­монами комплексы, обладающие антикоагулянтным и неферментным фибринолитическим действием


a2-АнтиплазминБелок. Ингибирует действие плазмина, трипсина,


химотрипсина, калликреина, фактора Ха, урокиназы


а2
-МакроглобулинПрогрессивный ингибитор тромбина, калликреина,


плазмина и трипсина


а2-
АнтитрипсинИнгибитор тромбина, трипсина и плазмина


C1-эстеразный ингибитора2-Нейроаминогликопротеид. Инактивирует кал-


ликреин, предотвращая его действие на кининоген, факторы ХIIa, IXa, XIaи плазмин


Липопротеии-ассоцииро-Ингибирует комплекс тромбопластин—фактор VII
,


ванный коагуляционный инактивирует фактор Ха ингибитор (ЛАКИ)


Продолжение


Алолипопротеин А-11


Плацентарный антикоагу-лянтный протеин


Протеин С


Протеин
S


Тромбомодулин


Ингибитор самосборки фибрина


«Плавающие» рецепторы


Аутоантитела к активным факторам свертывания


Ингибирует комплекс тромбопластин—фактор
VII


Образуется в плаценте. Ингибирует комплекс тром- ' бопластин—фактор
VII


Витамин К-зависимый белок. Образуется в печени и в эндотелии. Обладает свойствами сериновой про-теазы. Вместе с протеином
S
связывает факторы
Va
и
Villa
и активирует фибринолиз


Витамин К-зависимый белок, образуется эндоте-лиальными клетками. Усиливает действие протеина С


Кофактор протеина С, связывается с фактором Па. Образуется эндотелиальными клетками


Полипептид, образуется в различных тканях. Дей­ствует на фибрин-мономер и полимер


Гликопротеиды, связывают факторы Па и Ха, а возможно, и другие сериновые протеазы


Находятся в плазме, ингибируют факторы Па, Ха и др.


Вторичные


(образуются в процессе протеолиза— при свертывании крови,


фибринолизе и т. д.)


Антитромбин
I


Дериваты (продукты дегра­дации) протромбина Р,
R
,
Q
и др,


Метафактор
Va


Метафактор Х1а


Фибринопептиды


Продукты деградации фиб­риногена и фибрина (ча­ще последнего) (ПДФ)


Фибрин. Адсорбирует и инактивирует тромбин Ингибируют факторы Ха,
Va


Ингибитор фактора Ха


Ингибитор комплекса ХПа+Х1а


Продукты протеолиза фибриногена тромбином; ин­гибируют фактор Па


Нарушают полимеризацию фибрин-мономера, бло­кируют фибриноген и фибрин-мономер (образуют с ними комплексы), ингибируют факторы Х1а. На, фиб­ринолиз и агрегацию тромбоцитов


К вторичным антикоагулянтам
относят «отработанные» фак­торы свертывания крови (принявшие участие в свертывании) и продукты деградации фибриногена и фибрина (ПДФ), обладающие мощным антиагрегационным и противосвертывающим действием, а также стимулирующие фибринолиз. Роль вторичных антикоагулян­тов сводится к ограничению внутрисосудистого свертывания крови и распространения тромба по сосудам.


6.4.4. Фибринолиз


Фибринолиз является неотъемлемой частью системы гемо­стаза, всегда сопровождает процесс свертывания крови и активиру­ется факторами, принимающими участие в этом процессе. Являясь важной защитной реакцией, фибринолиз предотвращает закупорку кровеносных сосудов фибриновыми сгустками. Кроме того, фибри­нолиз ведет к реканализации сосудов после остановки кровотечения.


Ферментом, разрушающим фибрин, является плпмин (иног­да его называют «фибринолизин»), который в циркуляции находится в неактивном состоянии в виде профермента плазминогена.


Фибринолиз, как и процесс свертывания крови, может протекать по внешнему и внутреннему механизму (пути). Внешний механизм активации фибринолиза
осуществляется при участии тканевых ак­тиваторов, которые синтезируются главным образом в эндотелии сосудов. К ним относятся тканевый активатор плазминогена (ТАП) и урокиназа. Последняя также образуется в юкстагломерулярном комплексе (аппарате) почки (см. главу 12). Внутренний механизм активации фибринолиза
осуществляется плазменными активатора­ми, а также активаторами форменных элементов крови — лейко­цитов, тромбоцитов и эритроцитов и разделяется на Хагеман-зави-симый и Хагеман-независимый. Хагеман-зависимый фибринолиз протекает под влиянием факторов ХПа, калликреина и ВМК, ко­торые переводят плазминоген в плазмин. Хагеман-независимый фиб­ринолиз осуществляется наиболее быстро и носит срочный характер. Его основное назначение сводится к очищению сосудистого русла от нестабилизированного фибрина, образующегося в процессе внут-рисосудистого свертывания крови.


Образовавшийся в результате активации плазмин вызывает рас­щепление фибрина (схема 6.3). При этом появляются ранние (круп­номолекулярные) и поздние (низкомолекулярные) ПДФ.


В плазме находятся и ингибиторы фибринолиза. Важнейшими из них являются a2-антиплазмин, связывающий плазмин, трипсин, калликреин, урокиназу, ТАП и, следовательно, вмешивающийся в процесс фибринолиза как на ранних, так и на поздних стадиях. Сильным ингибитором плазмина служит a1-протеазный ингибитор. Кроме того, фибринолиз тормозится а2
-макроглобулином, C1-проте-азным ингибитором, а также рядом ингибиторов активатора плаз-миногена, синтезируемых эндотелием, макрофагами, моноцитами и фибробластами.


Фибринолитическая активность крови во многом определяется соотношением активаторов и ингибиторов фибринолиза.


При ускорении свертывания крови и одновременном торможении фибринолиза создаются благоприятные условия для развития тром­бозов, эмболии и ДВС-синдрома.


Наряду с ферментативным фибринолизом, по мне­нию профессора Б. А. Кудряшова, существует так называемый не­ферментативный фибринолиз, который обусловлен ком­плексными соединениями естественного антикоагулянта гепарина с ферментами и гормонами. Неферментативный фибринолиз приводит к расщеплению нестабилизированного фибрина, очищая сосудистое русло от фибрин-мономеров и фибрина s.


6.4.5. Регуляция свертывания крови и фибринолиза


Свертывание крови, контактирующей с травмированными тка­нями, осуществляется за 5—10 мин. Основное время в этом процессе уходит на образование протромбиназы, тогда как переход протром­бина в тромбин и фибриногена в фибрин осуществляется довольно быстро. В естественных условиях время свертывания крови может уменьшаться (развивается гиперкоагуляция)
или удлиняться (воз­никает гипокоагуляция).


Значительный вклад в изучение регуляции свертывания крови и фибринолиза внесли отечественные ученые Е. С. Иваницкий-Ва-силенко, А. А. Маркосян, Б. А. Кудряшов, С. А. Георгиева и др.


Установлено, что при острой кровопотере, гипоксии, интенсивной мышечной работе, болевом раздражении, стрессе свертывание крови значительно ускоряется, что может привести к появлению фибрин-мономеров и даже фибрина sв сосудистом русле. Однако благодаря одновременной активации фибринолиза, носящего защитный харак­тер, появляющиеся сгустки фибрина быстро растворяются и не наносят вреда здоровому организму.


Ускорение свертывания крови и усиление фибринолиза при всех перечисленных состояниях обусловлены повышением тонуса симпа­тической части автономной нервной системы и поступлением в кровоток адреналина и норадреналина. При этом активируется фак­тор Хагемана, что приводит к запуску внешнего и внутреннего механизма образования протромбиназы, а также стимуляции Хаге-ман-зависимого фибринолиза. Кроме того, под влиянием адреналина усиливается образование апопротеина III— составной части тром-бопластина, и наблюдается отрыв клеточных мембран от эндотелия, обладающих свойствами тромбопластина, что способствует резкому ускорению свертывания крови. Из эндотелия также выделяются ТАП и урокиназа, приводящие к стимуляции фибринолиза (схе­ма 6.4).


В случае повышения тонуса парасимпатической части автономной нервной системы (раздражение блуждающего нерва, введение АХ, пилокарпина) также наблюдаются ускорение свертывания крови и стимуляция фибринолиза. В этих условиях происходит выброс тром­бопластина и активаторов плазминогена из эндотелия сердца и сосудов. Следовательно, основным эфферентным регулятором свер-


тывания крови и фибринолиза является сосудистая стенка. Напом­ним также, что в эндотелии сосудов синтезируется Pgb, препятст­вующий в кровотоке адгезии и агрегации тромбоцитов. Вместе с тем развивающаяся гиперкоагуляция может смениться гипокоагу-ляцией, которая в естественных условиях носит вторичный характер и обусловлена расходом (потреблением) тромбоцитов и плазменных факторов свертывания крови, образованием вторичных антикоагу­лянтов, а также рефлекторным выбросом в сосудистое русло в ответ на появление фактора Па, гепарина и антитромбина III(см. схе­му 6.4).


При многих заболеваниях, сопровождающихся разрушением эритроцитов, лейкоцитов, тромбоцитов и тканей и/или гиперпро­дукцией апопротеина IIIстимулированными эндотелиальными клет­ками, моноцитами и макрофагами (эта реакция опосредована дей­ствием антигенов и интерлейкинов), развивается ДВС-синдром,
зна­чительно отягощающий течение патологического процесса и даже приводящий к смерти больного. В настоящее время ДВС-синдром обнаружен более чем при 100 различных заболеваниях. Особенно часто он возникает при переливании несовместимой крови, обшир­ных травмах, отморожениях, ожогах, длительных оперативных вме­шательствах на легких, печени, сердце, предстательной железе, всех видах шока, краш-синдроме (длительное сдавление конечно­стей), а также в акушерской практике при попадании в кровоток матери околоплодных вод, насыщенных тромбопластином плацен­тарного происхождения. При этом возникает гиперкоагуляция, ко­торая из-за интенсивного потребления тромбоцитов, фибриногена, факторов V, VIII, XIIIи др. в результате интенсивного внутрисо-судистого свертывания крови сменяется вторичной гипокоагуляцией вплоть до полной неспособности крови к образованию фибриновых сгустков, что приводит к трудно поддающимся терапии кровотече­ниям.


Знание основ физиологии гемостаза позволяет клиницисту из­брать оптимальные варианты борьбы с заболеваниями, сопровожда­ющимися тромбозами, эмболиями, ДВС-синдромом и повышенной кровоточивостью.


Глава 7. КРОВО- И ЛИМФООБРАЩЕНИЕ


Клетки многоклеточных организмов теряют непосредственный контакт с внешней средой и находятся в окружающей их жидкой сре­де — тканевой, или межклеточной, жидкости и т. д., от­куда черпают необходимые вещества и куда выделяют продукты об­мена.


Состав тканевой жидкости постоянно обновляется благодаря тому, что эта жидкость находится в тесном контакте с непрерывно дви­жущейся кровью. Из крови в тканевую жидкость проникают кис­лород и другие необходимые клеткам вещества; в кровь, оттекающую от тканей, поступают продукты обмена клеток. От тканей, помимо крови, оттекает лимфа, которая также уносит часть продуктов обмена.


Кровь движется по кровеносным сосудам благодаря периодиче­ским сокращениям сердца. Сердце и сосуды составляют си­стему кровообращения.


Оттекающая от тканей венозная кровь поступает в правое пред­сердие, а оттуда в правый желудочек сердца. При сокращении его кровь нагнетается в легочную артерию. Протекая через легкие, она отдает СO2 и насыщается O2. Система легочных сосудов — легочные артерии, капилляры и вены — образует малый
(легочный) круг кровообращения.
Обогащенная кислородом кровь из легких по ле­гочным венам поступает в левое предсердие, а оттуда в
левый желудочек. При сокращении последнего кровь нагнетается в аорту, артерии, артериолы и капилляры всех органов и тканей, а оттуда по венам притекает в правое предсердие. Система этих сосудов образует большой круг кровообращения
(рис. 7.1).


7.1. ДЕЯТЕЛЬНОСТЬ СЕРДЦА


7.1.1. Электрические явления
в сердце, проведение возбуждения


Сокращения сердца происходят вследствие периодически возни­кающих в сердечной мышце процессов возбуждения. Сердечная мышца (миокард) обладает рядом свойств, обеспечивающих ее не­прерывную ритмическую деятельность, — автоматией, возбудимо­стью, проводимостью, сократимостью.


Возбуждение в сердце возникает периодически под влиянием


процессов, протекающих в нем самом. Это явление получило на­звание автоматии. Способностью к автоматам обладают опреде­ленные участки миокарда, состоящие из специфической (атипиче­ской) мышечной ткани, бедной миофибриллами, богатой саркоплаз­мой и напоминающей эмбриональную мышечную ткань. Специфическая мускулатура образует в сердце проводящую систему, состоящую из синусно-предсердного
(синоатриального) узла — во­дителя ритма сердца, расположенного в стенке предсердия у устьев полых вен и предсердно-желудочкового
(атриовентрикулярного) уз­ла, расположенного в нижней трети правого предсердия и межже­лудочковой перегородке. От этого узла берет начало предсердно-желудочковый пучок
(пучок Гиса), прободающий предсердно-желу-дочковую перегородку и делящийся на правую и левую ножки, следующие в межжелудочковой перегородке. В области верхушки сердца ножки предсердно-желудочкового пучка загибаются вверх и переходят в сеть сердечных проводящих миоцитов
(волокна Пур-кинье), погруженных в рабочий (сократительный) миокард желу­дочков (рис. 7.2).


7.1.1.1. Электрическая активность клеток миокарда


В естественных условиях клетки миокарда находятся в состоянии ритмической активности (возбуждения), поэтому об их потенциале покоя можно говорить лишь условно. У большинства клеток он составляет около 90 мВ и определяется почти целиком концентра­ционным градиентом ионов К+.


Потенциалы действия (ПД), зарегистрированные в разных от­делах сердца при помощи внутриклеточных микроэлектродов, су­щественно различаются по форме, амплитуде и длительности (рис. 7.3, А). На рис. 7.3, Б схематически показан ПД одиночной


клетки миокарда желудочка. Для возникновения этого потенциала потребовалось деполяризовать мембрану на 30 мВ. В ПД различают следующие фазы: быструю начальную деполяризацию — фаза 1; медленную реполяризацию, так называемое плато — фаза 2; быст­рую реполяризацию — фаза 3; фазу покоя — фаза 4.


Фаза 1 в клетках миокарда предсердий, сердечных проводящих миоцитов (волокна Пуркинье) и миокарда желудочков имеет ту же природу, что и восходящая фаза ПД нервных и скелетных мышечных волокон — она обусловлена повышением натриевой проницаемости, т. е. активацией быстрых натриевых каналов клеточной мембраны. Во время пика ПД происходит изменение знака мембранного по­тенциала (с —90 до +30 мВ).


Деполяризация мембраны вызывает активацию медленных на­трий-кальциевых каналов. Поток ионов Са2+
внутрь клетки по этим каналам приводит к развитию плато ПД (фаза 2). В период плато натриевые каналы инактивируются и клетка переходит в состояние абсолютной рефрактерности. Одновременно происходит активация калиевых каналов. Выходящий из клетки поток ионов К+
обеспе­чивает быструю реполяризацию мембраны (фаза 3), во время ко­торой кальциевые каналы закрываются, что ускоряет процесс ре-поляризации (поскольку падает входящий кальциевый ток, деполя­ризующий мембрану).


Реполяризация мембраны вызывает постепенное закрывание ка­лиевых и реактивацию натриевых каналов. В результате возбуди-


мость миокардиальной клетки восстанавливается — это период так называемой относительной рефрактерное™.


В клетках рабочего миокарда (предсердия, желудочки) мембран­ный потенциал (в интервалах между следующими друг за другом ПД) поддерживается на более или менее постоянном уровне. Однако в клетках синусно-предсердного узла, выполняющего роль водителя ритма сердца, наблюдается спонтанная диастолическая деполяриза­ция (фаза 4), при достижении критического уровня которой (при­мерно —50 мВ) возникает новый ПД (см. рис. 7.3, Б). На этом механизме основана авторитмическая активность указанных сердеч­ных клеток. Биоэлектрическая активность этих клеток имеет и другие важные особенности: I) малую крутизну подъема ПД; 2) мед­ленную реполяризацию (фаза 2), плавно переходящую в фазу бы­строй реполяризации (фаза 3), во время которой мембранный по­тенциал достигает уровня —60 мВ (вместо —90 мВ в рабочем миокарде), после чего вновь начинается фаза медленной диастоли-ческой деполяризации. Сходные черты имеет электрическая актив­ность клеток предсердно-желудочкового узла, однако скорость спон­танной диастолической деполяризации у них значительно ниже, чем у клеток синусно-предсердного узла, соответственно ритм их потенциальной автоматической активности меньше.


Ионные механизмы генерации электрических потенциалов в клетках водителя ритма полностью не расшифрованы. Установлено, что в развитии медленной диастолической деполяризации и мед­ленной восходящей фазы ПД клеток синусно-предсердного узла ведущую роль играют кальциевые каналы. Они проницаемы не только для ионов Са2+
, но и для ионов Na+
. Быстрые нат­риевые каналы не принимают участия в генерации ПД этих клеток.


Скорость развития медленной диастолической деполяризации ре­гулируется автономной (вегетативной) нервной системой. В случае влияния симпатической части медиатор норадреналин активирует медленные кальциевые каналы, вследствие чего скорость диастоли­ческой деполяризации увеличивается и ритм спонтанной активности возрастает. В случае влияния парасимпатической части медиатор АХ повышает калиевую проницаемость мембраны, что замедляет развитие диастолической деполяризации или прекращает ее, а также гиперполяризует мембрану. По этой причине происходит урежение ритма или прекращение автоматии.


Способность клеток миокарда в течение жизни человека нахо­диться в состоянии непрерывной ритмической активности обеспе­чивается эффективной работой ионных насосов этих клеток. В период диастолы из клетки выводятся ионы Na+
, а в клетку возвращаются ионы К+
. Ионы Са2+
, проникшие в цитоплазму, поглощаются эн-доплазматической сетью. Ухудшение кровоснабжения миокарда (ишемия) ведет к обеднению запасов АТФ и креатинфосфата в миокардиальных клетках; работа насосов нарушается, вследствие чего уменьшается электрическая и механическая активность мио­кардиальных клеток.


7.1.1.2. Функции проводящей системы сердца


Спонтанная генерация ритмических импульсов является резуль­татом слаженной деятельности многих клеток синусно-предсердного узла, которая обеспечивается тесными контактами (нексусы) и элек­тротоническим взаимодействием этих клеток. Возникнув в синус-но-предсердном узле, возбуждение распространяется по проводящей системе на сократительный миокард.


Особенностью проводящей системы сердца является способность каждой клетки самостоятельно генерировать возбуждение. Сущест­вует так называемый градиент автоматии, выражающийся в убывающей способности к автоматии различных участков прово­дящей системы по мере их удаления от синусно-предсердного узла, генерирующего импульсы с частотой до 60—80 в минуту.


В обычных условиях автоматия всех нижерасположенных уча­стков проводящей системы подавляется более частыми импульсами, поступающими из синусно-предсердного узла. В случае поражения и выхода из строя этого узла водителем ритма может стать пред-сердно-желудочковый узел. Импульсы при этом будут возникать с частотой 40—50 в минуту. Если окажется выключенным и этот узел, водителем ритма могут стать волокна предсердно-желудочко-вого пучка (пучок Гиса). Частота сердечных сокращений в этом случае не превысит 30—40 в минуту. Если выйдут из строя и эти водители ритма, то процесс возбуждения спонтанно может возник­нуть в клетках волокон Пуркинье. Ритм сердца при этом будет очень редким — примерно 20 в минуту.


Отличительной особенностью проводящей системы сердца явля­ется наличие в ее клетках большого количества межклеточных контактов — нексусов.
Эти контакты являются местом перехода возбуждения с одной клетки на другую. Такие же контакты имеются и между клетками проводящей системы и рабочего миокарда. Бла­годаря наличию контактов миокард, состоящий из отдельных клеток, работает как единой целое. Существование большого количества межклеточных контактов увеличивает надежность проведения воз­буждения в миокарде.


Возникнув в синусно-предсердном узле, возбуждение распрост­раняется по предсердиям, достигая предсердно-желудочкового (ат-риовентрикулярного) узла. В сердце теплокровных животных суще­ствуют специальные проводящие пути между синусно-предсердным и предсердно-желудочковым узлами, а также между правым и левым предсердиями. Скорость распространения возбуждения в этих про­водящих путях ненамного превосходит скорость распространения возбуждения по рабочему миокарду. В предсердно-желудочковом узле благодаря небольшой толщине его мышечных волокон и особому способу их соединения возникает некоторая задержка проведения возбуждения. Вследствие задержки возбуждение доходит до пред­сердно-желудочкового пучка и сердечных проводящих миоцитов (волокна Пуркинье) лишь после того, как мускулатура предсердий успевает сократиться и перекачать кровь из предсердий в желудочки.


Следовательно, атриовентрикулярная задержка обеспечивает необ­ходимую последовательность (координацию) сокращений предсердий и желудочков.


Скорость распространения возбуждения в предсердно-желудоч-ковом пучке и в диффузно расположенных сердечных проводящих миоцитах достигает 4,5—5
м/с, что в 5 раз больше скорости рас­пространения возбуждения по рабочему миокарду. Благодаря этому клетки миокарда желудочков вовлекаются в сокращение почти од­новременно, т. е. синхронно (см. рис. 7.2). Синхронность сокращения клеток повышает мощность миокарда и эффективность нагнетатель­ной функции желудочков. Если бы возбуждение проводилось не через предсердно-желудочковый пучок, а по клеткам рабочего мио­карда, т. е. диффузно, то период асинхронного сокращения продол­жался бы значительно дольше, клетки миокарда вовлекались в сокращение не одновременно, а постепенно и желудочки потеряли бы до 50% своей мощности.


Таким образом, наличие проводящей системы обеспечивает ряд важных физиологических особенностей сердца: 1) ритмическую ге­нерацию импульсов (потенциалов действия); 2) необходимую по­следовательность (координацию) сокращений предсердий и желу­дочков; 3) синхронное вовлечение в процесс сокращения клеток миокарда желудочков (что увеличивает эффективность систолы).


7.1.1.3. Рефрактерная фаза миокарда и экстрасистола


Потенциал действия миокарда желудочков длится около 0,3 с (более чем в 100 раз дольше, чем ПД скелетной мышцы). Во время ПД мембрана клетки становится невосприимчивой к действию других раздражителей, т. е. рефрактерной. Соотношения между фазами ПД


миокарда и величиной его возбудимости показаны на рис. 7.4. Различают период абсолютной рефрактерности
(продолжается 0,27 с, т. е. несколько короче длительности ПД); период относи­тельной рефрактерности,
во время которого сердечная мышца может ответить сокращением лишь на очень сильные раздражения (продолжается 0,03 с), и короткий период супернормальной возбу­димости,
когда сердечная мышца может отвечать сокращением на подпороговые раздражения.


Сокращение (систола) миокарда продолжается около 0,3 с, что по времени примерно совпадает с рефрактерной фазой. Следова­тельно, в период сокращения сердце неспособно реагировать на другие раздражители. Наличие длительной рефрактерной фазы пре­пятствует развитию непрерывного укорочения (тетануса) сердечной мышцы, что привело бы к невозможности осуществления сердцем нагнетательной функции.


Раздражение, нанесенное на миокард в период расслабления (диастолы), когда его возбудимость частично или полностью вос­становлена, вызывает внеочередное сокращение сердца — экстра­систолу.
Наличие или отсутствие экстрасистол, а также их характер определяется при регистрации электрокардиограммы.


7.1.1.4. Электрокардиограмма


Охват возбуждением огромного количества клеток рабочего мио­карда вызывает появление отрицательного заряда на поверхности этих клеток. Сердце становится мощным электрогенератором. Ткани тела, обладая сравнительно высокой электропроводностью, позво­ляют регистрировать электрические потенциалы сердца с поверх­ности тела. Такая методика исследования электрической активности сердца, введенная в практику В. Эйнтховеном, А. Ф. Самойловым, Т. Льюисом, В. Ф. Зелениным и др., получила название электро­кардиографии,
а регистрируемая с ее помощью кривая называется электрокардиограммой
(ЭКГ). Электрокардиография широко при­меняется в медицине как диагностический метод, позволяющий оценить динамику распространения возбуждения в сердце и судить о нарушениях сердечной деятельности при изменениях ЭКГ.


В настоящее время пользуются специальными приборами — электрокардиографами с электронными усилителями и осциллогра­фами. Запись кривых производят на движущейся бумажной ленте. Разработаны также приборы, при помощи которых записывают ЭКГ во время активной мышечной деятельности и на расстоянии от обследуемого. Эти приборы — телеэлектрокардиографы — основаны на принципе передачи ЭКГ на расстояние с помощью радиосвязи. Таким способом регистрируют ЭКГ у спортсменов во время сорев­нований, у космонавтов в космическом полете и т. д. Созданы приборы для передачи электрических потенциалов, возникающих при деятельности сердца, по телефонным проводам и записи ЭКГ в специализированном центре, находящемся на большом расстоянии от пациента.


Вследствие определенного положения сердца в грудной клетке и своеобразной формы тела человека электрические силовые линии, возникающие между возбужденными (—) и невозбужденными (+) участками сердца, распределяются по поверхности тела неравно­мерно. По этой причине в зависимости от места приложения элек­тродов форма ЭКГ и вольтаж ее зубцов будут различны. Для регистрации ЭКГ производят отведение потенциалов от конечностей и поверхности грудной клетки. Обычно используют три так назы­ваемых стандартных отведения от конечностей:
Iотведение: правая рука — левая рука; IIотведение: правая рука — левая нога; IIIотведение: левая рука — левая нога (рис. 7.5). Кроме того, регистрируют три униполярных усиленных отведения по Гольдбер-геру:
aVR; aVL; aVF. При регистрации усиленных отведений два электрода, используемые для регистрации стандартных отведений, объединяются в один и регистрируется разность потенциалов между


объединенными и активными электродами. Так, при aVRактивным является электрод, наложенный на правую руку, при aVL— на левую руку, при aVF— на левую ногу. Вильсоном предложена регистрация шести грудных отведений.


Взаимоотношение величины зубцов в трех стандартных отведе­ниях было установлено Эйнтховеном. Он нашел, что электродви­жущая сила сердца, регистрируемая во IIстандартном отведении, равна сумме электродвижущих сил в Iи IIIотведениях. Выражением электродвижущей силы является высота зубцов, поэтому зубцы IIотведения по своей величине равны алгебраической сумме зубцов Iи IIIотведений.


Для отведения потенциалов от грудной клетки рекомендуют прикладывать первый электрод к одной из шести показанных на рис. 7.6 точек. Вторым электродом служат три соединенных вместе электрода, наложенных на обе руки и левую ногу. В этом случае форма ЭКГ отражает электрические изменения только на участке приложения грудного электрода. Объединенный электрод, прило­женный к трем конечностям, является индифферентным, или «ну­левым», так как его потенциал не изменяется на протяжении всего


сердечного цикла. Такие электрокардиографические отведения на­зываются униполярными,
или однополюсными.
Эти отведения обоз­начаются латинской буквой V (V1, V2
и т.д.).


Нормальная ЭКГ человека, полученная во IIстандартном отве­дении, приведена на рис. 7.7. При анализе ЭКГ определяют амп­литуду зубцов в мВ (mV), время их протекания в с, длительность сегментов — участков изопотенциальной линии между соседними зубцами и интервалов, включающих в себя зубец и прилегающий к нему сегмент.


Формирование ЭКГ (ее зубцов и интервалов) обусловлено рас­пространением возбуждения в сердце и отображает этот процесс. Зубцы возникают и развиваются, когда между участками возбу­димой системы имеется разность потенциалов, т. е. какая-то часть системы охвачена возбуждением, а другая нет. Изопотенциальная линия возникает в случае, когда в пределах возбудимой системы нет разности потенциалов, т. е. вся система не возбуждена или, наоборот, охвачена возбуждением. С позиций электрокардиологии, сердце состоит из двух возбудимых систем — двух мышц: мышцы предсердий и мышцы желудочов. Эти две мышцы разделены со­единительнотканной фиброзной перегородкой. Связь между двумя мышцами и передачу возбуждения осуществляет проводящая си­стема сердца. В силу того что мышечная масса проводящей системы мала, генерируемые в ней потенциалы при обычных усилениях стандартных электрокардиографов не улавливаются. Следователь­но, зарегистрированная ЭКГ отражает последовательный охват возбуждением сократительного миокарда предсердий и же­лудочков.


ЗубецР
(см. рис. 7.7) отображает охват возбуждением пред­сердий и получил название предсердного. Далее возбуждение рас­пространяется на предсердно-желудочковый узел и движется по проводящей системе желудочков. В это время электрокардиограф регистрирует изопотенциальную линию (оба предсердия полностью возбуждены, оба желудочка еще не возбуждены, а движение воз­буждения по проводящей системе желудочков не улавливается элек­трокардиографом — сегмент PQ
на ЭКГ).


В предсердиях возбуждение распространяется преимущественно по сократительному миокарду лавинообразно от синусно-предсерд-ной к предсердно-желудочковой области. Скорость распространения возбуждения по специализированным внутрипредсердным пучкам в норме примерно равна скорости распространения по сократительному миокарду предсердия, поэтому охват возбуждением предсердий ото­бражается монофазным зубцом Р.
Охват возбуждением желудочков осуществляется посредством передачи возбуждения с элементов про­водящей системы на сократительный миокард, что обусловливает сложный характер комплекса QRS
,
отражающего охват возбужде­нием желудочков. При этом зубец Q
обусловлен возбуждением верхушки сердца, правой сосочковой мышцы и внутренней повер­хности желудочков, зубец R
— возбуждением основания сердца и наружной поверхности желудочков. Процесс полного охвата воз­буждением миокарда желудочков завершается к окончанию форми­рования зубца S. Теперь оба желудочка возбуждены и сегмент ST
находится на изопотенциальной линии вследствие отсутствия разности потенциалов в возбудимой системе желудочков.


ЗубецТ
отражает процессы реполяризации, т. е. восстанов­ление нормального мембранного потенциала клеток миокарда. Эти процессы в различных клетках возникают не строго синхронно. Вследствие этого появляется разность потенциалов между еще де­поляризованными участками миокарда (т. е. обладающими отрица­тельным зарядом) и участками миокарда, восстановившими свой положительный заряд. Указанная разность потенциалов регистри­руется в виде зубца Т.
Этот зубец — самая изменчивая часть ЭКГ. Между зубцом Т
и последующим зубцом Р
регистрируется изопо-тенциальная линия, так как в это время в миокарде желудочков и в миокарде предсердий нет разности потенциалов. Видимого ото­бражения на ЭКГ зубца, соответствующего реполяризации предсер­дий, нет в связи с тем, что он по времени совпадает с мощным комплексом QRS
и поглощается им. При поперечной блокаде сердца, когда не каждый зубец Р
сопровождается комплексом QRS
,
наблю­дается предсердный зубец Т, (T-атриум), отображающий реполяри-зацию предсердий.


Общая продолжительность электрической систолы желудочков (Q—Т)
почти совпадает с длительностью механической систолы (механическая систола начинается несколько позже, чем электри­ческая) .


Электрокардиограмма позволяет оценить характер нарушений проведения возбуждения в сердце. Так, по величине интервала Р
—Q
(от начала зубца Р
и до начала зубца Q) можно судить о том, совершается ли проведение возбуждения от предсердия к желудочку с нормальной скоростью. В норме это время равно 0,12—0,2 с. Общая продолжительность комплекса QRS
отражает скорость охвата возбуждением сократительного миокарда желудочков и составляет 0,06—0,1 с (см. рис. 7.7).


Процессы деполяризации и реполяризации возникают в разных участках миокарда неодновременно, поэтому величина разности


потенциалов между различными участками сердечной мышцы на протяжении сердечного цикла изменяется. Условную линию, сое­диняющую в каждый момент две точки, обладающие наибольшей разностью потенциалов, принято называть электрической осью серд­ца.
В каждый данный момент электрическая ось сердца характери­зуется определенной величиной и направлением, т. е. обладает свой­ствами векторной величины. Вследствие неодновременности охвата возбуждением различных отделов миокарда этот вектор изменяет свое направление. Оказалась полезной регистрация не только ве­личины разности потенциалов сердечной мышцы (т. е. амплитуды зубцов на ЭКГ), но и изменений направления электрической оси желудочков сердца. Одновременная запись изменений величины разности потенциалов и направления электрической оси получило название векторкардиограммы
(ВК.Г).


Изменение ритма сердечной деятельности
. Электрокардиография позволяет детально анализировать изменения сердечного ритма. В норме частота сердечных сокращений составляет 60—80 в минуту, при более редком ритме — брадикардии
— 40—50, а при более частом — тахикардии
— превышает 90—100 и доходит до 150 и более в минуту. Брадикардия часто регистрируется у спортсменов в состоянии покоя, а тахикардия — при интенсивной мышечной работе и эмоциональном возбуждении.


У молодых людей наблюдается регулярное изменение ритма сердечной деятельности в связи с дыханием — дыхательная арит­мия.
Она состоит в том, что в конце каждого выдоха частота сердечных сокращений урежается.


Экстрасистолы. При некоторых патологических состояниях сер­дца правильный ритм эпизодически или регулярно нарушается вне­очередным сокращением — экстрасистолой.
Если внеочередное возбуждение возникает в синусно-предсердном узле в тот момент, когда рефрактерный период закончился, но очередной автоматиче­ский импульс еще не появился, наступает раннее сокращение серд­ца — синусовая экстрасистола.
Пауза, следующая за такой экс­трасистолой, длится такое же время, как и обычная.


Внеочередное возбуждение, возникшее в миокарде желудочков, не отражается на автоматии синусно-предсердного узла. Этот узел своевременно посылает очередной импульс, который достигает же­лудочков в тот момент, когда они еще находятся в рефрактерном состоянии после экстрасистолы, поэтому миокард желудочков не отвечает на очередной импульс, поступающий из предсердия. Затем рефрактерный период желудочков кончается и они опять могут ответить на раздражение, но проходит некоторое время, пока из синусно-предсердного узла придет второй импульс. Таким образом, экстрасистола, вызванная возбуждением, возникшим в одном из желудочков (желудочковая экстрасистола),
приводит к продолжи­тельной так называемой компенсаторной паузе
желудочков при неизменном ритме работы предсердий.


У человека экстрасистолы могут появиться при наличии очагов раздражения в самом миокарде, в области предсердного или желу-


дочковых водителей ритма. Экстрасистолии могут способствовать влияния, поступающие в сердце из ЦНС.


Трепетание и мерцание сердца
. В патологии можно наблюдать своеобразное состояние мышцы предсердий или желудочков сердца, называемое трепетанием
и мерцанием (фибрилляция).
При этом происходят чрезвычайно частые и асинхронные сокращения мы­шечных волокон предсердий или желудочков — до 400
(при трепетании) и до 600 (при мерцании) в минуту. Главным отли­чительным признаком фибрилляции служит неодновременность со­кращений отдельных мышечных волокон данного отдела сердца. При таком сокращении мышцы предсердий или желудочков не могут осуществлять нагнетание крови. У человека фибрилляция желудочков, как правило, смертельна, если немедленно не принять меры для ее прекращения. Наиболее эффективным способом пре­кращения фибрилляции желудочков является воздействие сильным (напряжением в несколько киловольт) ударом электрического тока, по-видимому, вызывающим одновременно возбуждение мышечных волокон желудочка, после чего восстанавливается синхронность их сокращений.


ЭКГ и ВЭКГ отражают изменения величины и направления потенциалов действия миокарда, но не позволяют оценить особен­ности нагнетательной функции сердца. Потенциалы действия мем­браны клеток миокарда представляют собой лишь пусковой механизм сокращения клеток миокарда, включающий определенную последо­вательность внутриклеточных процессов, заканчивающихся укоро­чением миофибрилл. Эта серия последовательных процессов пол­учила название сопряжения возбуждения и сокращения.


7.1.2. Нагнетательная функция
сердца


Сердце нагнетает кровь в сосудистую систему благодаря перио­дическому синхронному сокращению мышечных клеток, составля­ющих миокард предсердий и желудочков. Сокращение миокарда вызывает повышение давления крови и изгнание ее из камер сердца. Вследствие наличия общих слоев миокарда у обоих предсердий и у обоих желудочков и одновременного прихода возбуждения к клеткам миокарда по сердечным проводящим миоцитам (волокнам Пуркинье) сокращение обоих предсердий, а затем и обоих желудочков осуще­ствляется одновременно.


Сокращение предсердий начинается в области устьев полых вен, вследствие чего устья сжимаются, поэтому кровь может двигаться только в одном направлении — в желудочки через предсердно-же-лудочковые отверстия. В этих отверстиях расположены клапаны. В момент диастолы желудочков створки клапанов расходятся, кла­паны раскрываются и пропускают кровь из предсердий в желудочки. В левом желудочке находится левый предсердно-желудочковый (дву­створчатый, или митральный) клапан, в правом — правый пред­сердно-желудочковый (трехстворчатый). При сокращении желудоч­ков кровь устремляется в сторону предсердий и захлопывает створки


клапанов. Открыванию створок в сторону предсердий препятствуют сухожильные нити, при помощи которых края створок прикрепля­ются к сосочковым мышцам. Последние представляют собой выросты внутреннего мышечного слоя стенки желудочков. Являясь частью миокарда желудочков, сосочковые мышцы сокращаются вместе с ними, натягивая сухожильные нити, которые, подобно вантам па­русов, удерживают створки клапанов.


Повышение давления в желудочках при их сокращении приводит к изгнанию крови: из правого желудочка в легочную артерию, а из левого желудочка — в аорту. В устьях аорты и легочной артерии имеются полулунные клапаны — клапан аорты и клапан легочного ствола соответственно. Каждый из них состоит из трех лепестков, прикрепленных наподобие клапанных карманов к внутренней по­верхности указанных артериальных сосудов. При систоле желудоч­ков выбрасываемая ими кровь прижимает эти лепестки к внутренним стенкам сосудов. Во время диастолы кровь устремляется из аорты и легочной артерии обратно в желудочки и при этом захлопывает лепестки клапанов. Эти клапаны могут выдерживать большое дав­ление, они не пропускают кровь из аорты и легочной артерии в желудочки.


Во время диастолы предсердий и желудочков давление в камерах сердца падает, вследствие чего кровь начинает притекать из вен в предсердия и далее через предсердно-желудочковые (атриовентри-кулярные) отверстия — в желудочки, в которых давление снижается до нуля и ниже.


Наполнение сердца кровью.
Поступление крови в сердце обу­словлено рядом причин. Первой из них является остаток движущей силы, вызванной предыдущим сокращением сердца. О наличии этой остаточной силы свидетельствует то, что из периферического конца нижней полой вены, перерезанной вблизи сердца, течет кровь, что было бы невозможно в случае, если бы сила предыдущего сердечного сокращения была полностью израсходована.


Среднее давление крови в венах большого круга кровообращения равно 7 мм рт.ст. В полостях сердца во время диастолы оно близко к нулю. Градиент давления, обеспечивающий приток венозной крови к сердцу, около 7 мм рт. ст. Это величина очень небольшая, и поэтому любые препятствия току венозной крови (например, легкое случайное сдавливание полых вен во время хирургической операции) могут полностью прекратить доступ крови к сердцу. Сердце выбра­сывает в артерии лишь ту кровь, которая притекает к нему из вен, поэтому прекращение венозного притока немедленно приводит к прекращению выброса крови в артериальную систему, падению артериального давления.


Вторая причина притока крови к сердцу — сокращение скелетных мышц и наблюдающееся при этом сдавливание вен конечностей и туловища. В венах имеются клапаны, пропускающие кровь только в
одном направлении — к сердцу. Периодическое сдавливание вен вызывает систематическую подкачку крови к сердцу. Эта так на­зываемая венозная помпа
обеспечивает значительное увеличение


притока венозной крови к сердцу, а значит, и сердечного выброса при физической работе.


Третья причина поступления крови в сердце — присасывание ее грудной клеткой, особенно во время вдоха. Грудная клетка пред­ставляет собой герметически закрытую полость, в которой вследствие эластической тяги легких существует отрицательное давление. В мо­мент вдоха сокращение наружных межреберных мышц и диафрагмы увеличивает эту полость: органы грудной полости, в частности полые вены, подвергаются растяжению и давление в полых венах и пред­сердиях становится отрицательным. Именно поэтому к ним сильнее притекает кровь с периферии.


Имеются данные о существовании механизма, непосредственно присасывающего кровь в сердце. Этот механизм состоит в том, что во время систолы желудочков, когда укорачивается их про­дольный размер, предсердно-желудочковая перегородка оттягива­ется книзу, что вызывает расширение предсердий и приток в них крови из полых вен. Предполагают наличие и других механизмов, активно доставляющих кровь в сердце. Наконец, определенное значение имеет присасывающая сила расслабляющихся желудоч­ков, которые, подобно отпущенной резиновой груше, восстанав­ливая свою форму во время диастолы, создают разрежение в полостях.


Во время диастолы в желудочки притекает около 70% общего объема крови. При систоле предсердий в желудочки подкачивается еще около 30% этого объема. Таким образом, значение нагнета­тельной функции миокарда предсердий для кровообращения срав­нительно невелико. Предсердия являются резервуаром для прите­кающей крови, легко изменяющим свою вместимость благодаря небольшой толщине стенок. Объем этого резервуара может возра­стать за счет наличия дополнительных емкостей — ушек предсердий, напоминающих кисеты, способные при расправлении вместить зна­чительные объемы крови.


7.1.2.1. Фазы сердечного цикла


Сокращение сердца сопровождается изменениями давления в его полостях и артериальных сосудах, возникновением тонов сердца, появлением пульсовых волн и т. д. При одновременной графической регистрации этих явлений можно определить длительность фаз сер­дечного цикла.


Под сердечным циклом понимают период, охватывающий одно сокращение — систола, и одно расслабление — диастола предсердий и желудочков. Пример синхронной регистрации ряда процессов при деятельности сердца представлен на рис. 7.8. Кривые записаны при частоте сердечных сокращений 75 в минуту. В этом случае общая длительность сердечного цикла равна 0,8 с. Сокра­щение сердца начинается с систолы предсердий, длящейся 0,1 с. Давление в предсердиях при этом поднимается до 5—8 мм рт. ст. Систола предсердий сменяется систолой желудочков продолжитель-


ностью 0,33 с. Систола желудочков разделяется на несколько пе­риодов и фаз.


Период напряжения длится 0,08 с и состоит из двух фаз.


Фаза асинхронного
сокращения миокарда желудочков длится 0,05 с. Точкой отсчета начала этой фазы служит зубец Q
ЭКГ, свидетельствующий о начале возбуждения желудочков. В течение этой фазы процесс возбуждения и следующий за ним процесс со­кращения распространяются по миокарду желудочков. Давление в желудочках еще близко к нулю. К концу фазы сокращение охва­тывает все волокна миокарда, а давление в желудочках начинает быстро нарастать.


Фаза изометрического сокращения
(0,03 с) начинается с захло­пывания створок предсердно-желудочковых (атриовентрикулярных) клапанов. При этом возникает I, или систолический, тон сердца. Смещение створок и крови в сторону предсердий вызывает подъем давления в предсердиях. На кривой регистрации давления в пред­сердиях виден небольшой зубец. Давление в желудочках быстро нарастает: до 70—80 мм рт. ст. в левом и до 15—20 мм рт. ст. в правом.


Створчатые и полулунные клапаны («вход» и «выход» из желу­дочков) еще закрыты, объем крови в желудочках остается посто­янным. Вследствие того что жидкость практически несжимаема, длина волокон миокарда не изменяется, увеличивается только их напряжение. Стремительно растет давление крови в желудочках. Левый желудочек быстро приобретает круглую форму и с силой ударяется о внутреннюю поверхность грудной стенки. В пятом меж-реберье на 1 см слева от среднеключичной линии в этот момент определяется верхушечный толчок.


К концу периода напряжения быстро нарастающее давление в левом и правом желудочках становится выше давления в аорте и легочной артерии. Кровь из желудочков устремляется в эти сосуды.


Период изгнания крови из желудочков длится 0,25 с и состоит из фазы быстрого
(0,12 с) и фазы медленного изгнания
(0,13 с). Давление в желудочках при этом нарастает: в левом до 120—130 мм рт. ст., а в правом до 25 мм рт. ст. В конце фазы медленного изгнания миокард желудочков начинает расслабляться, наступает его диастола (0,47 с). Давление в желудочках падает, кровь из аорты и легочной артерии устремляется обратно в полости желудочков и захлопывает полулунные клапаны, при этом возникает И, или диастолический, тон сердца.


Время от начала расслабления желудочков до захлопывания полулунных клапанов называется протодиастолическим пе­риодом (0,04 с). После захлопывания полулунных клапанов дав­ление в желудочках падает. Створчатые клапаны в это время еще закрыты, объем крови, оставшейся в желудочках, а следовательно, и длина волокон миокарда не изменяются, поэтому данный период назван периодом изометрического расслабления (0,08 с). К концу его давление в желудочках становится ниже, чем в пред­сердиях, открываются предсердно-желудочковые клапаны и кровь из предсердий поступает в желудочки. Начинается период на­полнения желудочков кровью, который длится 0,25 с и делится на фазы быстрого
(0,08 с) и медленного
(0,17 с) напол­нения.


Колебания стенок желудочков вследствие быстрого притока крови к ним вызывают появление IIIтона сердца. К концу фазы медленного наполнения возникает систола предсердий. Предсердия нагнетают в желудочки дополнительное количество крови (пресистоличе-ский период, равный 0,1 с), после чего начинается новый цикл деятельности желудочков.


Колебание стенок сердца, вызванное сокращением предсердий и дополнительным поступлением крови в желудочки, ведет к появ­лению IVтона сердца.


При обычном прослушивании сердца хорошо слышны громкие Iи IIтоны, а тихие IIIи IVтоны выявляются лишь при графической регистрации тонов сердца.


Последовательность отдельных фаз цикла деятельности желу­дочков может быть представлена следующим образом:


Для фазового анализа цикла сердечной деятельности у человека катетеризацию сердца обычно не проводят, а используют ряд не-инвазивных методов. В частности, получил распростнранение метод поликардиографии,
основанный на синхронной регистрации ЭКГ, фонокардиограммы (ФКГ) и сфигмограммы (СГ сонной артерии (рис. 7.9). На синхронной записи этих кривых по интервалу R
—R


ЭКГ определяют продолжительность цикла (1), по интервалу от начала зубца Q
на ЭКГ до начала IIтона на ФКГ определяют продолжительность систолы (2), по интервалу от начала анакроты до инцизуры на СГ определяют продолжительность периода изгнания (3), по разности между продолжительностью систолы и периода изгнания — период напряжения (4), по интервалу между началом зубца Q
ЭКГ и началом Iтона ФКГ — период асинхронного сокращения (5), по разнице между продолжительностью периода напряжения и фазы асинхронного сокращения — фазу изометри­ческого сокращения (6).


7.1.2.2. Сердечный выброс


Основной физиологической функцией сердца является нагнетание крови в сосудистую систему.


Количество крови, выбрасываемой желудочком сердца в минуту, является одним из важнейших показателей функционального со­стояния сердца и называется минутным объемом крови
(МОК). Он одинаков для правого и левого желудочков. Когда человек находится в состоянии покоя, МОК составляет в среднем 4,5—5,0 л. Разделив минутный объем на число сокращений сердца в минуту, можно вычислить систолический объем крови.
При ритме сердеч­ных сокращений 70—75 в минуту систолический объем равен 65—70 мл крови. Следует заметить, что в покое в систолу из желудочков изгоняется примерно половина находящейся в них крови. Это создает резервный объем,
который может быть моби­лизован при необходимости быстрого и значительного увеличения сердечного выброса.


Принято так же рассчитывать величину сердечного индекса,
представляющего собой отношение МОК в л/мин к поверхности тела в м2
. Средняя величина этого показателя для "стандартного" мужчины равна 3 л/мин»м2
. Минутный и систолический объемы крови и сердечный индекс объединяются общим понятием — сер­дечный выброс.


Наиболее точный способ определения минутного объема крово­тока у человека предложен Фиком (1870). Он состоит в косвенном вычислении МОК, которое производят, зная разницу между содер­жанием кислорода в артериальной и венозной крови, объем кисло­рода, потребляемого человеком в минуту. Допустим, что в 1 мин через легкие в кровь поступило 400 мл кислорода и количество кислорода в артериальной крови на 8 об. % больше, чем в венозной. Это означает, что каждые 100 мл крови поглощают в легких 8 мл кислорода; следовательно, чтобы усвоить все количество кислорода, который поступил через легкие в кровь за минуту (в нашем примере


400 мл), необходимо, чтобы через легкие прошло100*400/8 =5000 мл


крови. Это количество крови и составляет МОК, который в данном случае равен 5000 мл.


При использовании метода Фика необходимо брать смешанную


венозную кровь из правой половины сердца. Венозную кровь у человека берут из правой половины сердца при помощи катетера, вводимого в правое предсердие через плечевую вену. Метод Фика, являясь наиболее точным, не получил широкого распространения в практике из-за технической сложности и трудоемкости (необходи­мость катетеризации сердца, пунктирование артерии, определение газообмена).


Для определения МОК разработан ряд других методов. Многие из них основаны на принципе разведения индикаторов, который состоит в том, что находят разведение и скорость циркуляции какого-либо вещества, введенного в вену. В настоящее время широко применяют некоторые краски и радиоактивные вещества. Введенное в вену вещество проходит через правые отделы сердца, малый круг кровообращения, левые отделы сердца и поступает в артерии боль­шого круга кровообращения, где и определяют его концентрацию. Сначала она волнообразно нарастает, затем падает. Через некоторое время, когда порция крови, содержавшая максимальное количество вещества, вторично пройдет через левые отделы сердца, его кон­центрация в артериальной крови вновь немного увеличивается (так называемая волна рециркуляции). Замечают время от момента вве­дения вещества до начала рециркуляции и вычерчивают кривую разведения, т. е. изменения концентрации (нарастания и убыли) исследуемого вещества в крови. Зная количество вещества, введен­ного в кровь и содержащегося в артериальной крови, а также время, потребовавшееся на прохождение всего количества введенного ве­щества через систему кровообращения, можно вычислить минутный объем кровотока в л/мин по формуле:


МОК=(60*

J

)/(

C

*

T

)


где / — количество введенного вещества, мг; С — средняя концен­трация вещества, вычисленная по кривой разведения, мг/л; Т
— длительность первой волны циркуляции, с.


Используют также метод интегральной реографии.
Реография (импендансография) — метод регистрации электрического сопро­тивления тканей человеческого тела электрическому току, пропу­скаемому через тело. Чтобы не вызвать повреждения тканей, используют токи сверхвысокой частоты и очень небольшой силы. Сопротивление крови значительно меньше, чем сопротивление тка­ней, поэтому увеличение кровенаполнения тканей значительно снижает их электрическое сопротивление. Если регистрировать суммарное электрическое сопротивление грудной клетки в несколь­ких направлениях, то периодические резкие уменьшения его воз­никают в момент выброса сердцем в аорту и легочную артерию систолического объема крови. При этом величина уменьшения сопротивления пропорциональна величине систолического выброса. Помня об этом и используя формулы, учитывающие размеры тела, особенности конституции и т. д., можно по реографическим кривым определить величину систолического объема крови, а ум-


ножив ее на число сердечных сокращений, — получить величину МОК. В кардиохирургической практике для определения МОК используют методы оценки объемной скорости кровотока в аорте, так как через аорту протекает весь МОК, за исключением коро­нарного кровотока. Методы определения объемной скорости потока в сосудах (ультразвуковая и электромагнитная флоуметрия) опи­саны ниже.


Сердечно-легочный препарат. Влияние различных условий на величину систолического объема крови можно исследовать в остром опыте на сердечно-легочном препарате (рис. 7.10).


У животного большой круг кровообращения заменяют искусст­венным. Венечное кровообращение, а также малый круг кровооб­ращения (через легкие) сохраняют неповрежденными. В аорту и полую вену вводят канюли, которые соединяют с системой пласти­ковых сосудов и трубок. Кровь, выбрасываемая левым желудочком в аорту, течет по этой искусственной системе, поступает в полые вены, затем в правое предсердие и правый желудочек. Отсюда она направляется в легочный круг. Пройдя легкие, которые вентилируют аппаратом искусственного дыхания, кровь, обогащенная О2
и от­давшая СО2, так же как и в нормальных условиях, возвращается в левое сердце, откуда она вновь течет в искусственный большой круг кровообращения.


В остром опыте имеется возможность увеличивать или уменьшать приток крови к правому предсердию, меняя сопротивление, встре­чаемое кровью в искусственном большом круге кровообращения.


Таким образом, сердечно-легочный препарат позволяет по желанию изменять нагрузку на сердце.


Опыты с сердечно-легочным препаратом позволили Старлингу установить «закон сердца» (закон Франка — Стерлинга): при уве­личении кровенаполнения сердца в диастолу и, следовательно, при увеличении растяжения мышцы сердца сила сердечных сокращений возрастает. В условиях целостного организма действие закона Фран­ка — Стерлинга ограничено влиянием других механизмов регуляции деятельности сердца.


Изменение минутного объема крови при работе. Систоличе­ский и минутный объемы кровотока — величины непостоянные. Их значения изменяются в зависимости от того, в каких условиях находится организм и какую работу он совершает. При мышечной работе отмечается значительное увеличение МОК до 25—30 л, что может быть обусловлено учащением сердечных сокращений и увеличением систолического объема за счет использования резер­вного объема. У нетренированных лиц МОК увеличивается обычно за счет учащения ритма сердечных сокращений. У тренированных при работе средней тяжести происходит увеличение систолического объема и гораздо меньшее, чем у нетренированных, учащение ритма сердечных сокращений. В случае очень тяжелой работы, например при требующих огромного мышечного напряжения спор­тивных соревнованиях, даже у хорошо тренированных спортсменов наряду с увеличением систолического объема отмечается учащение сердечных сокращений, а следовательно, и увеличение кровоснаб­жения работающих мышц, в результате чего создаются условия, обеспечивающие большую работоспособность. Число сердечных со­кращений у тренированных может достигать при большой нагрузке 200—220 в минуту.


7.1.2.3. Механические и звуковые проявления сердечной деятельности


Сердечные сокращения сопровождаются рядом механических и звуковых проявлений, регистрируя которые, можно получить пред­ставление о динамике сокращения сердца. В пятом межреберье слева, на 1 см кнутри от среднеключичной линии, в момент сокра­щения сердца ощущается верхушечный толчок.


В период диастолы сердце напоминает эллипсоид, ось которого направлена сверху вниз и справа налево. При сокращении желу­дочков форма сердца приближается к шару, при этом продольный диаметр сердца уменьшается, а поперечный возрастает. Уплотнен­ный миокард левого желудочка касается внутренней поверхности грудной стенки. Одновременно опущенная к диафрагме при диастоле верхушка сердца в момент систолы приподнимается и ударяется о переднюю стенку грудной клетки. Все это вызывает появление верхушечного толчка.


Для анализа механической активности сердца используют ряд специальных методов.


Кинетокардиография — метод регистрации низкочастот­ных вибраций грудной клетки, обусловленных механической дея­тельностью сердца. С этой целью применяют датчики, обеспечива­ющие преобразование механических колебаний в электрические. Кинетокардиография позволяет изучить фазовую структуру цикла левого и правого желудочков сердца одновременно.


Электрокимография является электрической регистра­цией движения контура сердечной тени на экране рентгеновского аппарата. К экрану у краев контура сердца в области предсер­дия, желудочка или аорты прикладывают фотоэлемент, соединен­ный с осциллографом. При движениях сердца изменяется осве­щенность фотоэлемента, что регистрируется осциллографом в виде кривой. Так получают кривые сокращения и расслабления отделов сердца.


Баллистокардиография основана на том, что изгна­ние крови из желудочков и ее движение в крупных сосудах вызывают колебания всего тела, зависящие от явлений реактивной отдачи, подобных тем, которые наблюдаются при выстреле из пушки (название методики «баллистокардиография» происходит от слова «баллиста» — метательный снаряд). Кривые смещений тела, записываемые баллистокардиографом и зависящие от работы сер­дца, имеют в норме характерный вид. Для их регистрации су­ществует несколько различных способов и приборов.


Динамокардиография разработана Ё. Б. Бабским и сотр. Эта методика регистрации механических проявлений сердечной деятельности человека основана на том, что движения сердца в грудной клетке и перемещение крови из сердца в сосуды сопро­вождаются смещением центра тяжести грудной клетки по отно­шению к той поверхности, на которой лежит человек. Обследуемый лежит на специальном столе, на котором смонтировано особое устройство с датчиками — преобразователями механических ве­личин в электрические колебания. Устройство находится под груд­ной клеткой исследуемого. Смещения центра тяжести регистри­руются осциллографом в виде кривых. На динамокардиограмме отмечаются все фазы сердечного цикла: систола предсердий, пе­риоды напряжения желудочков и изгнания из них крови, прото-диастолический период, периоды расслабления и наполнения же­лудочков кровью.


Эхокардиография — метод исследования механической де­ятельности и структуры сердца, основанный на регистрации отра­женных сигналов импульсного ультразвука. При этом ультразвук в форме высокочастотных посылок (до 2,25—3 мГц) проникает в тело человека, отражается на границе раздела сред с различным ультразвуковым сопротивлением и воспринимается прибором. Изо­бражение эхосигналов от структур сердца воспроизводится на экране осциллографа и регистрируется на фотопленке. Эхокардиограмма (ЭхоКГ) имеет вид ряда кривых, каждая точка которых отражает положение структур сердца в данный момент времени. ЭхоКГ всегда регистрируется синхронно с ЭКГ, что позволяет производить оценку


механической активности сердца в определенные фазы сердечного цикла.


При работе сердца возникают звуки, которые называют тонами сердца.
При выслушивании (аускультации) тонов сердца на поверх­ности левой половины грудной клетки слышны два тона: Iтон (систолический), IIтон — в начале диастолы (диастолический). Тон Iболее протяжный и низкий, II— короткий и высокий.


Детальный анализ тонов сердца стал возможным благодаря при­менению электронной аппаратуры. Если к груди обследуемого при­ложить чувствительный микрофон, соединенный с усилителем и осциллографом, можно зарегистрировать тоны сердца в виде кри­вых — фонокардиограммы (ФКГ). Эта методика называется фо-нокардиографией (см. рис. 7.9).


Сужение клапанных отверстий или неплотное смыкание створок и лепестков клапанов вызывает появление сердечных шумов,
воз­никающих вследствие вихреобразного (турбулентного) движения крови через отверстия клапанов. Эти шумы имеют важное диагно­стическое значение при поражениях клапанов сердца.


На ФКГ, помимо Iи IIтонов, регистрируются IIIи IVтоны сердца (более тихие, чем Iи II, поэтому неслышные при обычной аускультации).


Тон IIIвозникает вследствие вибрации стенки желудочков при быстром притоке крови в желудочки в начале их напол­нения.


Тон IVимеет два компонента. Первый из них возникает при сокращении миокарда предсердий, а второй появляется в самом начале расслабления предсердий и падения давления в них.


К внешним проявлениям деятельности сердца относят артери­альный пульс,
характер которого отражает не только деятельность сердца, но и функциональные состояния артериальной системы. Артериальный пульс отражает ритм сердца, скорость изгнания крови левым желудочком и величину систолического объема, т. е. факторы, определяющие кинетическую энергию выброшенной сер­дцем крови. Это в какой-то мере позволяет судить о силе сер­дечных сокращений.


7.1.3. Регуляция деятельности сердца


Сердце человека, непрерывно работая, даже при спокойном об­разе жизни нагнетает в артериальную систему около 10 т крови в сутки, 4000 т в год и около 300 000 т за всю жизнь. При этом сердце всегда точно реагирует на потребности организма, поддер­живая постоянно необходимый уровень кровотока.


Приспособление деятельности сердца к изменяющимся потреб­ностям организма происходит при помощи ряда регуляторных ме­ханизмов. Часть из них расположена в самом сердце — это внут-рисердечные регуляторные механизмы.
К ним относятся внутри­клеточные механизмы регуляции, регуляция межклеточных взаимодействий и нервные механизмы — внутрисердечные рефлек-


сы. Вторая группа представляет собой внесердечные регуляторные механизмы.
В эту группу входят экстракардиальные нервные и гуморальные механизмы регуляции сердечной деятельности.


7.1.3.1. Внутрисердечные регуляторные механизмы


Внутриклеточные механизмы регуляции. Электронная микро­скопия позволила установить, что миокард не является синцитием, а состоит из отдельных клеток — миоцитов, соединяющихся между собой вставочными дисками. В каждой клетке действуют механизмы регуляции синтеза белков, обеспечивающих сохранение ее структуры и функций. Скорость синтеза каждого из белков регулируется соб­ственным ауторегуляторным механизмом, поддерживающим уровень воспроизводства данного белка в соответствии с интенсивностью его расходования.


При увеличении нагрузки на сердце (например, при регулярной мышечной деятельности) синтез сократительных белков миокарда и структур, обеспечивающих их деятельность, усиливается. Появ­ляется так называемая рабочая (физиологическая) гипертрофия мио­карда, наблюдающаяся у спортсменов.


Внутриклеточные механизмы регуляции обеспечивают и изме­нение интенсивности деятельности миокарда в соответствии с ко­личеством притекающий к сердцу крови. Этот механизм получил название «закон сердца» (закон Франка
—Старлинга):
сила сокра­щения сердца (миокарда) пропорциональна степени его кровена­полнения в диастолу (степени растяжения), т. е. исходной длине его мышечных волокон. Более сильное растяжение миокарда в мо­мент диастолы соответствует усиленному притоку крови к сердцу. При этом внутри каждой миофибриллы актиновые нити в большей степени выдвигаются из промежутков между миозиновыми нитями, а значит, растет количество резервных мостиков, т. е. тех актиновых точек, которые соединяют актиновые и миозиновые нити в момент сокращения. Следовательно, чем больше растянута каждая клетка миокарда во время диастолы, тем больше она сможет укоротиться во время систолы. По этой причине сердце перекачивает в артери­альную систему то количество крови, которое притекает к нему из вен. Такой тип миогенной регуляции сократимости миокарда полу­чил название гетерометрической
(т. е. зависимой от переменной величины — исходной длины волокон миокарда) регуляции.
Под гомеометрической регуляцией
принято понимать изменения силы сокращений при неменяющейся исходной длине волокон миокарда. Это прежде всего ритмозависимые изменения силы сокращений. Если стимулировать полоску миокарда при равном растяжении со все увеличивающейся частотой, то можно наблюдать увеличение силы каждого последующего сокращения («лестница» Боудича). В ка­честве теста на гомеометрическую регуляцию используют также пробу Анрепа
— резкое увеличение сопротивления выбросу крови из левого желудочка в аорту. Это приводит к увеличению в опре­деленных границах силы сокращений миокарда. При проведении


пробы выделяют две фазы. Вначале при увеличении сопротивления выбросу крови растет конечный диастолический объем и увеличение силы сокращений реализуется по гетерометрическому механизму. На втором этапе конечный диастолический объем стабилизируется и возрастание силы сокращений определяется гомеометрическим механизмом.


Регуляция межклеточных взаимодействий. Установлено, что вставочные диски, соединяющие клетки миокарда, имеют различную структуру. Одни участки вставочных дисков выполняют чисто меха­ническую функцию, другие обеспечивают транспорт через мембрану кардиомиоцита необходимых ему веществ, третьи — нексусы,
или тес­ные контакты, проводят возбуждение с клетки на клетку. Нарушение межклеточных взаимодействий приводит к асинхронному возбужде­нию клеток миокарда и появлению сердечных аритмий.


К межклеточным взаимодействиям следует отнести и взаимоот­ношения кардиомиоцитов с соединительнотканными клетками мио­карда. Последние представляют собой не просто механическую опор­ную структуру. Они поставляют для сократительных клеток мио­карда ряд сложных высокомолекулярных продуктов, необходимых для поддержания структуры и функции сократительных клеток. Подобный тип межклеточных взаимодействий получил название креаторных связей
(Г. И. Косицкий).


Внутрисердечные периферические рефлексы. Более высокий уро­вень внутриорганной регуляции деятельности сердца представлен внутрисердечными нервными механизмами. Обнаружено, что в серд­це возникают так называемые периферические рефлексы, дуга кото­рых замыкается не в ЦНС, а в интрамуральных ганглиях миокарда. После гомотрансплантации сердца теплокровных животных и дегене­рации всех нервных элементов экстракардиального происхождения в сердце сохраняется и функционирует внутриорганная нервная систе­ма, организованная по рефлекторному принципу. Эта система вклю­чает афферентные нейроны, дендриты которых образуют рецепторы растяжения на волокнах миокарда и венечных (коронарных) сосудах, вставочные и эфферентные нейроны. Аксоны последних иннервируют миокард и гладкие мышцы коронарных сосудов. Указанные нейроны соединяются между собой синаптическими связями, образуя внутри-сердечные рефлекторные дуги.


В экспериментах показано, что увеличение растяжения миокарда правого предсердия (в естественных условиях оно возникает при увеличении притока крови к сердцу) приводит к усилению сокра­щений миокарда левого желудочка. Таким образом, усиливаются сокращения не только того отдела сердца, миокард которого непос­редственно растягивается притекающей кровью, но и других отделов, чтобы «освободить место» притекающей крови и ускорить выброс ее в артериальную систему. Доказано, что эти реакции осуществ­ляются с помощью внутрисердечных периферических рефлексов (Г. И. Косицкий).


Подобные реакции наблюдаются лишь на фоне низкого исход­ного кровенаполнения сердца и незначительной величины давления


крови в устье аорты и коронарных сосудах. Если камеры сердца переполнены кровью и давление в устье аорты и коронарных сосудах высокое, то растяжение венозных приемников в сердце угнетает сократительную активность миокарда, в аорту выбрасы­вается меньшее количество крови, а приток крови из вен затруд­няется. Подобные реакции играют важную роль в регуляции кро­вообращения, обеспечивая стабильность кровенаполнения артери­альной системы.


Гетерометрический и гомеометрический механизмы регуляции силы сокращения миокарда могут привести лишь к резкому уве­личению энергии сердечного сокращения в случае внезапного по­вышения притока крови из вен или повышения артериального давления. Казалось бы, что при этом артериальная система не защищена от губительных для нее внезапных мощных ударов крови. В действительности же таких ударов не возникает благодаря защитной роли, осуществляемой рефлексами внутрисердечной нер­вной системы.


Переполнение камер сердца притекающей кровью (равно как и значительное повышение давления крови в устье аорты, коро­нарных сосудов) вызывает снижение силы сокращений миокарда посредством внутрисердечных периферических рефлексов. Сердце при этом выбрасывает в артерии в момент систолы меньшее, чем в норме, количество содержащейся в желудочках крови. Задержка даже небольшого дополнительного объема крови в камерах сердца повышает диастол и ческое давление в его полостях, что вызывает снижение притока венозной крови к сердцу. Излишний объем крови, который при внезапном выбросе его в артерии мог бы вызвать пагубные последствия, задерживается в венозной системе.


Опасность для организма представляло бы и уменьшение сер­дечного выброса, что могло бы вызвать критическое падение арте­риального давления. Такую опасность также предупреждают регу-ляторные реакции внутрисердечной системы.


Недостаточное наполнение кровью камер сердца и коронарного русла вызывает усиление сокращений миокарда посредством внут­рисердечных рефлексов. При этом желудочки в момент систолы выбрасывают в аорту большее, чем в норме, количество содер­жащейся в них крови. Это и предотвращает опасность недоста­точного наполнения кровью артериальной системы. К моменту расслабления желудочки содержат меньшее, чем в норме, коли­чество крови, что способствует усилению притока венозной крови к сердцу.


В естественных условиях внутрисердечная нервная система не является автономной. Она — лишь низшее звено сложной иерархии нервных механизмов, регулирующих деятельность сердца. Следу­ющим, более высоким звеном этой иерархии являются сигналы, поступающие по блуждающим и симпатическим нервам, осуще­ствляющие процессы экстракардиальнои нервной регуляции сердца.


7.1.3.2. Внесердечные регуляторные механизмы


Нервная экстракардиальная регуляция.
Эта регуляция осуще­ствляется импульсами, поступающими к сердцу из ЦНС по блуж­дающим и симпатическим нервам.


Подобно всем вегетативным нервам, сердечные нервы образованы двумя нейронами. Тела первых нейронов, отростки которых состав­ляют блуждающие нервы (парасимпатический отдел автономной нервной системы), расположены в продолговатом мозге (рис. 7.11). Отростки этих нейронов заканчиваются в интрамуральных ганглиях сердца. Здесь находятся вторые нейроны, отростки которых идут к проводящей системе, миокарду и коронарным сосудам.


Первые нейроны симпатической части автономной нервной систе­мы, передающие импульсы к сердцу, расположены в боковых рогах пяти верхних сегментов грудного отдела спинного мозга. Отростки этих нейронов заканчиваются в шейных и верхних грудных симпати­ческих узлах. В этих узлах находятся вторые нейроны, отростки ко­торых идут к сердцу. Большая часть симпатических нервных волокон, иннервирующих сердце, отходит от звездчатого узла.


Влияние на сердце блуждающих нервов впервые изучили братья Вебер (1845). Они установили, что раздражение этих нервов тормозит работу сердца вплоть до полной его остановки в диастолу. Это был первый случай обнаружения в организме тормозящего влияния нервов.


При электрическом раздражении периферического отрезка пере­резанного блуждающего нерва происходит урежение сердечных со­кращений. Это явление называется отрицательным хронотропным эффектом.
Одновременно отмечается уменьшение амплитуды со­кращений — отрицательный инотропный эффект.


При сильном раздражении блуждающих нервов работа сердца на некоторое время прекращается. В этот период возбудимость


мышцы сердца понижена. Понижение возбудимости мышцы сердца называется отрицательным батмотропным эффектом.
Замедле­ние проведения возбуждения в сердце называется отрицательным дромотропным эффектом.
Нередко наблюдается полная блокада проведения возбуждения в предсердно-желудочковом узле.


Микроэлектродные отведения потенциалов от одиночных мышеч­ных волокон предсердий показали увеличение мембранного потен­циала — гиперполяризацию
при сильном раздражении блуждающего нерва (рис. 7.12).


При продолжительном раздражении блуждающего нерва прекра­тившиеся вначале сокращения сердца восстанавливаются, несмотря на продолжающееся раздражение. Это явление называют ускольза­нием сердца из-под влияния блуждающего нерва.


Влияние на сердце симпатических нервов впервые было изучено братьями Цион (1867), а затем И.П.Павловым. Ционы описали учащение сердечной деятельности при раздражении сим­патических нервов сердца (положительный хронотропный эф­фект);
соответствующие волокна они назвали nn. accelerantescordis(ускорители сердца).


При раздражении симпатических нервов ускоряется спонтанная деполяризация клеток — водителей ритма в диастолу, что ведет к учащению сердечных сокращений.


Раздражение сердечных ветвей симпатического нерва улучшает проведение возбуждения в сердце (положительный дромотропный эффект)
и повышает возбудимость сердца (положительный бат-мотропный эффект).
Влияние раздражения симпатического нерва наблюдается после большого латентного периода (10 с и более) и продолжается еще долго после прекращения раздражения нерва.


И. П. Павлов (1887) обнаружил нервные волокна (усиливающий нерв), усиливающие сердечные сокращения без заметного учащения ритма (положительный инотропный эффект).


Инотропный эффект «усиливающего» нерва хорошо виден при регистрации внутрижелудочкового давления электроманометром. Выраженное влияние «усиливающего» нерва на сократимость мио­карда проявляется особенно при нарушениях сократимости. Одной из таких крайних форм нарушения сократимости является альтер-


нация сердечных сокращений, когда одно «нормальное» сокращение миокарда (в желудочке развивается давление, превышающее дав­ление в аорте и осуществляется выброс крови из желудочка в аорту) чередуется со «слабым» сокращением миокарда, при котором дав­ление в желудочке в систолу не достигает давления в аорте и выброса крови не происходит. «Усиливающий» нерв не только уси­ливает обычные сокращения желудочков, но и устраняет альтерна­цию, восстанавливая неэффективные сокращения до обычных (рис. 7.13). По мнению И. П. Павлова, эти волокна являются специально тро­фическими, т. е. стимулирующими процессы обмена веществ.


Совокупность приведенных данных позволяет представить вли­яние нервной системы на ритм сердца как корригирующее, т. е. ритм сердца зарождается в его водителе ритма, а нервные влияния ускоряют или замедляют скорость спонтанной деполяризации клеток водителя ритма, ускоряя или замедляя таким образом частоту сер­дцебиений.


В последние годы стали известны факты, свидетельствующие о возможности не только корригирующих, но и пусковых влияний нервной системы на ритм сердца, когда сигналы, приходящие по нервам, инициируют сокращения сердца. Это можно наблюдать в опытах с раздражением блуждающего нерва в режиме, близком к естественной импульсации в нем, т. е. «залпами» («пачками») им­пульсов, а не непрерывным потоком, как это делалось традиционно. При раздражении блуждающего нерва «залпами» импульсов сердце сокращается в ритме этих «залпов» (каждому «залпу» соответствует одно сокращение сердца). Меняя частоту и характеристику «залпов», можно управлять ритмом сердца в широких пределах.


Воспроизведение сердцем центрального ритма резко изменяет электрофизиологические параметры деятельности синоатриального узла. При работе узла в режиме автоматии, а также при изменениях частоты под влиянием раздражения блуждающего нерва в тради­ционном режиме возбуждение возникает в одной точке узла, в случае воспроизведения центрального ритма в инициации возбуж­дения принимает участие одновременно множество клеток узла. На изохронной карте движения возбуждения в узле этот процесс от­ражается не в виде точки, а в виде большой площади, образованной одновременно возбуждающимися структурными элементами. Сигна­лы, обеспечивающие синхронное воспроизведение сердцем централь­ного ритма, отличаются по своей медиаторной природе от общетор­мозных влияний блуждающего нерва. По-видимому, выделяющиеся в этом случае наряду с ацтилхолином регуляторные пептиды отли­чаются по своему составу, т. е. реализация каждого типа эффектов блуждающего нерва обеспечивается своей смесью медиаторов («ме-диаторные коктейли»).


С целью изменения частоты посылки «пачек» импульсов из сердечного центра продолговатого мозга у людей можно воспользо­ваться такой моделью. Человеку предлагают дышать чаще, чем сокращается его сердце. Для этого он следит за миганием лампочки фотостимулятора и на каждую вспышку света производит одно


дыхание. Фотостимулятор устанавливается с частотой, превышаю­щей исходную частоту сердцебиений. За счет иррадиации возбуж­дения с дыхательных на сердечные нейроны в продолговатом мозге в сердечных эфферентных нейронах блуждающего нерва формиру­ются «пачки» импульсов в новом, общем для дыхательных и сер­дечных центров, ритме. При этом синхронизация ритмов дыхания и сердцебиения достигается за счет «залпов» импульсов, приходящих к сердцу по блуждающим нервам. В опытах на собаках феномен синхронизации дыхательных и сердечных ритмов наблюдается при резком учащении дыхания во время перегревания. Как только ритм учащающегося дыхания станет равным частоте сердцебиений, оба ритма синхронизируются и учащаются или урежаются в определен-


ном диапазоне синхронно. Если при этом нарушить проведение сигналов по блуждающим нервам посредством их перерезки или холодовой блокады, то синхронизация ритмов исчезнет. Следова­тельно, и в этой модели сердце сокращается под влиянием «залпов» импульсов, приходящих к нему по блуждающим нервам.


Совокупность изложенных экспериментальных фактов позволи­ла сформировать представление о существовании наряду с внут-рисердечным и центрального генератора ритма сердца (В. М. По­кровский). При этом последний в естественных условиях форми­рует адаптивные (приспособительные) реакции сердца, воспроиз­водя ритм сигналов, приходящих к сердцу по блуждающим нервам. Внутрисердечный генератор обеспечивает поддержание жизни за счет сохранения насосной функции сердца в случае выключения центрального генератора при наркозе, ряде заболеваний, обмороке и т. д.


Химический механизм передачи нервных импульсов в сердце
. При раздражении периферических отрезков блуждающих нервов в их окончаниях в сердце выделяется АХ, а при раздражении сим­патических нервов — норадреналин. Эти вещества являются непос­редственными агентами, вызывающими торможение или усиление деятельности сердца, и поэтому получили название медиаторов (пе­редатчиков) нервных влияний. Существование медиаторов было по­казано Леви (1921). Он раздражал блуждающий или симпатический нерв изолированного сердца лягушки, а затем переносил жидкость из этого сердца в другое, тоже изолированное, но не подвергавшееся нервному влиянию — второе сердце давало такую же реакцию (рис. 7.14, 7.15). Следовательно, при раздражении нервов первого сердца в питающую его жидкость переходит соответствующий ме­диатор. На нижних кривых можно видеть эффекты, вызываемые перенесенным раствором Рингера, находившимся в сердце во время раздражения.


АХ, образующийся в окончаниях блуждающего нерва, быст­ро разрушается ферментом холинэстеразой, присутствующим в крови и клетках, поэтому АХ оказывает только местное дейст­вие. Норадреналин разрушается значительно медленнее, чем АХ, и потому действует дольше. Этим объясняется то, что после прекращения раздражения симпатического нерва в течение неко­торого времени сохраняются учащение и усиление сердечных со­кращений.


Получены данные, свидетельствующие о том, что при возбуж­дении наряду с основным медиаторным веществом в синаптическую щель поступают и другие биологически активные вещества, в час­тности пептиды. Последние обладают модулирующим действием, изменяя величину и направленность реакции сердца на основной медиатор. Так, опиоидные пептиды угнетают эффекты раздражения блуждающего нерва, а пептид дельта-сна усиливает вагусную бра-дикардию.


7.1.3.3. Взаимодействие внутрисердечных


и внесердечных нервных регуляторных механизмов


Центры блуждающих и симпатических нервов являются второй ступенью иерархии нервных центров, регулирующих работу сердца. Интегрируя рефлекторные и нисходящие из высших отделов голо­вного мозга влияния, они формируют сигналы, управляющие дея­тельностью сердца, в том числе определяющие ритм его сокращений. Более высокая ступень этой иерархии — центры гипоталамической области. При электрическом раздражении различных зон гипотала­муса наблюдаются реакции сердечно-сосудистой системы, по силе и выраженности намного превосходящие реакции, возникающие в естественных условиях. При локальном точечном раздражении не­которых пунктов гипоталамуса удавалось наблюдать изолированные реакции: изменение ритма сердца, или силы сокращений левого желудочка, или степени расслабления левого желудочка и т. д. Таким образом, удалось выявить, что в гипоталамусе имеются струк­туры, способные регулировать отдельные функции сердца. В есте­ственных условиях эти структуры не работают изолированно. Ги­поталамус представляет собой интегративный центр, который может изменять любые параметры сердечной деятельности и состояние любых отделов сердечно-сосудистой системы с тем, чтобы обеспечить потребности организма при поведенческих реакциях, возникающих в ответ на изменение условий окружающей (и внутренней) среды.


Гипоталамус является лишь одним из уровней иерархии центров, регулирующих деятельность сердца. Он — исполнительный орган, обеспечивающий интегративную перестройку функций сердечно-со­судистой системы (и других систем) организма по сигналам, посту­пающим из расположенных выше отделов мозга — лимбической системы или новой коры. Раздражение определенных структур лим­бической системы или новой коры наряду с двигательными реак­циями изменяет функции сердечно-сосудистой системы: артериаль­ное давление, частоту сердечных сокращений и т. д.


Анатомическая близость в коре большого мозга центров, ответ­ственных за возникновение двигательных и сердечно-сосудистых реакций, способствует оптимальному вегетативному обеспечению поведенческих реакций организма.


7.1.3.4. Рефлекторная регуляция деятельности сердца


Осуществляется при участии всех перечисленных отделов ЦНС. Рефлекторные реакции могут как тормозить (замедлять и ослаблять), так и возбуждать (ускорять и усиливать) сердечные сокращения.


Рефлекторные изменения работы сердца возникают при раздра­жении различных рецепторов. Особое значение в регуляции работы сердца имеют рецепторы, расположенные в некоторых участках сосудистой системы. Эти рецепторы возбуждаются при изменении давления крови в сосудах или при воздействии гуморальных (хи­мических) раздражителей. Участки, где сосредоточены такие рецеп­торы, получили название сосудистых рефлексогенных зон.
Наиболее


значительна роль рефлексогенных зон, расположенных в дуге аорты и в области разветвления сонной артерии. Здесь находятся окончания центростремительных нервов, раздражение которых рефлекторно вызывает урежение сердечных сокращений. Эти нервные окончания представляют собой барорецепторы.
Естественным их раздражите­лем служит растяжение сосудистой стенки при повышении давления в тех сосудах, где они расположены. Поток афферентных нервных импульсов от этих рецепторов повышает тонус ядер блуждающих нервов, что приводит к замедлению сердечных сокращений. Чем выше давление крови в сосудистой рефлексогенной зоне, тем чаще возникают афферентные импульсы.


Рефлекторные изменения сердечной деятельности можно вызвать раздражением рецепторов и других кровеносных сосудов. Например, при повышении давления в легочной артерии замедляется работа сердца. Можно изменить сердечную деятельность и путем раздра­жения рецепторов сосудов многих внутренних органов.


Обнаружены также рецепторы в самом сердце: эндокарде, мио­карде и эпикарде; их раздражение рефлекторно изменяет и работу сердца, и тонус сосудов.


В правом предсердии и в устьях полых вен имеются механорецеп-торы,
реагирующие на растяжение (при повышении давления в по­лости предсердия или в полых венах). Залпы афферентных импульсов от этих рецепторов проходят по центростремительным волокнам блуждающих нервов к группе нейронов ретикулярной формации ство­ла мозга, получивших название «сердечно-сосудистый центр».
Аф­ферентная стимуляция этих нейронов приводит к активации нейронов симпатического отдела автономной нервной системы и вызывает рефлек­торное учащение сердечных сокращений. Импульсы, идущие в ЦНС от механорецепторов предсердий, влияют и на работу других органов.


Классический пример вагального рефлекса описал в 60-х годах прошлого века Гольц: легкое поколачивание по желудку и кишеч­нику лягушки вызывает остановку или замедление сокращений сердца (рис. 7.16). Остановка сердца при ударе по передней брюшной стенке наблюдалась также у человека. Центростремительные пути этого рефлекса идут от желудка и кишечника по чревному нерву в спинной мозг и достигают ядер блуждающих нервов в продолго­ватом мозге. Отсюда начинаются центробежные пути, образованные


ветвями блуждающих нервов, идущими к сердцу. К числу вагальных рефлексов относится также глазосердечный рефлекс Ашнера (уре-жение сердцебиений на 10—20 в минуту при надавливании на глазные яблоки).


Рефлекторное учащение и усиление сердечной деятельности на­блюдаются при болевых раздражениях и эмоциональных состояниях: ярости, гневе, радости, а также при мышечной работе. Изменения сердечной деятельности при этом вызываются импульсами, посту­пающими к сердцу по симпатическим нервам, а также ослаблением тонуса ядер блуждающих нервов.


7.1.3.5. Условнорефлекторная регуляция деятельности сердца


Тот факт, что различные эмоции вызывают изменение сердечной деятельности, указывает на важное значение коры большого мозга в регуляции деятельности сердца. Доказательством этого является то, что изменение ритма и силы сердечных сокращений можно наблюдать у человека при одном упоминании или воспоминании о факторах, вызывающих у него определенные эмоции.


Наиболее убедительные данные о наличии корковой регуляции деятельности сердца получены экспериментально с помощью метода условных рефлексов. Если какой-нибудь, например звуковой, раз­дражитель сочетать многократно с надавливанием на глазные яб­локи, вызывающим уменьшение частоты сердечных сокращений, то затем один этот раздражитель вызывает урежение сердечной дея­тельности — условный глазосердечный рефлекс.


Условнорефлекторные реакции лежат в основе тех явлений, ко­торые характеризуют так называемое предстартовое состояние спорт­сменов. Перед соревнованием у них наблюдаются изменения дыха­ния, обмена веществ, сердечной деятельности такого же характера, как и во время самого соревнования. У конькобежцев на старте сердечный ритм увеличивается на 22—35 сокращений в минуту.


Кора большого мозга обеспечивает приспособительные реакции организма не только к текущим, но и к будущим событиям. По механизму условных рефлексов сигналы, предвещающие наступле­ние этих событий или значительную вероятность их возникновения, могут вызвать перестройку функций сердца и всей сердечно-сосу­дистой системы в той мере, в какой это необходимо, чтобы обеспечить предстоящую деятельность организма.


При чрезвычайно сложных ситуациях (действие «чрезвычайных раздражителей», по И. П. Павлову) возможны нарушения и срывы этих корковых высших регуляторных механизмов (неврозы по И. П. Павлову). При этом наряду с расстройствами поведенческих реакций (и невротическими изменениями психологического статуса человека) могут появиться значительные нарушения деятельности сердца и сердечно-сосудистой системы. В некоторых случаях эти нарушения могут закрепиться по типу патологических условных рефлексов. При этом нарушения сердечной деятельности могут воз­никнуть при действии одних лишь условных сигналов.


7.1.3.6. Гуморальная регуляция деятельности сердца


Изменения работы сердца наблюдаются при действии на него ряда биологически активных веществ, циркулирующих в крови.


Катехоламины (адреналин, норадреналин)
увеличивают си­лу и учащают ритм сердечных сокращений, что имеет важное биологическое значение. При физических нагрузках или эмоцио­нальном напряжении мозговой слой надпочечников выбрасывает в кровь большое количество адреналина, что приводит к усилению сердечной деятельности, крайне необходимому в данных условиях.


Указанный эффект возникает в результате стимуляции катехо-ламинами рецепторов миокарда, вызывающей активацию внутри­клеточного фермента аденилатциклазы, которая ускоряет образова­ние 3' ,5' -циклического аденозинмонофосфата (цАМФ). Он акти­вирует фосфорилазу, вызывающую расщепление внутримышечного гликогена и образование глюкозы (источника энергии для сокра­щающегося миокарда). Кроме того, фосфорилаза необходима для активации ионов Са2+
— агента, реализующего сопряжение воз­буждения и сокращения в миокарде (это также усиливает положи­тельное инотропное действие катехоламинов). Помимо этого, кате­холамины повышают проницаемость клеточных мембран для ионов Са2+
, способствуя, с одной стороны, усилению поступления их из межклеточного пространства в клетку, а с другой — мобилизации ионов Са2+
из внутриклеточных депо.


Активация аденилатциклазы отмечается в миокарде и при дей­ствии глюкагона — гормона, выделяемого а-клетками панкреа­тических островков, что также вызывает положительный инотроп-ный эффект.


Гормоны коры надпочечников, ангиотензин и се­ро тони н также увеличивают силу сокращений миокарда, а ти­роксин учащает сердечный ритм. Гипоксемия, гиперкапния и ацидоз угнетают сократительную активность миокарда.


7.1.4. Эндокринная функция сердца


Миоциты предсердий образуют атриопептид,
или натрийуре­тический гормон.
Стимулируют секрецию этого гормона растяжение предсердий притекающим объемом крови, изменение уровня натрия в крови, содержание в крови вазопрессина, а также влияния экс-тракардиальных нервов. Натрийуретический гормон обладает ши­роким спектром физиологической активности. Он сильно повышает экскрецию почками ионов Na+
и Сl~ подавляя их реабсорбцию в канальцах нефронов. Влияние на диурез осуществляется также за счет увеличения клубочковой фильтрации и подавления реабсорбции воды в канальцах. Натрийуретический гормон подавляет секрецию ренина, ингибирует эффекты ангиотензина IIи альдостерона. На­трийуретический гормон расслабляет гладкие мышечные клетки мел­ких сосудов, способствуя тем самым снижению артериального дав­ления, а также гладкую мускулатуру кишечника.


7.2. ФУНКЦИИ СОСУДИСТОЙ СИСТЕМЫ


7.2.1. Основные принципы гемодинамики. Классификация сосудов


Гемодинамика — раздел науки, изучающий механизмы дви­жения крови в сердечно-сосудистой системе. Он является частью гидродинамики раздела физики, изучающего движение жидкостей.


Согласно законам гидродинамики, количество жидкости (Q), про­текающее через любую трубу, прямо пропорционально разности давлений в начале (
P
1)
и в конце (Р2)
трубы и обратно пропорци­онально сопротивлению (
R
)
току жидкости:


Если применить это уравнение к сосудистой системе, то следует иметь в виду, что давление в конце данной системы, т. е. в месте впадения полых вен в сердце, близко к нулю. В этом случае уравнение можно записать так:


Q
=
P
/
R


где Q
— количество крови, изгнанное сердцем в минуту; Р
— величина среднего давления в аорте, R
— величина сосудистого сопротивления.


Из этого уравнения следует, что Р
— Q
*
R
,
т. е. давление (Р)
в устье аорты прямо пропорционально объему крови, выбрасываемому сердцем в артерии в минуту (Q) и величине периферического со­противления (
R
).
Давление в аорте (Р)
и минутный объем крови (Q) можно измерить непосредственно. Зная эти величины, вычис­ляют периферическое сопротивление — важнейший показатель со­стояния сосудистой системы.


Периферическое сопротивление сосудистой системы складывается из множества отдельных сопротивлений каждого сосуда. Любой из таких сосудов можно уподобить трубке, сопротивление которой (
R
)
определяется по формуле Пуазейля:


где l — длина трубки; eta— вязкость протекающей в ней жидкости; pi— отношение окружности к диаметру; r— радиус трубки.


Сосудистая система состоит из множества отдельных трубок, соединенных параллельно и последовательно. При последовательном соединении трубок их суммарное сопротивление равно сумме со­противлений каждой трубки:


R

=
R

1

+
R

2

+
R
3 + ... +
Rn

.


При
параллельном соединении трубок их суммарное сопротив­ление вычисляют по формуле:


Точно определить сопротивление сосудов по этим формулам невозможно, так как геометрия сосудов изменяется вследствие со­кращения сосудистых мышц. Вязкость крови также не является величиной постоянной. Например, если кровь протекает через сосуды диаметром меньше 1 мм, вязкость крови значительно уменьшается. Чем меньше диаметр сосуда, тем меньше вязкость протекающей в нем крови. Это связано с тем, что в крови наряду с плазмой имеются форменные элементы, которые располагаются в центре потока. При­стеночный слой представляет собой плазму, вязкость которой на­много меньше вязкости цельной крови. Чем тоньше сосуд, тем большую часть площади его поперечного сечения занимает слой с минимальной вязкостью, что уменьшает общую величину вязкости крови. Теоретический расчет сопротивления капилляров невозмо­жен, так как в норме открыта только часть капиллярного русла, остальные капилляры являются резервными и открываются по мере усиления обмена веществ в тканях.


Из приведенных уравнений видно, что наибольшей величиной сопротивления должен обладать капилляр, диаметр которого 5— 7 мкм. Однако вследствие того что огромное количество капилляров включено в сосудистую сеть, по которой осуществляется ток крови, параллельно, их суммарное сопротивление меньше, чем суммарное сопротивление артериол.


Основное сопротивление току крови возникает в артериолах. Систему артерий и артериол называют сосудами сопротивления,
или резистивными сосудами.


Артериолы представляют собой тонкие сосуды (диаметром 15— 70 мкм). Стенка этих сосудов содержит толстый слой циркулярно расположенных гладких мышечных клеток, при сокращении кото­рого просвет сосуда может значительно уменьшаться. При этом резко повышается сопротивление артериол. Изменение сопротивле­ния артериол меняет уровень давления крови в артериях. В случае увеличения сопротивления артериол отток крови из артерий умень­шается и давление в них повышается. Падение тонуса артериол увеличивает отток крови из артерий, что приводит к уменьшению артериального давления. Наибольшим сопротивлением среди всех участков сосудистой системы обладают именно артериолы, поэтому изменение их просвета является главным регулятором уровня общего артериального давления. Артериолы — «краны сердечно-сосудистой системы» (И. М. Сеченов). Открытие этих «кранов» увеличивает отток крови в капилляры соответствующей области, улучшая местное кровообращение, а закрытие резко ухудшает кровообращение данной сосудистой зоны.


Итак, артериолы играют двоякую роль: участвуют в поддержании


необходимого организму уровня общего артериального давления и в регуляции величины местного кровотока через тот или иной орган или ткань. Величина органного кровотока соответствует потребности органа в кислороде и питательных веществах, определяемой уровнем рабочей активности органа.


В работающем органе тонус артериол уменьшается, что обеспечи­вает повышение притока крови. Чтобы общее артериальное давление при этом не снизилось в других (неработающих) органах, тонус арте­риол повышается. Суммарная величина общего периферического со­противления и общий уровень артериального давления остаются при­мерно постоянными, несмотря на непрерывное перераспределение крови между работающими и неработающими органами.


О сопротивлении в различных сосудах можно судить по разности давления крови в начале и в конце сосуда: чем выше сопротивление току крови, тем большая сила затрачивается на ее продвижение по сосуду и, следовательно, тем значительнее падение давления на протяжении данного сосуда. Как показывают прямые измерения давления крови в разных сосудах, давление на протяжении крупных и средних артерий падает всего на 10%, а в артериолах и капил­лярах — на 85%. Это означает, что 10% энергии, затрачиваемой желудочками на изгнание крови, расходуется на продвижение крови в крупных и средних артериях, а 85% — на продвижение крови в артериолах и капиллярах. Распределение давления в разных отделах сосудистого русла показано на рис. 7.17.


Зная объемную скорость кровотока (количество крови, протека­ющее через поперечное сечение сосуда), измеряемую в миллилитрах в секунду, можно рассчитать линейную скорость кровотока, которая выражается в сантиметрах в секунду. Линейная скорость (V) отра­жает скорость продвижения частиц крови вдоль сосуда и равна объемной (Q), деленной на площадь сечения кровеносного сосуда:


V=Q/pir^2


Линейная скорость, вычисленная по этой формуле, есть средняя скорость. В действительности линейная скорость различна для частиц


крови, продвигающихся в центре потока (вдоль продольной оси сосуда) и у сосудистой стенки. В центре сосуда линейная скорость максимальна, около стенки сосуда она минимальна в связи с тем, что здесь особенно велико трение частиц крови о стенку.


Объем крови, протекающей в 1 мин через аорту или полые вены и через легочную артерию или легочные вены, одинаков. Отток крови от сердца соответствует ее притоку. Из этого следует, что объем крови, протекший в 1 мин через всю артериальную и всю венозную систему большого и малого круга кровообращения, оди­наков. При постоянном объеме крови, протекающей через любое общее сечение сосудистой системы, линейная скорость кровотока не может быть постоянной. Она зависит от общей ширины данного отдела сосудистого русла. Это следует из уравнения, выражающего соотношение линейной и объемной скорости: чем больше общая площадь сечения сосудов, тем меньше линейная скорость кровотока. В кровеносной системе самым узким местом является аорта. При разветвлении артерий, несмотря на то, что каждая ветвь сосуда уже той, от которой она произошла, наблюдается увеличение сум­марного русла, так как сумма просветов артериальных ветвей больше просвета разветвившейся артерии. Наибольшее расширение русла отмечается в капиллярной сети: сумма просветов всех капилляров примерно в 500—600 раз больше просвета аорты. Соответственно этому кровь в капиллярах движется в 500—600 раз медленнее, чем в аорте.


В венах линейная скорость кровотока снова возрастает, так как при слиянии вен друг с другом суммарный просвет кровяного русла суживается. В полых венах линейная скорость кровотока достигает половины скорости в аорте. Распределение скорости кровотока в кровеносной системе показано на рис. 7.18.


В связи с тем что кровь выбрасывается сердцем отдельными порциями, кровоток в артериях имеет пульсирующий характер, поэтому линейная и объемная скорости непрерывно меняются: они максимальны в аорте и легочной артерии в момент систолы желу­дочков и уменьшаются во время диастолы. В капиллярах и венах кровоток постоянен, т. е. линейная скорость его постоянна. В пре­вращении пульсирующего кровотока в постоянный имеют значение свойства артериальной стенки.


Непрерывный ток крови по всей сосудистой системе обусловли­вают выраженные упругие свойства аорты и крупных артерий.


В сердечно-сосудистой системе часть кинетической энергии, раз­виваемой сердцем во время систолы, затрачивается на растяжение аорты и отходящих от нее крупных артерий. Последние образуют эластическую, или компрессионную, камеру, в которую поступает значительный объем крови, растягивающий ее; при этом кинетиче­ская энергия, развитая сердцем, переходит в энергию эластического напряжения артериальных стенок. Когда систола заканчивается, растянутые стенки артерий стремятся спадаться и
проталкивают кровь в капилляры, поддерживая кровоток во время диастолы.


С позиций функциональной значимости для системы кровообра­щения сосуды подразделяются на следующие группы:


1. Упруго-растяжимые — аорта с крупными артериями в большом круге кровообращения, легочная артерия с ее ветвями — в малом круге, т. е. сосуды эластического типа.


2. Сосуды сопротивления (резистивные сосуды) — артериолы, в том числе и прекапиллярные сфинктеры, т. е. сосуды с хорошо выраженным мышечным слоем.


3. Обменные (капилляры) — сосуды, обеспечивающие обмен газами и другими веществами между кровью и тканевой жидкостью.


4. Шунтирующие (артериовенозные анастомозы) — сосуды, обес­печивающие «сброс» крови из артериальной в венозную систему сосудов, минуя капилляры.


5. Емкостные — вены, обладающие высокой растяжимостью. Благодаря этому в венах содержится 75—80% крови.


Процессы, протекающие в последовательно соединенных сосудах, обеспечивающие циркуляцию (кругооборот) крови, называют сис­темной гемодинамикой.
Процессы, протекающие в параллельно подключенных к аорте и полым венам сосудистых руслах, обеспе­чивая кровоснабжение органов, называют регионарной,
или орган­ной, гемодинамикой.


7.2.2. Движение крови по сосудам


7.2.2.1. Артериальное давление крови


Артериальное давление (АД) является одним из ведущих параметров гемодинамики. Оно наиболее часто измеряется и служит предметом коррекции в клинике. Факторами, определяющими ве­личину АД, являются объемная скорость кровотока и величина общего периферического сопротивления сосудов (ОПСС). Объемная скорость кровотока для сосудистой системы большого круга крово­обращения является минутным объемом крови (МОК), нагнетаемым сердцем в аорту. В этом случае ОПСС служит расчетной величиной, зависящей от тонуса сосудов мышечного типа (преимущественно артериол), определяющего их радиус, длины сосуда и вязкости протекающей крови. Методы определения МОК даны в разделе 7.1.2.2, а принципы расчета ОПСС — в разделе 7.2.4.


Способы измерения давления.
Давление в артериях у животного, а иногда и
у человека измеряют путем введения в артерию стек-


лянной канюли или катетера, соединенного с манометром трубкой с жесткими стенками. Такой способ определения давления называют прямыми (кровавым). Катетер и соединительную трубку за­полняют раствором противосвертывающего вещества, чтобы кровь в них не свертывалась.


Давление крови в артериях не является постоянным: оно непре­рывно колеблется в пределах некоторого среднего уровня. На кривой артериального давления эти колебания имеют различный вид.


Волны первого порядка (пульсовые)
самые частые. Они синхро­низированы с сокращениями сердца. Во время каждой систолы пор­ция крови поступает в артерии и увеличивает их эластическое растяжение, при этом давление в артериях повышается. Во время диастолы поступление крови из желудочков в артериальную систему прекращается и происходит только отток крови из крупных артерий: растяжение их стенок уменьшается и давление снижается. Колебания давления, постепенно затухая, распространяются от аорты и легоч­ной артерии на все их разветвления. Наибольшая величина давления в артериях (систолическое,
или максимальное, давление)
наблю­дается во время прохождения вершины пульсовой волны, а наи­меньшая (диастолическое,
или минимальное, давление)
— во время прохождения основания пульсовой волны. Разность между систоли­ческим и диастолическим давлением, т. е. амплитуда колебаний давления, называется пульсовым давлением.
Оно создает волну пер­вого порядка. Пульсовое давление при прочих равных условиях пропорционально количеству крови, выбрасываемой сердцем при каждой систоле.


В мелких артериях пульсовое давление снижается и, следова­тельно, разница между систолическим и диастолическим давлением уменьшается. В артериолах и капиллярах пульсовые волны арте­риального давления отсутствуют.


Кроме систолического, диастолического и пульсового артериаль­ного давления определяют так называемое среднее артериальное давление.
Оно представляет собой ту среднюю величину давления, при которой в отсутствие пульсовых колебаний наблюдается такой же гемодинамический эффект, как и при естественном пульсирую­щим давлении крови, т. е. среднее артериальное давление — это равнодействующая всех изменений давления в сосудах.


Продолжительность понижения диастолического давления боль­ше, чем повышения систолического, поэтому среднее давление ближе к величине диастолического давления. Среднее давление в одной и той же артерии представляет собой более постоянную величину, а систолическое и диастолическое изменчивы.


Кроме пульсовых колебаний, на кривой АД наблюдаются волны второго порядка,
совпадающие с дыхательными движениями: поэ­тому их называют дыхательными волнами:
у человека вдох сопро­вождается понижением АД, а выдох — повышением.


В некоторых случаях на кривой АД отмечаются волны третьего порядка.
Это еще более медленные повышения и понижения дав­ления, каждое из которых охватывает несколько дыхательных волн


второго порядка. Указанные волны обусловлены периодическими изменениями тонуса сосудодвигательных центров. Они наблюдаются чаще всего при недостаточном снабжении мозга кислородом, напри­мер при подъеме на высоту, после кровопотери или отравлениях некоторыми ядами.


Кроме прямого, применяют косвенные, или бескровные, способы определения давления. Они основываются на измерении давления, которому нужно подвергнуть стенку данного сосуда извне, чтобы прекратить по нему ток крови. Для такого исследования применяют сфигмоманометр Рива-Роччи.
Обследуемому наклады­вают на плечо полую резиновую манжету, которая соединена с резиновой грушей, служащей для нагнетания воздуха, и с мано­метром. При надувании манжета сдавливает плечо, а манометр показывает величину этого давления. Для измерения давления крови с помощью этого прибора, по предложению И. С. Короткова, вы­слушивают сосудистые тоны, возникающие в артерии к периферии от наложенной на плечо манжеты.


При движении крови в несдавленной артерии звуки отсутствуют. Если давление в манжете поднять выше уровня систолического АД, то манжета полностью сдавливает просвет артерии и кровоток в ней прекращается. Звуки при этом также отсутствуют. Если теперь постепенно выпускать воздух из манжеты (т. е. проводить деком­прессию), то в момент, когда давление в ней станет чуть ниже уровня систолического АД, кровь при систоле преодолевает сдав­ленный участок и прорывается за манжету. Удар о стенку артерии порции крови, движущейся через сдавленный участок с большой скоростью и кинетической энергией, порождает звук, слышимый ниже манжеты. Давление в манжете, при котором появляются пер­вые звуки в артерии, в момент прохождения вершины пульсовой волны и соответствует максимальному, т. е. систолическому, дав­лению. При дальнейшем снижении давления в манжете наступает момент, когда оно становится ниже диастолического, кровь начинает проходить по артерии как во время вершины, так и основания пульсовой волны. В этот момент звуки в артерии ниже манжеты исчезают. Давление в манжете в момент исчезновения звуков в артерии соответствует величине минимального, т. е. диастолическо­го, давления. Величины давления в артерии, определенные по спо­собу Короткова и зарегистрированные у этого же человека путем введения в артерию катетера, соединенного с электроманометром, существенно не отличаются друг от друга.


У взрослого человека среднего возраста систолическое давление в аорте при прямых измерениях равно 110—125 мм рт. ст. Значи­тельное снижение давления происходит в мелких артериях, в ар-териолах. Здесь давление резко уменьшается, становясь на артери­альном конце капилляра равным 20—30 мм рт. ст.


В клинической практике АД определяют обычно в плечевой артерии. У здоровых людей в возрасте 15—50 лет максимальное давление, измеренное способом Короткова, составляет 110—125 мм рт. ст. В возрасте старше 50 лет оно, как правило, повышается.


У 60-летних максимальное давление равно в среднем 135—140 мм рт. ст. У новорожденных максимальное артериальное давление 50 мм рт. ст., но уже через несколько дней становится 70 мм рт. ст. и к концу 1-го месяца жизни — 80 мм рт. ст.


Минимальное артериальное давление у взрослых людей среднего возраста в плечевой артерии в среднем равно 60—80 мм рт. ст., пульсовое составляет 35—50 мм рт. ст., а среднее — 90—95 мм рт. ст.


7.2.2.2. Артериальный пульс


Артериальным пульсом называют ритмические колебания стенки артерии, обусловленные повышением давления в период сис­толы. Пульсацию артерий можно легко обнаружить прикосновением к любой доступной ощупыванию артерии: лучевой (a. radialis), височ­ной (a. temporalis), наружной артерии стопы (a. dorsalispedis) и др.


Пульсовая волна, или колебательное изменения диаметра или объема артериальных сосудов, обусловлена волной повышения дав­ления, возникающей в аорте в момент изгнания крови из желудоч­ков. В это время давление в аорте резко повышается и стенка ее растягивается. Волна повышенного давления и вызванные этим рас­тяжением колебания сосудистой стенки с определенной скоростью распространяются от аорты до артериол и капилляров, где пульсовая волна гаснет.


Скорость распространения пульсовой волны не зависит от скорости движения крови. Максимальная линейная скорость течения крови по артериям не превышает 0,3—0,5 м/с, а скорость распространений пульсовой волны у людей молодого и среднего возраста при нормаль­ном артериальном давлении и нормальной эластичности сосудов равна в аорте 5,5
—8,0 м/с, а в периферических артериях — 6,0—9,5
м/с. С возрастом по мере понижения эластичности сосудов скорость рас­пространения пульсовой волны, особенно в аорте, увеличивается.


Для детального анализа отдельного пульсового колебания произ­водят его графическую регистрацию при помощи специальных прибо­ров — сфигмографов. В настоящее время для исследования пульса ис­пользуют датчики, преобразующие механические колебания сосуди­стой стенки в электрические изменения, которые и регистрируют.


В пульсовой кривой (сфигмограмме) аорты и крупных ар­терий различают две основные части — подъем и спад. Подъем кривой — анакрота
— возникает вследствие повышения АД и вызванного этим растяжения, которому подвергаются стенки артерий под влиянием крови, выброшенной из сердца в начале фазы изгна­ния. В конце систолы желудочка, когда давление в нем начинает падать, происходит спад пульсовой кривой — катакрота.
В тот момент, когда желудочек начинает расслабляться и давление в его полости становится ниже, чем в аорте, кровь, выброшенная в ар­териальную систему, устремляется назад к желудочку; давление в артериях резко падает и на пульсовой кривой крупных артерий появляется глубокая выемка — инцизура.
Движение крови обратно к сердцу встречает препятствие, так как полулунные клапаны под


влиянием обратного тока крови закрываются и препятствуют по­ступлению ее в сердце. Волна крови отражается от клапанов и создает вторичную волну повышения давления, вызывающую вновь растяжение артериальных стенок. В результате на сфигмограмме появляется вторичный, или дикротический, подъем.
Формы кривой пульса аорты и отходящих непосредственно от нее крупных сосудов, так называемого центрального пульса, и кривой пульса перифери­ческих артерий несколько отличаются (рис. 7.19).


Исследование пульса, как пальпаторное, так и инструментальное, посредством регистрации сфигмограммы дает ценную информацию о функционировании сердечно-сосудистой системы. Это исследование позволяет оценить как сам факт наличия биений сердца, так и частоту его сокращений, ритм (ритмичный или аритмичный пульс). Колебания ритма могут иметь и физиологический характер. Так, «дыхательная аритмия», проявляющаяся в увеличении частоты пуль­са на вдохе и уменьшении при выдохе, обычно выражена у молодых людей. Напряжение (твердый или мягкий пульс) определяют по величине усилия, которое необходимо приложить для того, чтобы пульс в дистальном участке артерии исчез. Напряжение пульса в определенной мере отображает величину среднего АД.


7.2.2.3. Объемная скорость кровотока


Как уже указывалось, различают линейную и объемную скорость тока крови, которая зависит от развития сосудистой сети в данном органе и от интенсивности его деятельности.


При работе органов в них происходит расширение сосудов и, следовательно, уменьшается сопротивление. Объемная скорость тока крови в сосудах работающего органа увеличивается.


Для измерения объемной и линейной скорости кровотока в со­судах предложено несколько методов. Один из современных мето­дов — ультразвуковой:
к артерии на небольшом расстоянии друг от друга прикладывают две маленькие пьезоэлектрические пластин­ки, которые способны преобразовывать механические колебания в электрические и обратно. На первую пластинку подают электриче­ское напряжение высокой частоты. Оно преобразуется в ультразву­ковые колебания, которые передаются с кровью на вторую пластин-


ку, воспринимаются ею и преобразуются в высокочастотные элек­трические колебания. Определив, как быстро распространяются уль­тразвуковые колебания по току крови от первой пластинки ко второй и в обратном направлении, т. е. против тока крови, можно рассчитать скорость кровотока. Чем быстрее ток крови, тем быстрее будут распространяться ультразвуковые колебания в одном направлении и медленнее — в противоположном.


Достаточно широкое распространение получил метод электро­магнитной флоурометрии.
Он основан на принципе электромаг­нитной индукции. Сосуд располагают между полюсами подковооб­разного магнита. Кровь, являясь проводящей средой, двигаясь вдоль сосуда, пересекает магнитное поле и создает ЭДС, которая направ­лена перпендикулярно магнитному полю и движению крови. Вели­чина ЭДС пропорциональна напряженности поля и скорости дви­жения в нем крови. Воспринимает ЭДС датчик, выполненный в виде незамкнутого кольца, надеваемого на сосуд. Измеряя ЭДС, определяют скорость движения крови.


Объемную скорость кровотока у человека в конечности возможно определить посредством плетизмографии.
Методика состоит в ре­гистрации изменений объема органа или части тела, зависящих от их кровенаполнения, т. е. от разности между притоком крови по артериям и оттоком ее по венам. При плетизмографии конечность или ее часть заключают в жесткий герметический сосуд, соединен­ный с манометром для измерения малых колебаний давления. В слу­чае изменения кровенаполнения конечности изменяется ее объем, что вызывает увеличение или уменьшение давления в сосуде, в который помещена конечность; давление регистрируется манометром и записывается в виде кривой — плетизмограммы. Для определения объемной скорости кровотока в конечности на несколько секунд сжимают вены и прерывают венозный отток. Поскольку приток крови по артериям продолжается, а венозного оттока нет, увеличение объема конечности соответствует количеству притекающей крови. Такая методика получила название окклюзионной
(окклюзия — закупорка, зажатие) плетизмографии.


Величина кровотока в разных органах представлена в табл. 7.1.


7.2.2.4. Движение крови в капиллярах. Микроциркуляция


Капилляры представляют собой тончайшие сосуды, диамет­ром 5—7 мкм, длиной 0,5—1,1 мм. Эти сосуды пролегают в меж­клеточных пространствах, тесно соприкасаясь с клетками органов и тканей организма. Суммарная длина всех капилляров тела чело­века составляет около 100 000 км, т. е. нить, которой можно было бы 3 раза опоясать земной шар по экватору. Физиологическое значение капилляров состоит в том, что через их стенки осущест­вляется обмен веществ между кровью и тканями. Стенки капилляров образованы только одним слоем клеток эндотелия, снаружи которого находится тонкая соединительнотканная базальная мембрана.


Скорость кровотока в капиллярах невелика и составляет 0,5— 1 мм/с. Таким образом, каждая частица крови находится в капил­ляре примерно 1 с. Небольшая толщина слоя крови (7—8 мкм) и тесный контакт его с клетками органов и тканей, а также непре­рывная смена крови в капиллярах обеспечивают возможность обмена веществ между кровью и тканевой (межклеточной) жидкостью.


В тканях, отличающихся интенсивным обменом веществ, число капилляров на 1 мм2
поперечного сечения больше, чем в тканях, в которых обмен веществ менее интенсивный. Так, в сердце на 1 мм2
сечения в 2 раза больше капилляров, чем в скелетной мышце. В сером веществе мозга, где много клеточных элементов, капил­лярная сеть значительно более густая, чем в белом.


Различают два вида функционирующих капилляров. Одни из них образуют кратчайший путь между артериолами и венулами (магистральные капилляры).
Другие представляют собой боковые ответвления от первых: они отходят от артериального конца маги­стральных капилляров и впадают в их венозный конец. Эти боковые ответвления образуют капиллярные сети.
Объемная и линейная скорость кровотока в магистральных капиллярах больше, чем в боковых ответвлениях. Магистральные капилляры играют важную роль в распределении крови в капиллярных сетях и в других фе­номенах микроциркуляции.


Давление крови в капиллярах измеряют прямым способом: под контролем бинокулярного микроскопа в капилляр вводят тончайшую канюлю, соединенную с электроманометром. У человека давление на артериальном конце капилляра равно 32 мм рт. ст., а на венозном — 15 мм рт. ст., на вершине петли капилляра ногтевого ложа — 24 мм рт. ст. В капиллярах почечных клубочков давление достигает 65— 70 мм рт. ст., а в капиллярах, оплетающих почечные канальцы, — всего 14—18 мм рт. ст. Очень невелико давление в капиллярах лег­ких — в среднем 6 мм рт. ст. Измерение капиллярного давления про­изводят в положении тела, при котором капилляры исследуемой обла­сти находятся на одном уровне с сердцем. В случае расширения арте-риол давление в капиллярах повышается, а при сужении понижается.


Кровь течет лишь в «дежурных» капиллярах. Часть капилляров выключена из кровообращения. В период интенсивной деятельности органов (например, при сокращении мышц или секреторной актив-


ности желез), когда обмен веществ в них усиливается, количество функционирующих капилляров значительно возрастает.


Регулирование капиллярного кровообращения нервной системой, влияние на него физиологически активных веществ — гормонов и ме­таболитов — осуществляются при воздействии их на артерии и арте-риолы. Сужение или расширение артерий и артериол изменяет как количество функционирующих капилляров, распределение крови в ветвящейся капиллярной сети, так и состав крови, протекающей по капиллярам, т. е. соотношение эритроцитов и плазмы. При этом об­щий кровоток через метартериолы и капилляры определяется сокра­щением гладких мышечных клеток артериол, а степень сокращения прекапиллярных сфинктеров (гладких мышечных клеток, располо­женных у устья капилляра при его отхождении от метаартериол) оп­ределяет, какая часть крови пройдет через истинные капилляры.


В некоторых участках тела, например в коже, легких и почках, имеются непосредственные соединения артериол и венул — арте-риовенозные анастомозы.
Это наиболее короткий путь между ар-териолами и венулами. В обычных условиях анастомозы закрыты и кровь проходит через капиллярную сеть. Если анастомозы откры­ваются, то часть крови может поступать в вены, минуя капилляры.


Артериовенозные анастомозы играют роль шунтов, регулирую­щих капиллярное кровообращение. Примером этого является изме­нение капиллярного кровообращения в коже при повышении (свыше 35°С) или понижении (ниже 15°С) температуры окружающей среды. Анастомозы в коже открываются и устанавливается ток крови из артериол непосредственно в вены, что играет большую роль в про­цессах терморегуляции.


Структурной и функциональной единицей кровотока в мелких со­судах является сосудистый модуль
— относительно обособленный в гемодинамическом отношении комплекс микрососудов, снабжающий кровью определенную клеточную популяцию органа. При этом имеет место специфичность васкуляризации тканей различных органов, что проявляется в особенностях ветвления микрососудов, плотности ка-пилляризации тканей и др. Наличие модулей позволяет регулировать локальный кровоток в отдельных микроучастках тканей.


Микроциркуляция — собирательное понятие. Оно объеди­няет механизмы кровотока в мелких сосудах и теснейшим образом связанный с кровотоком обмен жидкостью и растворенными в ней газами и веществами между сосудами и тканевой жидкостью.


Специального рассмотрения заслуживают процессы обмена между кровью и тканевой жидкостью. Через сосудистую систему за сутки проходит 8000—9000 л крови. Через стенку капилляров профиль­тровывается около 20 л жидкости и 18 л реабсорбируется в кровь. По лимфатическим сосудам оттекает около 2 л жидкости. Законо­мерности, обусловливающие обмен жидкости между капиллярами и тканевыми пространствами, были описаны Стерлингом. Гидроста­тическое давление крови в капиллярах (Ргк) является основной силой, направленной на перемещение жидкости из капилляров в ткани. Основной силой, удерживающей жидкость в капиллярном


русле, является онкотическое давление плазмы в капилляре (Рок). Определенную роль играют также гидростатическое давление (Ргт) и онкотическое давление тканевой жидкости (Рот) (рис. 7.20).


На артериальном конце капилляра Ргк составляет 30—35
мм рт. ст., а на венозном — 15—20 мм рт. ст. Рок на всем протяжении остается относительно постоянным и составляет 25 мм рт. ст. Таким образом, на артериальном конце капилляра осуществляется процесс фильтрации — выхода жидкости, а на венозном — обратный про­цесс — реабсорбция жидкости. Определенные коррективы вносит в этот процесс Рот, равное примерно 4,5 мм рт. ст., которое удерживает жидкость в тканевых пространствах, а также отрицательная вели­чина Ргт (-3—9 мм рт. ст.).


Следовательно, объем жидкости, переходящей через стенку капил­ляра за одну минуту (
V
),
при коэффициенте фильтрации К
равен


V

= (Ргк + Рот

+ Ргт — Рок) *К.


На артериальном конце капилляра величина Vположительна, здесь происходит фильтрация жидкости в ткань, а на венозном — Vотрицателен и жидкость реабсорбируется в кровь. Транспорт электролитов и низкомолекулярных веществ, например глюкозы, осуществляется вместе с водой.


Капилляры различных органов отличаются по своей ультраструк­туре, а следовательно, по способности пропускать в тканевую жид­кость белки. Так, 1 л лимфы в печени содержит 60 г белка, в миокарде — 30 г, в мышцах — 20 г и в коже — 10 г. Белок, проникший в тканевую жидкость, с лимфой возвращается в кровь.


Механизмы транспорта газов в тканях описаны в главе 8.


7.2.2.5. Движение крови в венах


Движение крови в венах обеспечивает наполнение полостей сер­дца во время диастолы. Ввиду небольшой толщины мышечного слоя стенки вен гораздо более растяжимы, чем стенки артерий, поэтому в венах может скапливаться большое количество крови. Даже если давление в венозной системе повысится всего на несколько милли­метров, объем крови в венах увеличится в 2—3 раза, а при повы­шении давления в венах на 10 мм рт. ст. вместимость венозной системы возрастет в 6 раз. Вместимость вен может также изменяться


при сокращении или расслаблении гладкой мускулатуры венозной стенки. Таким образом, вены (а также сосуды малого круга крово­обращения) являются резервуаром крови переменной емкости.


Венозное давление.
Давление в венах у человека можно изме­рить, вводя в поверхностную (обычно локтевую) вену полую иглу и соединяя ее с чувствительным электроманометром. В венах, на­ходящихся вне грудной полости, давление равно 5—9 мм рт. ст.


Для определения венозного давления необходимо, чтобы данная вена располагалась на уровне сердца. Это важно потому, что к величине кровяного давления, например в венах ног в положении стоя, присоединяется гидростатическое давление столба крови, на­полняющего вены.


В венах грудной полости, а также в яремных венах давление близко к атмосферному и колеблется в зависимости от фазы дыхания. При вдохе, когда грудная клетка расширяется, давление понижается и
становится отрицательным, т. е. ниже атмосферного. При выдохе происходят противоположные изменения и давление повышается (при обычном выдохе оно не поднимается выше 2—5 мм рт. ст.). Ранение вен, лежащих вблизи грудной полости (например, яремных вен), опасно, так как давление в них в момент вдоха является отрицательным. При вдохе возможно поступление атмосферного воздуха в полость вен и развитие воздушной эмболии, т. е. перенос пузырьков воздуха кровью и последующая закупорка ими артериол и капилляров, что может привести к смерти.


Скорость кровотока в венах.
Кровяное русло в венозной части шире, чем в артериальной, что по законам гемодинамики должно привести к замедлению тока крови. Скорость тока крови в пери­ферических венах среднего калибра 6—14 см/с, в полых венах достигает 20 см/с.


Движение крови в венах происходит прежде всего вследствие разности давления крови в мелких и крупных венах (градиент давления), т. е. в начале и конце венозной системы. Эта разность, однако, невелика, и потому кровоток в венах определяется рядом добавочных факторов. Одним из них является то, что эндотелий вен (за исключением полых вен, вен воротной системы и мелких венул) образует клапаны, пропускающие кровь только по направ­лению к сердцу. Скелетные мышцы, сокращаясь, сдавливают вены, что вызывает передвижение крови; обратно кровь не идет вследствие наличия клапанов. Этот механизм перемещения крови в венах называют мышечным насосом.


Таким образом, силами, обеспечивающими перемещение крови по венам, являются градиент давления между мелкими и крупными венами, сокращение скелетных мышц («мышечный насос»), приса­сывающее действие грудной клетки.


Венный пульс. В мелких и средних венах пульсовые колебания давления крови отсутствуют. В крупных венах вблизи сердца от­мечаются пульсовые колебания — венный пульс, имеющий иное происхождение, чем артериальный пульс. Он обусловлен затрудне­нием притока крови из вен в
сердце во время систолы предсердий


и желудочков. Во время систолы этих отделов сердца давление внутри вен повышается и происходят колебания их стенок. Удобнее всего записывать венный пульс яремной вены.


На кривой венного пульса — флебограмме
— различают три зубца: а, с,
v
(рис. 7.21). Зубец а
совпадает с систолой правого предсердия и обусловлен тем, что в момент систолы предсердия устья полых вен зажимаются кольцом мышечных волокон, вслед­ствие чего приток крови из вен в предсердия временно приостанав­ливается. Во время диастолы предсердий доступ в них крови ста­новится вновь свободным, и в это время кривая венного пульса круто падает. Вскоре на кривой венного пульса появляется неболь­шой зубец с. Он обусловлен толчком пульсирующей сонной артерии, лежащей вблизи яремной вены. После зубца с
начинается падение кривой, которое сменяется новым подъемом — зубцом v. Последний обусловлен тем, что к концу систолы желудочков предсердия на­полнены кровью, дальнейшее поступление в них крови невозможно, происходят застой крови в венах и растяжение их стенок. После зубца vнаблюдается падение кривой, совпадающее с диастолой желудочков и поступлением в них крови из предсердий.


7.2.2.6. Время кругооборота крови


Время полного кругооборота крови — это время, необходимое для того, чтобы она прошла через большой и малый круг кровообращения.


Для измерения времени полного кругооборота крови применяют


ряд способов, принцип которых заключается в том, что в вену


вводят какое-либо вещество, не встречающееся обычно в организме,


и определяют, через какой промежуток времени оно появляется в


, одноименной вене другой стороны.


В последние годы скорость кругооборота (или только в малом, или только в большом круге) определяют при помощи радиоактив­ного изотопа натрия и счетчика электронов. Для этого несколько таких счетчиков помещают на разных частях тела вблизи крупных сосудов и в области сердца. После введения в локтевую вену ра­диоактивного изотопа натрия определяют время появления радио­активного излучения в области сердца и исследуемых сосудов.


Время полного кругооборота крови у человека составляет в сред­нем 27 систол сердца. При частоте сердечных сокращений 70—80 в минуту кругооборот крови происходит приблизительно за 20—23 с, однако скорость движения крови по оси сосуда больше, чем у его стенок. Поэтому не вся кровь совершает полный кругооборот так быстро и указанное время является минимальным.


Исследования на собаках показали, что Vsвремени
полного кругооборота крови приходится на прохождение крови по малому кругу кровообращения и 4/5 — по большому.


7.2.3. Регуляция движения крови по сосудам


Каждая клетка, ткань и орган нуждаются в кислороде и пита­тельных веществах в количестве, соответствующем их метаболизму, т. е. интенсивности их функции. В связи с этим тканям необходимо поступление строго определенного количества крови, несущей O2 и питательные вещества, в единицу времени. Эта потребность обес­печивается благодаря поддержанию постоянного уровня АД и од­новременно непрерывного перераспределения протекающей крови между всеми органами и тканями в соответствии с их потребностями в каждый данный момент.


Механизмы, регулирующие кровообращение, можно подразде­лить на две категории: 1) центральные, определяющие величину АД и системное кровообращение, и 2) местные, контролирующие величину кровотока через отдельные органы и ткани. Хотя такое разделение является удобным, оно в значительной мере условно, так как процессы местной регуляции осуществляются с участием центральных механизмов, а управление системным кровообращени­ем зависит от деятельности местных регуляторных механизмов.


Постоянство АД сохраняется благодаря непрерывному поддержа­нию точного соответствия между величиной сердечного выброса и величиной общего периферического сопротивления сосудистой сис­темы, которое зависит от тонуса сосудов.


Гладкие мышцы сосудов постоянно, даже после устранения всех внешних нервных и гуморальных регуляторных влияний на сосуды, находятся на исходном уровне сокращения. Это так называемый базальный тонус.
Возникновение его обусловлено тем, что в неко­торых участках гладкой мускулатуры сосудистой стенки имеются очаги автоматии,
генерирующие ритмические импульсы. Распро­странение этих импульсов на остальные гладкие мышечные клетки вызывает их возбуждение и создает базальный тонус. Кроме того, гладкие мышцы сосудистых стенок находятся под влиянием посто­янной тонической импульсации,
поступающей по волокнам симпа­тических нервов. Симпатические влияния формируются в сосудо-двигательном центре и поддерживают определенную степень сокра­щения гладкой мускулатуры сосудов.


7.2.3.1. Иннервация сосудов


Сужение артерий и артериол, снабженных преимущественно сим­патическими нервами (вазоконстрикция),
было впервые обнаружено Вальтером (1842) в опытах на лягушках, а затем Бернаром (1852) в экспериментах на ухе кролика. Классический опыт Бернара состоит в том, что перерезка симпатического нерва на одной стороне шеи у кролика вызывает расширение сосудов, проявляющееся покрас-


нением и потеплением уха оперированной стороны. Если раздражать симпатический нерв на шее, то ухо на стороне раздражаемого нерва бледнеет вследствие сужения его артерий и артериол, а температура понижается.


Главными сосудосуживающими нервами органов брюшной поло­сти являются симпатические волокна, проходящие в составе внут­ренностного нерва (п. splanchnicus). После перерезки этих нервов кровоток через сосуды брюшной полости, лишенной сосудосужива­ющей симпатической иннервации, резко увеличивается вследствие расширения артерий и артериол. При раздражении п. splanchnicusсосуды желудка и тонкой кишки суживаются.


Симпатические сосудосуживающие нервы к конечностям идут в составе спинномозговых смешанных нервов, а также по стенкам артерий (в их адвентициальной оболочке). Поскольку перерезка симпатических нервов вызывает расширение сосудов той области, которая иннервируется этими нервами, считают, что артерии и артериолы находятся под непрерывным сосудосуживающим влияни­ем симпатических нервов.


Чтобы восстановить нормальный уровень артериального тонуса после перерезки симпатических нервов, достаточно раздражать их периферические отрезки электрическими стимулами частотой 1—2 в секунду. Увеличение частоты стимуляции может вызвать сужение артериальных сосудов.


Сосудорасширяющие эффекты (вазодилатация)
впервые обна­ружили при раздражении нескольких нервных веточек, относящихся к парасимпатическому отделу нервной системы. Например, раздра­жение барабанной струны (chordatimpani) вызывает расширение сосудов подчелюстной железы и языка, п. cavernosipenis— расши­рение сосудов пещеристых тел полового члена.


В некоторых органах, например в скелетной мускулатуре, рас­ширение артерий и артериол происходит при раздражении симпа­тических нервов, в составе которых имеются, кроме вазоконстрик-торов, и вазодилататоры. При этом активация alfa-адренорецепторов приводит к сжатию (констрикции) сосудов. Активация beta-адреноре­цепторов, наоборот, вызывает вазодилатацию. Следует заметить, что beta-адренорецепторы обнаружены не во всех органах.


Расширение сосудов (главным образом кожи) можно вызвать также раздражением периферических отрезков задних корешков спинного мозга, в составе которых проходят афферентные (чувст­вительные) волокна.


Эти факты, обнаруженные в 70-х годах прошлого столетия, вызвали среди физиологов много споров. Согласно теории Бейлиса и Л. А. Орбели, одни и те же заднекорешковые волокна передают -импульсы в обоих направлениях: одна веточка каждого волокна идет к рецептору, а другая — к кровеносному сосуду. Рецепторные нейроны, тела которых находятся в спинномозговых узлах, обладают двоякой функцией: передают афферентные импульсы в спинной мозг и эфферентные импульсы к сосудам. Передача импульсов в двух направлениях возможна потому, что афферентные волокна,


как и все остальные нервные волокна, обладают двусторонней про­водимостью.


Согласно другой точке зрения, расширение сосудов кожи при раз­дражении задних корешков происходит вследствие того, чо в рецеп-торных нервных окончаниях образуются ацетилхолин и гистамин, ко­торые диффундируют по тканям и расширяют близлежащие сосуды.


7.2.3.2. Сосудодвигательный центр


Ф. В. Овсянниковым (1871) было установлено, что нервный центр, обеспечивающий определенную степень сужения артериального рус­ла — сосудодвигательныйцентр — находится в продол­говатом мозге. Локализация этого центра определена путем перерезки ствола мозга на разных уровнях. Если перерезка произведена у собаки или кошки выше четверохолмия, то АД не изменяется. Если перере­зать мозг между продолговатым и спинным мозгом, то максимальное давление крови в сонной артерии понижается до 60—70 мм рт. ст. От­сюда следует, что сосудодвигательный центр локализован в продолго­ватом мозге и находится в состоянии тонической активности, т. е. дли­тельного постоянного возбуждения. Устранение его влияния вызывает расширение сосудов и падение АД.


Более детальный анализ показал, что сосудодвигательный центр продолговатого мозга расположен на дне IVжелудочка и состоит из двух отделов — прессорного и депрессорного. Раздражение прессорно-го отдела сосудодвигательного центра вызывает сужение артерий и подъем, а раздражение второго — расширение артерий и падение АД.


Считают, что депрессорный отдел сосудодвигательного центра
вызывает расширение сосудов, понижая тонус прессорного отдела и снижая, таким образом, эффект сосудосуживающих нервов.


Влияния, идущие от сосудосуживающего центра продолговатого мозга, приходят к нервным центрам симпатической части вегета­тивной нервной системы, расположенным в боковых рогах грудных сегментов спинного мозга, регулирующих тонус сосудов отдельных участков тела. Спинномозговые центры способны через некоторое время после выключения сосудосуживающего центра продолговатого мозга немного повысить давление крови, снизившееся вследствие расширения артерий и артериол.


Кроме сосудодвигательных центров продолговатого и спинного мозга, на состояние сосудов оказывают влияние нервные центры промежуточного мозга и больших полушарий.


7.2.3.3. Рефлекторная регуляция сосудистого тонуса


Как отмечалось, артерии и артериолы постоянно находятся в состоянии сужения, в значительной мере определяемого тонической активностью сосудодвигательного центра. Тонус сосудодвигательного центра зависит от афферентных сигналов, приходящих от перифе­рических рецепторов, расположенных в некоторых сосудистых об­ластях и на поверхности тела, а также от влияния гуморальных


раздражителей, действующих непосредственно на нервный центр. Следовательно, тонус сосудодвигательного центра имеет как ре­флекторное, так и гуморальное происхождение.


По классификации В. Н. Черниговского, рефлекторные измене­ния тонуса артерий — сосудистые рефлексы — могут быть разделены на две группы: собственные и сопряженные рефлексы.


Собственные сосудистые рефлексы. Вызываются сиг­налами от рецепторов самих сосудов. Особенно важное физиологи­ческое значение имеют рецепторы, сосредоточенные в дуге аорты и в области разветвления сонной артерии на внутреннюю и наруж­ную. Указанные участки сосудистой системы получили название сосудистых рефлексогенных зон.


Рецепторы, расположенные в дуге аорты, являются окончаниями центростремительных волокон, проходящих в составе аортального нерва. Ционом и Людвигом этот нерв функционально был обозначен как депрессор.
Электрическое раздражение центрального конца нер­ва обусловливает падение АД вследствие рефлекторного повышения тонуса ядер блуждающих нервов и рефлекторного снижения тонуса сосудосуживающего центра. В результате сердечная деятельность тормозится, а сосуды внутренних органов расширяются. Если у подопытного животного, например у кролика, перерезаны блужда­ющие нервы, то раздражение аортального нерва вызывает только рефлекторное расширение сосудов без замедления сердечного ритма.


В рефлексогенной зоне сонного синуса (каротидный синус, sinuscaroticus) расположены рецепторы, от которых идут центростреми­тельные нервные волокна, образующие синокаротидный нерв, или нерв Геринга. Этот нерв вступает в мозг в составе языкоглоточного нерва. При введении в изолированный каротидный синус крови через канюлю под давлением можно наблюдать падение АД в сосудах тела (рис. 7.22). Понижение системного АД обусловлено тем, что растяжение стенки сонной артерии возбуждает рецепторы каротид-ного синуса, рефлекторно понижает тонус сосудосуживающего цен­тра и повышает тонус ядер блуждающих нервов.


Рецепторы сосудистых рефлексогенных зон возбуждаются при повышении давления крови в сосудах, поэтому их называют прес-сорецепторами,
или барорецепторами.
Если перерезать синокаро-тидные и аортальные нервы с обеих сторон, возникает гипертензия, т. е. устойчивое повышение АД, достигающее в сонной артерии собаки 200—250 мм рт. ст. вместо 100—120 мм рт. ст. в норме.


Понижение АД вследствие, например, уменьшения объема крови в организме (при кровопотерях), ослабления деятельности сердца или при перераспределении крови и оттоке ее в избыточно расши­рившиеся кровеносные сосуды какого-нибудь крупного органа ведет к тому, что прессорецепторы дуги аорты и сонных артерий раздра­жаются менее интенсивно, чем при нормальном АД. Влияние аор­тальных и синокаротидных нервов на нейроны сердечно-сосудистого центра ослабляется, сосуды суживаются, работа сердца усиливается и АД нормализуется. Этот способ регуляции АД представляет собой регуляцию «на выходе»
системы, работающую по принципу отри-


дательной обратной связи. При отклонении АД от заданной вели­чины включаются компенсаторные реакции, восстанавливающие это давление до нормы. Это — регуляция «по рассогласованию».


Существует еще один, принципиально иной, механизм регуляции АД «на выходе» системы, «по возмущению».
В данном случае компен­саторные реакции включаются еще до того, как АД изменится, пре­дупреждая отклонение его от нормы. Необходимые для этого реакции запускаются сигналами, возникающими в рецепторах растяжения миокарда и коронарных сосудов, несущих информацию о степени на­полнения кровью полостей сердца и артериальной системы. В этом случае регуляторные реакции реализуются через внутрисердечную нервную систему, а также через вегетативные центры ЦНС.


Сосудистые рефлексы можно вызвать, раздражая рецепторы не только дуги аорты или каротидного синуса, но и сосудов некоторых других областей тела. Так, при повышении давления в сосудах легкого, кишечника, селезенки наблюдаются рефлекторные изме­нения АД в других сосудистых областях.


Рефлекторная регуляция давления крови осуществляется при по­мощи не только механорецепторов,
но и хеморецепторов,
чувстви­тельных к изменениям химического состава крови. Такие хеморецеп-торы сосредоточены в аортальном и сонном гломусе (glomuscaroticum, каротидные тельца), т. е. в местах локализации хеморецепторов.


Хеморецепторы чувствительны к СO2 и недостатку кислорода в крови; они раздражаются также СО, цианидами, никотином. От этих рецепторов возбуждение по центростремительным нервным волокнам передается к сосудодвигательному центру и вызывает повышение его тонуса. В результате сосуды суживаются и давление повышается. Од­новременно происходит возбуждение дыхательного центра.


Таким образом, возбуждение хеморецепторов аорты и сонной артерии вызывает сосудистые прессорные рефлексы, а раздражение механорецепторов — депрессорные рефлексы.


Хеморецепторы обнаружены также в сосудах селезенки, надпо­чечников, почек, костного мозга. Они чувствительны к различным химическим соединениям, циркулирующим в крови, например к ацетилхолину, адреналину и др. (В. Н. Черниговский).


Сопряженные сосудистые рефлексы. Это рефлексы, возникающие в других системах и органах, проявляются преиму­щественно повышением АД. Их можно вызвать, например, раздра­жением поверхности тела. Так, при болевых раздражениях рефлек-торно суживаются сосуды, особенно органов брюшной полости, и АД повышается. Раздражение кожи холодом также вызывает ре­флекторное сужение сосудов, главным образом кожных артериол.


Кортикальная регуляция сосудистого тонуса. Влияние коры большого мозга на сосуды было впервые доказано путем раздражения определенных участков коры.


Кортикальные сосудистые реакции у человека изучены методом условных рефлексов. В этих опытах о сужении или расширении сосудов судят по изменению объема руки при плетизмографии. Если сосуды суживаются, то кровенаполнение, а следовательно, и объем органа уменьшаются. При расширении сосудов, наоборот, кровена­полнение и объем органа увеличиваются.


Если многократно сочетать какое-либо раздражение, например согревание, охлаждение или болевое раздражение участка кожи с каким-нибудь индифферентным раздражителем (звуковым, свето­вым и т. п.), то через некоторое число подобных сочетаний один индифферентный раздражитель может вызвать такую же сосудистую реакцию, как и безусловное раздражение.


Сосудистая реакция на ранее индифферентный раздражитель осуществляется условнорефлекторным путем, т. е. при участии коры большого мозга. У человека при этом часто возникает и соответст­вующее ощущение (холода, тепла или боли), хотя никакого раз­дражения кожи не было.


Влиянием коры большого мозга объясняется то, что у спортсменов перед началом упражнения или соревнования наблюдается повы­шение артериального давления, вызванное изменениями деятельно­сти сердца и сосудистого тонуса.


7.2.3.4. Гуморальные влияния на сосуды


Одни гуморальные агенты суживают, а другие расширяют просвет артериальных сосудов.


Сосудосуживающие вещества. К ним относятся гормо­ны мозгового вещества надпочечников — адреналин
и норадреналин,
а также задней доли гипофиза — вазопрессин.


Адреналин и норадреналин суживают артерии и артериолы кожи, органов брюшной полости и легких, а вазопрессин действует пре­имущественно на артериолы и капилляры.


Адреналин, норадреналин и вазопрессин оказывают влияние на сосуды в очень малых концентрациях. Так, сужение сосудов у теплокровных животных происходит при концентрации адреналина к крови 1 * 10~7
г/мл. Сосудосуживающий эффект этих веществ обусловливает резкое повышение АД (рис. 7.23).


К числу гуморальных сосудосуживающих факторов относится серотонин
(5-гидроокситриптамин), продуцируемый в слизистой оболочке кишечника и в некоторых участках головного мозга. Се­ротонин образуется также при распаде тромбоцитов. Физиологиче­ское значение серотонина в данном случае состоит в том, что он суживает сосуды и препятствует кровотечению из пораженного со­суда. Во второй фазе свертывания крови, развивающейся после образования тромба, серотонин расширяет сосуды.


Особый сосудосуживающий фактор — ренин,
образуется в почках, причем тем в большем количестве, чем ниже кровоснабжение почек. По этой причине после частичного сдавливания почечных артерий у животных возникает стойкое повышение артериального давления, обусловленное сужением артериол. Ренин представляет собой про-теолитический фермент. Сам ренин не вызывает сужения сосудов, но, поступая в кровь, расщепляет а2
-глобулин плазмы — ангио-тензиноген
и превращает его в относительно малоактивный дека-пептид — ангиотензин
I
.
Последний под влиянием фермента ди-пептидкарбоксипептидазы превращается в очень активное сосудо­суживающее вещество ангиотензин
II
.
Ангиотензин IIбыстро разрушается в капиллярах ангиотензиназой.


В условиях нормального кровоснабжения почек образуется срав­нительно небольшое количество ренина. В большом количестве он продуцируется при падении уровня давления крови по всей сосу-


диетой системе. Если понизить давление крови у собаки путем кровопускания, то почки выделят в кровь повышенное количество ренина, что будет способствовать нормализации АД.


Открытие ренина и механизма его сосудосуживающего действия представляет большой клинический интерес: оно объяснило причину высокого АД, сопутствующего некоторым заболеваниям почек (ги-пертензия почечного происхождения).


Сосудорасширяющие вещества. В почках образуется также и сосудорасширяющее вещество, названное медуллином
(вы­рабатывается в мозговом слое почки). Это вещество представляет собой липид.


В настоящее время известно образование во многих тканях тела ряда сосудорасширяющих веществ, получивших название проста-гландинов.
Такое название дано потому, что впервые эти вещества были найдены в семенной жидкости у мужчин и предполагалось, что их образует предстательная железа. Простагландины представ­ляют собой производные ненасыщенных жирных кислот.


Из подчелюстной, поджелудочной желез, из легких и некоторых других органов получен активный сосудорасширяющий полипептид брадикинин.
Он вызывает расслабление гладкой мускулатуры арте-риол и понижает уровень АД. Брадикинин появляется в коже при действии тепла и является одним из факторов, обусловливающих расширение сосудов при нагревании. Он образуется при расщеплении одного из глобулинов плазмы крови под влиянием находящегося в тканях фермента калликреина.


К сосудорасширяющим веществам относится ацетилхолин
(АХ), который образуется в окончаниях парасимпатических нервов и сим­патических вазодилататоров. Он быстро разрушается в крови, по­этому его действие на сосуды в физиологических условиях чисто местное.


Сосудорасширяющим веществом является также гистамин
— вещество, образующееся в слизистой оболочке желудка и кишеч­ника, а также во многих других органах, в частности в коже при ее раздражении и в скелетной мускулатуре во время работы. Гистамин расширяет артериолы и увеличивает кровенаполнение капилляров. При введении 1—2 мг гистамина в вену кошке, несмотря на то что сердце продолжает работать с прежней силой, уровень АД резко падает вследствие уменьшения притока крови к сердцу: очень большое количество крови животного оказывается сосредоточенным в капиллярах, главным образом брюшной поло­сти. Снижение АД и нарушение кровообращения при этом подобны тем, какие возникают при большой кровопотере. Они сопровож­даются нарушением деятельности ЦНС вследствие расстройства мозгового кровообращения. Совокупность перечисленных явлений объединяется понятием «шок».
Тяжелые нарушения, возникающие в организме при введении больших доз гистамина, называют гис-таминовым шоком.


Усиленным образованием и действием гистамина объясняют ре­акцию покраснения кожи. Эта реакция вызывается влиянием раз-


личных раздражений, например потирание кожи, тепловое воздей­ствие, ультрафиолетовое облучение. Кроме гистамина и АХ, еще ряд других сосудорасширяющих веществ усиленно высвобождается из связанного состояния или образуется в скелетной мускулатуре при ее работе: АТФ и продукты ее распада (в частности, адениловая кислота), молочная и угольная кислоты и др.


7.2.3.5. Местные механизмы регуляции кровообращения


При усиленной функции любого органа или ткани возрастает ин­тенсивность процессов метаболизма и повышается концентрация продуктов обмена (метаболитов)—оксида углерода (IV) С02 и угольной кислоты, аденозиндифосфата, фосфорной и молочной кис­лот и других веществ. Увеличивается осмотическое давление (вслед­ствие появления значительного количества низкомолекулярных про­дуктов) , уменьшается величина рН в результате накопления водород­ных ионов. Все это и ряд других факторов приводят к расширению сосудов в работающем органе. Гладкая мускулатура сосудистой стен­ки очень чувствительна к действию этих продуктов обмена.


Попадая в общий кровоток и достигая с током крови сосудо-двигательного центра, многие из этих веществ повышают его тонус. Возникающее при центральном действии указанных веществ гене­рализованное повышение тонуса сосудов в организме приводит к увеличению системного АД при значительном возрастании кровотока через работающие органы.


В скелетной мышце в состоянии покоя на 1 мм2
поперечного сечения приходится около 30 открытых, т. е. функционирующих, капилляров, а при максимальной работе мышцы число открытых капилляров на 1 мм2
возрастает в 100 раз.


Минутный объем крови, нагнетаемый сердцем при интенсивной физической работе, может увеличиться не более чем в 5—6 раз, поэтому возрастание кровоснабжения работающих мышц в 100 раз возможно лишь вследствие перераспределения крови. Так, в период пищеварения наблюдается усиленный приток крови к пищевари­тельным органам и уменьшение кровоснабжения кожи и скелетной мускулатуры. Во время умственного напряжения усиливается кро­воснабжение мозга.


Напряженная мышечная работа ведет к сужению сосудов пище­варительных органов и усиленному притоку крови к работающим скелетным мышцам. Приток крови к этим мышцам возрастает в результате местного сосудорасширяющего действия продуктов об­мена, образующихся в работающих мышцах, а также вследствие рефлекторного расширения сосудов. Так, при работе одной руки сосуды расширяются не только в этой, но и в другой руке, а также в нижних конечностях.


Высказано предположение, что в сосудах работающего органа то­нус мышц понижается не только вследствие накопления продуктов об­мена, но и в результате воздействия механических факторов: сокра­щение скелетных мышц сопровождается растяжением сосудистых сте-


нок, уменьшением сосудистого тонуса в данной области и, следова­тельно, значительным увеличением местного кровообращения.


Кроме продуктов обмена, накапливающихся в работающих орга­нах и тканях, на мышцы сосудистой стенки влияют и другие гумораль­ные факторы: гормоны, ионы и т. д. Так, гормон мозгового вещества надпочечников адреналин вызывает резкое сокращение гладких мышц артериол внутренних органов и вследствие этого значительный подъем системного АД. Адреналин усиливает также сердечную дея­тельность, однако сосуды работающих скелетных мышц и сосуды го­ловного мозга под влиянием адреналина не суживаются. Таким обра­зом, выброс в кровь большого количества адреналина, образующегося при эмоциональных напряжениях, значительно повышает уровень си­стемного АД и одновременно улучшает кровоснабжение мозга и мышц и тем самым приводит к мобилизации энергетических и пластических ресурсов организма, необходимых в чрезвычайных условиях, при ко­торых возникает эмоциональное напряжение.


Сосуды ряда внутренних органов и тканей обладают индивиду­альными особенностями регуляции, которые объясняются структурой и функцией каждого из этих органов или тканей, а также степенью их участия в тех или иных общих реакциях организма. Например, сосуды кожи играют важную роль в теплорегуляции. Расширение их при повышении температуры тела способствует отдаче тепла в окружающую среду, а сужение снижает теплоотдачу.


Перераспределение крови происходит также при переходе из горизонтального положения в вертикальное. При этом затрудняется венозный отток крови от ног и количество крови, поступающей в сердце по нижней полой вене, уменьшается (при рентгеноскопии четко видно уменьшение размеров сердца). Вследствие этого веноз­ный приток крови к сердцу может значительно уменьшаться.


В последние годы установлена важная роль эндотелия со­судистой стенки в регуляции кровотока. Эндотелий сосудов синтезирует и выделяет факторы, активно влияющие на тонус глад­ких мышц сосудов. Клетки эндотелия — эндотелиоциты под влиянием химических раздражителей, приносимых кровью, или под влиянием механического раздражения (растяжение) способны вы­делять вещества, непосредственно действующие на гладкие мышеч­ные клетки сосудов, вызывая их сокращение или расслабление. Срок жизни этих веществ мал, поэтому действие их ограничивается сосудистой стенкой и не распространяется обычно на другие глад-комышечные органы. Одними из факторов, вызывающих расслаб­ление сосудов, являются, по-видимому, нитраты и нитриты.
Воз­можным сосудосуживающим фактором является вазоконстрикторный пептид эндотелии,
состоящий из 21 аминокислотного остатка.


7.2.3.6. Регуляция объема циркулирующей крови


Для нормального кровоснабжения органов и тканей, поддержания постоянства АД необходимо определенное соотношение между объ­емом циркулирующей крови (ОЦК) и общей емкостью всей сосу-


диетой системы. Это соответствие достигается при помощи ряда нервных и гуморальных регуляторных механизмов.


Рассмотрим реакции организма на уменьшение ОЦК при кро-вопотере. В подобных случаях приток крови к сердцу уменьшается и уровень АД снижается. В ответ на это возникают реакции, на­правленные на восстановление нормального уровня АД. Прежде всего происходит рефлекторное сужение артерий. Кроме того, при кровопотере наблюдается рефлекторное усиление секреции сосудо­суживающих гормонов: адреналина — мозговым слоем надпочечни­ков и вазопрессина — задней долей гипофиза, а усиление секреции этих веществ приводит к сужению артериол. О важной роли адре­налина и вазопрессина в поддержании АД при кровопотере свиде­тельствует тот факт, что смерть при потере крови наступает раньше после удаления гипофиза и надпочечников. Помимо симпатоадре-наловых влияний и действия вазопрессина, в поддержании АД и ОЦК на нормальном уровне при кровопотере, особенно в поздние сроки, участвует система ренин—ангиотензин—альдостерон. Возни­кающее после кровопотери снижение кровотока в почках приводит к усиленному выходу ренина и большему, чем в норме, образованию ангиотензина И, который поддерживает АД. Кроме того, ангиотензин IIстимулирует выход из коркового вещества надпочечников альдо-стерона, который, во-первых, способствует поддержанию АД за счет увеличения тонуса симпатического отдела вегетативной нервной системы, а во-вторых, усиливает реабсорбцию в почках натрия. Задержка натрия является важным фактором увеличения реабсорб-ции воды в почках и восстановления ОЦК.


Для поддержания АД при острых кровопотерях имеет значение также переход в сосуды тканевой жидкости и в общий кровоток того количества крови, которое сосредоточено в так называемых кровяных депо. Выравниванию давления крови способствует также рефлекторное учащение и усиление сокращений сердца. Благодаря этим нейрогуморальным влияниям при быстрой потере 20—25% крови некоторое время может сохраняться достаточно высокий уро­вень АД.


Существует, однако, некоторый предел потери крови, после которого никакие регуляторные приспособления (ни сужение со­судов, ни выбрасывание крови из депо, ни усиленная работа сердца и т. д.) не могут удержать АД на нормальном уровне: если организм быстро теряет более 40—50% содержащейся в нем крови, то АД резко понижается и может упасть до нуля, что приводит к смерти.


Указанные механизмы регуляции сосудистого тонуса являются безусловными, врожденными, но в течение индивидуальной жизни животных на их основе вырабатываются сосудистые условные ре­флексы, благодаря которым сердечно-сосудистая система включается в реакции, необходимые организму при действии лишь одного сиг­нала, предшествующего тем или иным изменениям окружающей среды. Таким образом организм оказывается заранее приспособлен­ным к предстоящей деятельности.


7.2.3.7. Кровяное депо


В состоянии покоя у
человека до 45—50% всего объема крови, имеющейся в организме, находится в кровяных депо: селезенке, печени, подкожном сосудистом сплетении и легких. В селезенке содержится 500 мл крови, которая может быть почти полностью выключена из циркуляции.


Резервуарная функция селезенки.
Осуществляется благодаря осо­бой структуре ее сосудов. Кровь из капилляров поступает сначала в венозные синусы и лишь затем переходит в вены. Синусы имеют легко растяжимые стенки и
могут вмещать большое количество крови и, опорожняясь, изливать эту кровь в селезеночную вену и, следовательно, в общий кровоток.


В селезеночных артериях и селезеночных синусах у места впа­дения их в венулы имеются сфинктеры, регулирующие приток и отток крови. При сокращении венозных сфинктеров отток крови затрудняется и кровь задерживается в синусах, вызывая увеличение размеров селезенки. При этом сфинктеры обычно сдавливают просвет сосудов не полностью. Остаются узкие просветы, задерживающие форменные элементы крови, но пропускающие плазму. При откры­тых артериальных сфинктерах приток крови в селезенку не огра­ничен, давление в ее сосудах растет и повышается уровень филь­трационного давления, вследствие чего плазма крови проходит через венозные сфинктеры в вены и общий кровоток. Благодаря этому кровь в сосудах селезенки сгущается. Селезенка может вместить до Vsэритроцитов всей крови организма.


При физических и эмоциональных напряжениях влияния, иду­щие к селезенке по симпатическим волокнам, а также адреналин, выбрасываемый в кровь мозговым веществом надпочечников, вызы­вают сокращение гладкой мускулатуры капсулы, трабекул и сосудов в данном органе. Венозные сфинктеры при этом открываются и депонированная в селезенке кровь выбрасывается в общий кровоток. В кровоток поступает дополнительно и большое количество эрит­роцитов. Таким образом, селезенка является основным депо эрит­роцитов. Большое количество их, поступая в циркулирующую кровь при физических и эмоциональных напряжениях, значительно по­вышает кислородную емкость крови.


Гладкие мышцы селезенки могут сокращаться под влиянием импульсов, поступающих из коры большого мозга, т. е. условно-рефлекторным путем. Вследствие этого любые сигналы о предсто­ящей физической нагрузке или эмоциональном напряжении могут вызывать сокращение гладких мышц селезенки и выход в кровь большого количества эритроцитов. Организм оказывается заблаго­временно подготовленным к предстоящим физическим и эмоцио­нальным нагрузкам. Выход крови из селезенки наблюдается также при кровопотерях, ожогах, травмах, гипоксии, асфиксии, анестезии и при ряде других состояний.


Депонирующая роль печени и кожи.
Кровь, находящаяся в сосудах печени и сосудистом сплетении кожи (у человека до 1 л),


циркулирует значительно медленнее (в 10—20 раз), чем в других сосудах. Поэтому кровь в данных органах задерживается, т. е. они также являются как бы резервуарами крови.


Большую роль в качестве депо крови играет печень. В стенках крупных ветвей печеночных вен имеются мышечные пучки, обра­зующие сфинктеры, которые, сокращаясь, суживают устье вен, что препятствует оттоку крови от печени. Кровь, находящаяся в печени, не выключается из циркуляции, как это происходит в селезенке, но ее движение замедляется. Регуляция кровенаполнения печени, а следовательно, ее функция как депо крови осуществляется ре­флекторным путем. Роль депо крови выполняют вся венозная система и в наибольшей степени вены кожи.


7.2.4. Регионарное кровообращение


Каждые орган и ткань: мозг, сердце, легкие, печень, кожа, мышцы — обладают индивидуальными физиологическими особен­ностями кровообращения.


Непрерывность движения крови в организме человека обеспечи­вается как системой последовательно соединенных сосудов, осуще­ствляющих системную гемодинамику, так и системой параллельно подключенных к аорте и полым венам сосудистых русел, представ­ленных сосудами различных органов и обеспечивающих регионарную гемодинамику. Хотя в каждом отдельно взятом органе (регионе) кругооборот крови в процессе ее движения не совершается, для обозначения гемодинамики в органах употребляется термин «ре­гионарное кровообращение».


Главное назначение кровообращения, в обеспечении обмена га­зами, веществами и продуктами их метаболизма, а также тепловой энергией между кровью и клетками тканей, реализуется на уровне сосудистой системы органов. Именно здесь осуществляется непос­редственное соприкосновение обменных сосудов с тканевыми эле­ментами, а структурные особенности строения стенки кровеносных капилляров и низкая линейная скорость кровотока в них создают оптимальные условия для полноценного осуществления обменно-транспортной функции кровообращения. Кроме того, процессы не­прерывного приспособления организма к постоянно изменяющимся условиям внешней и внутренней среды вовлекают в активную де­ятельность различные регионы и группы органов. Это требует четкой координации и высокой надежности в адекватном перераспределении крови между работающими органами. Наконец, сосудистые сети органов, выполняя в общей схеме устройства сердечно-сосудистой системы роль параллельно включенных проводников, в значительной мере определяют величину общего периферического сопротивления сосудов и тем самым влияют на показатели системной гемодинамики.


В то время как кровообращение в мышцах и большинстве внут­ренних органов определяется общими принципами и закономерно­стями, описанными выше, кровообращение в ряде регионов требует специального рассмотрения.


7.2.4.1. Мозговое кровообращение


Головной мозг характеризуется непрерывно протекающими энер­гоемкими процессами, требующими потребления глюкозы мозговой тканью. Известно, что нервная ткань практически не обладает ни субстратом для анаэробных окислительных процессов, ни запасами кислорода, а следовательно, для нормального функционирования мозга необходима высокая интенсивность его кровоснабжения. В свя­зи с этим головной мозг, средняя масса которого 1400—1500 г, в состоянии функционального покоя получает около 750 мл/мин кро­ви, что составляет примерно 15% от сердечного выброса. Объемная скорость кровотока при этих условиях соответствует 50— 60 мл/100 г/мин. Следует отметить, что серое вещество обеспечи­вается кровью интенсивнее, чем белое, что обусловлено более вы­сокой клеточной активностью. У детей первого года жизни величина кровотока на 50—55%
больше, а в старческом возрасте примерно на 20% меньше, чем у человека в зрелом возрасте. Снижение интенсивности кровоснабжения головного мозга чревато развитием дефицита кислорода и глюкозы в мозговой ткани, что может привести к нарушениям деятельности мозга. В здоровом организме, благодаря надежным механизмам ауторегуляции мозгового кровотока,
пита­ние мозга остается практически неизменным при падении системного АД вплоть до 50 мм рт. ст.


Регуляция мозгового кровообращения. Известно, что мозг рас­положен в ригидном костном образовании — черепе (исключение составляют дети грудного возраста, у которых имеются роднички, придающие некоторую подвижность стенкам черепной коробки). Поскольку в полости черепа, помимо мозгового вещества, содержатся кровь и цереброспинальная жидкость, являющиеся малосжимаемыми жидкостями, их общий объем остается почти постоянным. При избыточности кровоснабжения может произойти излишняя гидрата­ция ткани мозга с последующим развитием отека мозга и повреж­дениями, несовместимыми с жизнью, жизненно важных центров. Основной причиной избыточности кровоснабжения головного мозга может служить увеличение системного АД, однако в норме при участии ауторегуляторных сосудистых реакций мозг предохранен от избыточного кровенаполнения при повышении давления вплоть до 160—170 мм рт. ст. Помимо ауторегуляции кровотока, предо­хранение головного мозга как органа, близко расположенного к сердцу, от высокого кровяного давления и избыточности пульсации осуществляется и за счет особенностей строения сосудистой системы мозга. В частности, эту функцию достаточно эффективно выполняют многочисленные изгибы (сифоны) по ходу сосудистого русла, которые способствуют значительному перепаду давления и сглаживанию пульсирующего кровотока.


В активно работающем мозге возникает потребность в увеличении интенсивности кровоснабжения. Благодаря феномену функциональ­ной (рабочей) гиперемии такая возросшая потребность полностью удовлетворяется, не вступая в противоречие с необходимостью пред-


отвращения головного мозга от избыточности кровенаполнения. Объ­ясняется это специфическими особенностями мозгового кровообра­щения. Во-первых, при повышенной активности всего организма (усиленная физическая работа, эмоциональное возбуждение и т. д.) кровоток в мозге увеличивается примерно на 20—25%, что не оказывает повреждающего действия, поскольку мозг — единствен­ный орган, основной сосудистый бассейн которого располагается на поверхности (система сосудов мягкой мозговой оболочки) и, за счет расстояния до твердой мозговой оболочки, располагает резервом для некоторого кровенаполнения. Во-вторых, физиологически активное состояние человека (включая умственную деятельность) характери­зуется развитием процесса активации в строго соответствующих нервных центрах (корковых представительствах функций), где и формируются доминантные очаги. В таком случае нет необходимости в увеличении суммарного мозгового кровотока, а лишь требуется внутримозговое перераспределение кровотока в пользу активно ра­ботающих зон (областей, участков) мозга. Эта функциональная потребность реализуется путем активных сосудистых реакций, раз­вивающихся в пределах соответствующих сосудистых модулей — структурно-функциональных единиц микрососудистой системы го­ловного мозга. Следовательно, особенностью мозгового кровообра­щения является высокая гетерогенность и изменчивость распреде­ления локального кровотока в микроучастках нервной ткани.


7.2.4.2. Венечное кровообращение


Поперечнополосатая мускулатура сердца в отличие от скелетной характеризуется высоким потреблением энергии аэробного проис­хождения, что обусловливает значительную потребность миокарда в интенсивном кровоснабжении. Доставка артериальной крови в миокард осуществляется венечными (коронарными) артериями, ко­торые, разветвляясь и широко анастомозируя во всех слоях и отделах сердца, образуют густую сеть капилляров и практически каждое мышечное волокно снабжено собственным обменным сосудом. Ве­нозный отток от миокарда осуществляется через широкий венечный (коронарный) синус, открывающийся в полость правого предсердия. Прекращение кровотока по коронарным артериям при их закупорке или значительном спазме приводит к стойкому снижению крово­снабжения сердечной мышцы и к развитию инфаркта миокарда, что сопровождается нарушением нагнетательной функции сердца и может привести к смерти. Поскольку в системе коронарного русла достаточно хорошо представлен модульный принцип организации, аналогичные изменения кровотока в пределах отдельных сосудистых модулей могут проявиться в виде микроинфарктов, осложняющихся нарушением проводимости и сократимости сердечной мышцы.


В состоянии функционального покоя у взрослого человека коро­нарный кровоток составляет 60—70 мл/100 г/мин. От общего сер­дечного выброса кровоснабжение миокарда составляет 4—5%, т. е. в среднем 200—250 мл/мин. В условиях интенсивной физической


работы, когда происходит активация сердечной деятельности, объ­емная скорость кровотока в сердечной мышце возрастает, достигая 350—400 мл/100 г/мин (функциональная гиперемия).


Коронарный кровоток существенно изменяется в зависимости от периода сердечного цикла. В период систолы желудочков интенсив­ность коронарного кровотока (особенно в миокарде левого желудоч­ка) снижается, а во время диастолы увеличивается. Описанные периодические колебания объясняются двумя основными причинами: первая из них обусловлена пульсирующим характером давления в аорте, а вторая (основная) — изменениями напряжения в стенке миокарда. В систолу, когда это напряжение значительно возрастает, сдавливаются сосуды среднего и внутреннего слоев миокарда, дви­жение крови в левой коронарной артерии затруднено. В диастолу напряжение в миокарде падает, проходимость сосудов восстанавли­вается и кровоток увеличивается. В увеличении кровотока через миокард в период диастолы не исключена роль реактивной (посток-клюзионной) гиперемии.


Несмотря на выраженное снижение кровотока во время систолы, метаболические потребности миокарда при нормальной частоте со­кращений сердца полностью удовлетворяются за счет ряда функ­циональных особенностей: 1) высокой экстракцией кислорода мио-глобином мышцы сердца (до 75%); 2) высокой объемной скоростью кровотока в миокарде; 3) высокой растяжимостью коронарных со­судов; 4) фазными колебаниями кровотока в венах сердца проти­воположной направленности, а именно ускорением оттока крови в систолу и замедлением его в диастолу. Вместе с тем в условиях тахикардии, когда происходит укорочение диастолы, эти функцио­нальные особенности в меньшей степени компенсируют систоличе­ское ограничение кровоснабжения сердца.


Регуляция венечного кровообращения. Представлена местными и дистантными механизмами. Для сосудов миокарда характерна высокая выраженность базального тонуса, а также миогенная ме­таболическая активность гладких мышечных клеток (ГМК). Диа­пазон ауторегуляции кровотока в сердечной мышце находится в пределах 70—160 мм рт. ст. Метаболическая регуляция коронарных сосудов проявляет наибольшую активность по отношению к ткане­вому рO2, концентрациям аденозина и метаболитам макроэргических соединений.


Вопрос о характере нервной регуляции коронарного кровообра­щения не до конца ясен. Считают, что симпатические адренерги-ческие нервные волокна вызывают в ряде случаев (физическая работа, стенические отрицательные эмоции) расширение венечных сосудов и увеличение кровотока в миокарде. Наряду с этим в других условиях (астенические отрицательные эмоции, боль и т. п.) на­блюдаются симпатические коронаросуживающие эффекты. Причины таких противоположных влияний связывают с избирательной «на­стройкой» чувствительности а-
и beta-адренорецепторов, широко пред­ставленных в ГМК коронарных сосудов, а также с концентрацией катехоламинов, которые в зависимости от «дозы-эффекта» вмеши-


ваются в метаболизм ГМК и интерстициальной ткани. Парасимпа­тические холинергические влияния скорее всего опосредованно, уг­нетая сократительную активность сердечной мышцы, снижают ее метаболические потребности и тем самым приводят к снижению кровоснабжения миокарда.


7.2.4.3. Легочное кровообращение


Важнейшей особенностью организации кровоснабжения легких является ее двухкомпонентный характер, поскольку легкие получают кровь из сосудов малого круга кровообращения и бронхиальных сосудов большого круга кровообращения. Функциональное значение сосудистой системы малого круга кровообращения состоит в обес­печении газообменной функции легких, тогда как бронхиальные сосуды удовлетворяют собственные циркуляторно-метаболические потребности легочной ткани.


Легочная артерия и ее ветви диаметром более 1 мм являются сосудами эластического типа, что способствует значительному сгла­живанию пульсации крови, поступающей во время систолы правого желудочка в легкие. Более мелкие артерии (диаметром от 1 мм до 100 мкм) относят к артериям мышечного типа. Они обусловливают величину гидродинамического сопротивления в малом круге крово­обращения. В самых мелких артериях (диаметром менее 100 мкм) и в артериолах содержание ГМК прогрессивно снижается и в арте-риолах диаметром менее 45 мкм они полностью отсутствуют. По­скольку безмышечные артериолы тесно связаны с окружающей аль­веолярной паренхимой, интенсивность кровоснабжения легких не­посредственно зависит от интенсивности вентиляции альвеол.


Капилляры легких образуют на поверхности альвеол очень густую сеть и при этом на одну альвеолу приходится несколько капилляров. В связи с тем что стенки альвеол и капилляров тесно контактируют, образуя как бы единую альвеолярно-капиллярную мембрану, созда­ются наиболее благоприятные условия для эффективных вентиля-ционно-перфузионных взаимоотношений. В условиях функциональ­ного покоя у человека капиллярная кровь находится в контакте с альвеолярным воздухом в течение примерно 0,75 с. При физической работе продолжительность контакта укорачивается более чем в два раза и составляет в среднем 0,35 с.


В результате слияния капилляров образуются характерные для легочной сосудистой системы безмышечные посткапиллярные вену-лы, трансформирующиеся в венулы мышечного типа и далее в легочные вены. Особенностью сосудов венозного отдела являются их тонкостенность и слабая выраженность ГМК. Структурные осо­бенности легочных сосудов, в частности артерий, определяют боль­шую растяжимость сосудистого русла, что создает условия для более низкого сопротивления (приблизительно в 10 раз меньше, чем в системе большого круга кровообращения), а следовательно, более низкого кровяного давления. В связи с этим система малого круга кровообращения относится к области низкого давления. Давление


в легочной артерии составляет в среднем 15—25 мм рт. ст., а в венах — 6—8 мм рт. ст. Градиент давления равен примерно 9—17 мм рт. ст., т. е. значительно меньше, чем в большом круге крово­обращения. Несмотря на это, повышение системного АД или же значительное увеличение кровотока (при активной физической ра­боте человека) существенно не влияет на трансмуральное давление в легочных сосудах из-за их большей растяжимости. Большая рас­тяжимость легочных сосудов определяет еще одну важную функ­циональную особенность этого региона, заключающуюся в способ­ности депонировать кровь и тем самым предохранять легочную ткань от отека при увеличении минутного объема кровотока.


Минутный объем крови в легких соответствует минутному объему крови в большом круге кровообращения и в условиях функциональ­ного покоя составляет в среднем 5 л/мин. При активной физической работе этот показатель может возрасти до 25 л/мин.


Распределение кровотока в легких характеризуется неравномер­ностью кровоснабжения верхних и нижних долей, так как низкое внутрисосудистое давление определяет высокую зависимость легоч­ного кровотока от гидростатического давления. Так, в вертикальном положении верхушки легкого расположены выше основания легочной артерии, что практически уравнивает АД в верхних долях легких с гидростатическим давлением. По этой причине капилляры верхних долей слабо перфузируются, тогда как в нижних долях благодаря суммированию АД с гидростатическим давлением кровоснабжение обильное. Описанная особенность легочного кровообращения играет важную роль в установлении перфузионно-вентиляционных отно­шений в дыхательной системе.


Интенсивность кровоснабжения легких зависит от циклических изменений плеврального и альвеолярного давлений в различные фазы дыхательного цикла. Во время вдоха, когда плевральное и альвеолярное давление уменьшаются, происходит пассивное расши­рение крупных внелегочных и внутрилегочных сосудов, сопротив­ление сосудистого русла дополнительно снижается и кровоснабжение легких в фазу вдоха увеличивается.


Регуляция легочного кровообращения. Местная регуля­ция легочного кровотока в основном представлена метаболическими факторами, ведущая роль среди которых принадлежит рO2 и рСO2. При снижении р02
и/или повышении рС02
происходит местная вазоконстрикция легочных сосудов. Следовательно, особенностью местной регуляции кровоснабжения легких является строгое соот­ветствие интенсивности локального кровотока уровню вентиляции данного участка легочной ткани.


Нервная регуляция легочного кровообращения осуществ­ляется в основном симпатическими сосудосуживающими волокнами. Природа сосудорасширяющих нервных влияний пока не выяснена. Система легочного кровообращения выделяется среди всех регионов наибольшей функциональной связью с центральной регуляцией си­стемной гемодинамики в большом круге кровообращения. Известно, что рефлексы саморегуляции кровообращения с баро- и хеморецеп-


торов сонного (каротидного) синуса сопровождаются активными из­менениями легочного кровотока. В свою очередь сосуды малого круга кровообращения являются мощной рефлексогенной зоной, порождающей рефлекторные изменения в сердечно-сосудистой сис­теме.


Гуморальная регуляция легочного кровообращения в значительной степени обусловлена влиянием таких биологически активных веществ, как ангиотензин, серотонин, гистамин, проста-гландины, которые вызывают в основном вазоконстрикцию в легких и повышение кровяного давления в легочных артериях. Активность других, широко распространенных в организме гуморальных фак­торов (адреналин, норадреналин, ацетилхолин) в системе регуляции легочного кровотока выражена в меньшей степени.


7.3. ЛИМФООБРАЩЕНИЕ


7.3.1. Строение лимфатической системы


Лимфатическая система человека и теплокровных животных со­стоит из следующих образований: 1) лимфатических капилляров, представляющих собой замкнутые с одного конца эндотелиальные трубки, пронизывающие практически все органы и ткани; 2) внут-риорганных сплетений посткапилляров и мелких, снабженных кла­панами, лимфатических сосудов; 3) экстраорганных отводящих лим­фатических сосудов, впадающих в главные лимфатические стволы, прерывающихся на своем пути лимфатическими узлами; 4) главных лимфатических протоков — грудного и правого лимфатического, впадающих в крупные вены шеи. Лимфатические капилляры и посткапилляры представляют собой часть лимфатической системы; в них под влиянием изменяющихся градиентов гидростатического и коллоидно-осмотического давлений происходит образование лим­фы. Стенки лимфатических капилляров и посткапилляров представ­лены одним слоем эндотелиальных клеток, прикрепленных с по­мощью коллагеновых волокон к окружающим тканям. В стенке лимфатических капилляров между эндотелиальными клетками име­ется большое количество пор, которые при изменении градиента давления могут открываться и закрываться. Внутри- и внеорганные лимфатические сосуды, лимфатические стволы и протоки выполняют преимущественно транспортную функцию, обеспечивая доставку об­разовавшейся в лимфатической системе лимфы в систему кровенос­ных сосудов. Лимфатические сосуды являются системой коллекторов, представляющих собой цепочки лимфангионов.
Лимфангион явля­ется морфофункциональной единицей лимфатических сосудов и со­стоит из мышечной «манжетки», представленной спиралеобразно расположенными гладкими мышечными клетками и двух клапа­нов — дистального и проксимального. Крупные лимфатические со­суды конечностей и внутренних органов сливаются в грудной и правый лимфатический протоки. Из протоков лимфа поступает через правую и левую подключичную вены в общий кровоток.


7.3.2. Образование лимфы


Лимфа — жидкость, возвращаемая в кровоток из тканевых пространств по лимфатической системе. Лимфа образуется из тка­невой (интерстициальной) жидкости, накапливающейся в межкле­точном пространстве в результате преобладания фильтрации жид­кости над реабсорбцией через стенку кровеносных капилляров. Дви­жение жидкости из капилляров и внутрь их определяется соотношением гидростатического и осмотического давлений, дейст­вующих через эндотелий капилляров. Осмотические силы стремятся удержать плазму внутри кровеносного капилляра для сохранения равновесия с противоположно направленными гидростатическими силами. Вследствие того что стенка кровеносных капилляров не является полностью непроницаемой для белков, некоторое количе­ство белковых молекул постоянно просачивается через нее в ин-терстициальное пространство. Накопление белков в тканевой жид­кости увеличивает ее осмотическое давление и приводит к нару­шению баланса сил, контролирующих обмен жидкости через капиллярную мембрану. В результате концентрация белков в ин­терстициальной ткани повышается и белки по градиенту концент­рации начинают поступать непосредственно в лимфатические ка­пилляры. Кроме того, движение белков внутрь лимфатических ка­пилляров осуществляется посредством пиноцитоза.


Утечка белков плазмы в тканевую жидкость, а затем в лимфу зависит от органа. Так, в легких она равна 4%, в желудочно-ки­шечном тракте — 4,1%, сердце — 4,4%, в печени достигает 6,2%.


7.3.3. Состав лимфы


В
состав лимфы входят клеточные элементы, белки, липиды, низкомолекулярные органические соединения (аминокислоты, глю­коза, глицерин), электролиты. Клеточный состав лимфы представлен в основном лимфоцитами. В лимфе грудного протока их число достигает 8*10^9
/л. Эритроциты в лимфе в норме встречаются в ограниченном количестве, их число значительно возрастает при травмах тканей, тромбоциты в норме не определяются. Макрофаги и моноциты встречаются редко. Гранулоциты могут проникать в лимфу из очагов инфекции. Ионный состав лимфы не отличается от ионного состава плазмы крови и интерстициальной жидкости. В то же время по содержанию и составу белков и липидов лимфа значительно отличается от плазмы крови. В лимфе человека содер­жание белков составляет в среднем 2—3% от объема. Концентрация белков в лимфе зависит от скорости ее образования: увеличение поступления жидкости в организм вызывает рост объема образую­щейся лимфы и уменьшает концентрацию белков в ней. В лимфе в небольшом количестве содержатся все факторы свертывания, ан­титела и различные ферменты, имеющиеся в плазме. Холестерин и фосфолипиды находятся в лимфе в виде липопротеинов. Содер­жание свободных жиров, которые находятся в лимфе в виде хило-


микронов, зависит от количества жиров, поступивших в лимфу из кишечника. Тотчас после приема пищи в лимфе грудного протока содержится большое количество липопротеинов и липидов, всосав­шихся в желудочно-кишечном тракте. Между приемами пищи со­держание липидов в грудном протоке минимально.


7.3.4. Движение лимфы


Скорость и объем лимфообразования определяются процессами микроциркуляции и
взаимоотношением системной и лимфатической циркуляции. Так, при минутном объеме кровообращения, равном 6 л, через стенки кровеносных капилляров в организме человека фильтруется около 15 мл жидкости. Из этого количества 12 мл жидкости реабсорбируется. В интерстициальном пространстве оста­ется 3 мл жидкости, которая в дальнейшем возвращается в кровь по лимфатическим сосудам. Если учесть, что за час в крупные лимфатические сосуды поступает 150—180 мл лимфы, а за сутки через грудной лимфатический проток проходит до 4 л лимфы, которая в дальнейшем поступает в общий кровоток, то значение возврата лимфы в кровь становится весьма ощутимым.


Движение лимфы начинается с момента ее образования в лим­фатических капиллярах, поэтому факторы, которые увеличивают скорость фильтрации жидкости из кровеносных капилляров, будут также увеличивать скорость образования и движения лимфы. Фак­торами, повышающими лимфообразование, являются увеличение гидростатического давления в капиллярах, возрастание общей по­верхности функционирующих капилляров (при повышении функ­циональной активности органов), увеличение проницаемости капил­ляров, введение гипертонических растворов. Роль лимфообразования в механизме движения лимфы заключается в создании первона­чального гидростатического давления, необходимого для перемеще­ния лимфы из лимфатических капилляров и посткапилляров в отводящие лимфатические сосуды.


В лимфатических сосудах основной силой, обеспечивающей пе­ремещение лимфы от мест ее образования до впадения протоков в крупные вены шеи, являются ритмические сокращения лимфанги-онов. Лимфангионы, которые можно рассматривать как трубчатые лимфатические микросердца, имеют в своем составе все необходимые элементы для активного транспорта лимфы: развитую мышечную «манжетку» и клапаны. По мере поступления лимфы из капилляров в мелкие лимфатические сосуды происходит наполнение лимфан-гионов лимфой и растяжение их стенок, что приводит к возбуждению и сокращению гладких мышечных клеток мышечной «манжетки». Сокращение гладких мышц в стенке лимфангиона повышает внутри него давление до уровня, достаточного для закрытия дистального клапана и открытия проксимального. В результате происходит пе­ремещение лимфы в следующий центрипетальный лимфангион. За­полнение лимфой проксимального лимфангиона приводит к растя­жению его стенок, возбуждению и сокращению гладких мышц и


перекачиванию лимфы в следующий лимфангион. Таким образом, последовательные сокращения лимфангионов приводят к перемеще­нию порции лимфы по лимфатическим коллекторам до места их впадения в венозную систему. Работа лимфангионов напоминает деятельность сердца. Как в цикле сердца, в цикле лимфангиона имеются систола и диастола. По аналогии с гетерометрической саморегуляцией в сердце, сила сокращения гладких мышц лимфан­гиона определяется степенью их растяжения лимфой в диастолу. И наконец, как и в сердце, сокращение лимфангиона запускается и управляется одиночным платообразным потенциалом действия (рис. 7.24).


Стенка лимфангионов имеет развитую иннервацию, которая в основном представлена адренергическими волокнами. Роль нервных волокон в стенке лимфангиона заключается не в побуждении их к сокращению, а в модуляции параметров спонтанно возникающих ритмических сокращений. Кроме этого, при общем возбуждении симпатико-адреналовой системы могут происходить тонические со­кращения гладких мышц лимфангионов, что приводит к повышению давления во всей системе лимфатических сосудов и быстрому по­ступлению в кровоток значительного количества лимфы. Гладкие мышечные клетки высокочувствительны к некоторым гормонам и биологически активным веществам. В частности, гистамин, увели­чивающий проницаемость кровеносных капилляров и приводящий тем самым к росту лимфообразования, увеличивает частоту и ам­плитуду сокращений гладких мышц лимфангионов. Миоциты лимф­ангиона реагируют также на изменения концентрации метаболитов, рО2 и повышение температуры.


В организме, помимо основного механизма, транспорту лимфы по сосудам способствует ряд второстепенных факторов. Во время


вдоха усиливается отток лимфы из грудного протока в венозную систему, а при вдохе он уменьшается. Движения диафрагмы влияют на ток лимфы — периодическое (давление и растяжение диафрагмой цистерны грудного протока усиливает заполнение ее лимфой и способствует продвижению по грудному лимфатическому протоку. Повышение активности периодически сокращающихся мышечных органов (сердце, кишечник, скелетная мускулатура) влияет не толь­ко на усиление лимфооттока, но и способствует переходу тканевой жидкости в капилляры. Сокращения мышц, окружающих лимфа­тические сосуды, повышают внутрилимфатическое давление и вы­давливают лимфу в направлении, определяемом клапанами. При иммобилизации конечности отток лимфы ослабевает, а при активных и пассивных ее движениях — увеличивается. Ритмическое растя­жение и массаж скелетных мышц способствуют не только механи­ческому перемещению лимфы, но и усиливают собственную сокра­тительную активность лимфангионов в этих мышцах.


7.3.5. Функции лимфатической системы


Наиболее важной функцией лимфатической системы является возврат белков, электролитов и воды из интерстициального про­странства в кровь. За сутки в составе лимфы в кровоток возвращается более 100 г белка, профильтровавшегося из кровеносных капилляров в интерстициальное пространство. Нормальная лимфоциркуляция необходима для формирования максимально концентрированной мо­чи в почке. Через лимфатическую систему переносятся многие продукты, всасывающиеся в желудочно-кишечном тракте, и прежде всего жиры. Некоторые крупномолекулярные ферменты, такие как гистаминаза и липаза, поступают в кровь исключительно по системе лимфатических сосудов. Лимфатическая система действует как транспортная система по удалению эритроцитов, оставшихся в ткани после кровотечения, а также по удалению и обезвреживанию бак­терий, попавших в ткани. Лимфатическая система продуцирует и осуществляет перенос лимфоцитов и других важнейших факторов иммунитета. При возникновении инфекции в каких-либо частях тела региональные лимфатические узлы воспаляются в результате задержки в них бактерий или токсинов. В синусах лимфатических узлов, расположенных в корковом и мозговом слоях, содержится эффективная фильтрационная система, которая позволяет практи­чески стерилизовать поступающую в лимфатические узлы инфици­рованную лимфу.


В клинической лимфологии применяют различные способы вве­дения лекарственных препаратов непосредственно в лимфатическую систему. Эндолимфотерапию
применяют при лечении тяжелых вос­палительных процессов, а также раковых заболеваний. В последние годы появился новый способ лечения — лимфотропная терапия.
При лимфотропной терапии лекарственные препараты поступают в лимфатическую систему при их внутримышечном или подкожном введении.


Глава
8. ДЫХАНИЕ


8.1. СУЩНОСТЬ И СТАДИИ ДЫХАНИЯ


Дыхание — физиологическая функция, обеспечивающая га­зообмен (O2 и СO2) между окружающей средой и организмом в соответствии с его метаболическими потребностями.


Дыхание протекает в несколько стадий: 1) внешнее дыхание
— обмен О2 и СO2 между внешней средой и кровью легочных капил­ляров. В свою очередь внешнее дыхание можно разделить на два процесса: а) газообмен между внешней средой и альвеолами легких, что обозначается как «легочная вентиляция»;
б) газообмен между альвеолярным воздухом и кровью легочных капилляров; 2) транс­порт
O2 и СO2 кровью;
3) обмен
O2 и С02
между кровью и клетками организма; 4) тканевое дыхание.


Дыхание осуществляет перенос O2 из атмосферного воздуха к клеткам организма, а в обратном направлении производит удаление СO2, который является важнейшим продуктом метаболизма клеток.


Транспорт O2 и СO2 в организме человека и животных на зна­чительные расстояния, например в пределах воздухоносных путей, легких и в системе кровообращения, осуществляется конвекционно.


Перенос O2 и СO2 на незначительные расстояния, например между альвеолярным воздухом и кровью, а также между кровью и клетками тканей организма осуществляется путем диффузии.
Каж­дая из стадий дыхательной функции в соответствии с метаболиче­скими потребностями клеток организма регулируется нервными и гуморальными механизмами.


8.2. ВНЕШНЕЕ ДЫХАНИЕ


8.2.1. Биомеханика дыхательных движений


Внешнее дыхание осуществляется благодаря изменениям объема грудной клетки и сопутствующим изменениям объема легких.


Объем грудной клетки увеличивается во время вдоха, или инс­пирации, и уменьшается во время выдоха, или экспирации. Эти дыхательные движения обеспечивают легочную вентиляцию.


В дыхательных движениях участвуют три анатомо-функциональ-ных образования: 1) дыхательные пути, которые по своим свойствам являются слегка растяжимыми, сжимаемыми и создают поток воз-


духа, особенно в центральной зоне; 2) эластичная и растяжимая легочная ткань; 3) грудная клетка, состоящая из пассивной кост-но-хрящевой основы, которая объединена соединительнотканными связками и дыхательными мышцами. Грудная клетка относительно ригидна на уровне ребер и подвижна на уровне диафрагмы.


Известно два биомеханизма, которые изменяют объем грудной клетки: поднятие и опускание ребер и движения купола диафрагмы; оба биомеханизма осуществляются дыхательными мышцами. Дыха­тельные мышцы подразделяют на инспираторные и экспираторные.


Инспираторными мышцами
являются диафрагма, наружные межреберные и межхрящевые мышцы. При спокойном дыхании объем грудной клетки изменяется в основном за счет сокращения диафрагмы и перемещения ее купола. При глубоком форсированном дыхании в инспирации участвуют дополнительные, или вспомога­тельные, мышцы
вдоха: трапециевидные, передние лестничные и грудино-ключично-сосцевидные мышцы. Лестничные мышцы под­нимают два верхних ребра и активны при спокойном дыхании. Грудино-ключично-сосцевидные мышцы поднимают грудину и уве­личивают сагиттальный диаметр грудной клетки. Они включаются в дыхание при легочной вентиляции свыше 50 л *мин-1
или при дыхательной недостаточности.


Экспираторными мышцами
являются внутренние межреберные и мышцы брюшной стенки, или мышцы живота. Последние нередко относят к главным экспираторным мышцам. У нетренированного человека они участвуют в дыхании при вентиляции легких свыше 40 л*мин~1.


Движения ребер. Каждое ребро способно вращаться вокруг оси, проходящей через две точки подвижного соединения с телом и поперечным отростком соответствующего позвонка. Во время вдоха верхние отделы грудной клетки расширяются преимущественно в переднезаднем направлении, так как ось вращения верхних ребер расположена практически поперечно относительно грудной клетки (рис. 8.1, А). Нижние отделы грудной клетки больше расширяются преимущественно в боковых направлениях, поскольку оси нижних ребер занимают более сагиттальное положение. Сокращаясь, на­ружные межреберные и межхрящевые мышцы в фазу инспирации поднимают ребра, напротив, в фазу выдоха ребра опускаются бла­годаря активности внутренних межреберных мышц.


Направление сил, развиваемых межреберными мышцами, и из­менение размеров грудной клетки показано на рис. 8.1, Б.


Движения диафрагмы. Диафрагма имеет форму купола, обра­щенного в сторону грудной полости. Во время спокойного вдоха купол диафрагмы опускается на 1,5—2,0 см (рис. 8.2), а перифе­рическая мышечная часть несколько отходит от внутренней повер­хности грудной клетки, поднимая при этом в боковых направле­ниях нижние три ребра. Во время глубокого дыхания купол диаф­рагмы может смещаться до 10 см. При вертикальном смещении диафрагмы_ изменение дыхательного объема составляет в среднем 350 мл*см-1
. Если диафрагма парализована, то во время вдоха ее


купол смещается вверх, возникает так называемое парадоксальное движение диафрагмы.


В первую половину выдоха, которая называется постинспира-торной фазой дыхательного цикла, в диафрагмальной мышце по­степенно уменьшается сила сокращения мышечных волокон. При этом купол диафрагмы плавно поднимается вверх, благодаря эла­стической тяге легких, а также увеличению внутрибрюшного дав­ления, которое в экспирацию могут создавать мышцы живота.


Движение диафрагмы во время дыхания обусловливает примерно 70—80% вентиляции легких. На функцию внешнего дыхания су-


щественное влияние оказывает брюшная полость, поскольку масса и объем висцеральных органов ограничивают подвижность диафрагмы.


Колебания давления в легких, вызывающие движение воздуха. Альвеолярное давление — давление внутри легочных аль­веол. Во время задержки дыхания при открытых верхних дыхатель­ных путях давление во всех отделах легких равно атмосферному. Перенос 02
и С02
между внешней средой и альвеолами легких происходит только при появлении разницы давлений между этими воздушными средами. Колебания альвеолярного или так называемого внутрилегочного давления возникают при изменении объема грудной клетки во время вдоха и выдоха.


Изменение альвеолярного давления на вдохе и выдохе вызывает движение воздуха из внешней среды в альвеолы и обратно. На вдохе возрастает объем легких. Согласно закону Бойля—Мариотта, альвеолярное давление в них уменьшается и в результате этого в легкие входит воздух из внешней среды. Напротив, на выдохе уменьшается объем легких, альвеолярное давление увеличивается, в результате чего альвеолярный воздух выходит во внешнюю среду.


Внутриплевральное давление — давление в герметично замкнутой плевральной полости между висцеральными и париеталь­ными листками плевры. В норме это давление является отрицатель­ным относительно атмосферного. Внутриплевральное давление воз­никает и поддерживается в результате взаимодействия грудной клет­ки с тканью легких за счет их эластической тяги. При этом эластическая тяга
легких развивает усилие, которое всегда стре­мится уменьшить объем грудной клетки. В формировании конечного значения внутриплеврального давления участвуют также активные силы, развиваемые дыхательными мышцами во время дыхательных движений. Наконец, на поддержание внутриплеврального давления влияют процессы фильтрации и всасывания внутриплевральной жид­кости висцеральной и париетальной плеврами. Внутриплевральное давление может быть измерено манометром, соединенным с плев­ральной полостью полой иглой.


В клинической практике у человека для оценки величины внут­риплеврального давления измеряют давление в нижней части пи­щевода с помощью специального катетера, который имеет на конце эластичный баллон. Катетер проводят в пищевод через носовой ход. Давление в пищеводе примерно соответствует внутриплевральному давлению, поскольку пищевод расположен в грудной полости, из­менения давления в которой передаются через стенки пищевода.


При спокойном дыхании внутриплевральное давление ниже ат­мосферного в инспирацию на 6—8 см вод. ст., а в экспирацию — на 4—5 см вод. ст.


Прямое измерение внутриплеврального давления на уровне раз­личных точек легкого показало наличие вертикального градиента, равного 0,2—0,3 см вод. ст.-см-1
. Внутриплевральное давление в апикальных частях легких на 6—8 см вод. ст. ниже, чем в базальных отделах легких, прилегающих к диафрагме. У человека в положении стоя этот градиент практически линейный и не изменяется в процессе


дыхания. В положении лежа на спине или на боку градиент несколько меньше (0,1—0,2 см вод. ст.*см~1 ) и совсем отсутствует в верти­кальном положении вниз головой.


Разница между альвеолярным и внутриплевральным давлениями называется транспульмональным давлением. В области контакта легкого с диафрагмой транспульмональное давление на­зывается трансдиафрагмальным.


На рис. 8.3 изображено соотношение, или градиенты давлений, действующих в дыхательной системе.


Величина и соотношение с внешним атмосферным давлением транспульмонального давления в конечном счете является основным фактором, вызывающим движение воздуха в воздухоносных путях легких.


Изменения альвеолярного давления взаимосвязаны с колебани­ями внутриплеврального давления.


Альвеолярное давление выше внутриплеврального и относитель­но барометрического давления является положительным на выдохе и отрицательным на вдохе. Внутриплевральное давление всегда ниже альвеолярного и всегда отрицательное в инспирацию. В экспирацию внутриплевральное давление отрицательное, поло­жительное или равно нулю в зависимости от форсированности выдоха.


На движение воздуха из внешней среды к альвеолам и обратно влияет градиент давления, возникающий на вдохе и выдохе между альвеолярным и атмосферным давлением.


Сообщение плевральной полости с внешней средой в результате нарушения герметичности грудной клетки называется пневмото­раксом.
При пневмотораксе выравниваются внутриплевральное и атмосферное давления, что вызывает спадение легкого и делает невозможной его вентиляцию при дыхательных движениях грудной клетки и диафрагмы.


Усилия, которые развивают дыхательные мышцы, создают сле­дующие количественные параметры внешнего дыхания: объем (
V
),
легочную вентиляцию (
V
_
E
)
и давление (Р).


Эти величины в свою очередь позволяют рассчитывать работу


дыхания (
W
=
P
*
deltaV
),
растяжимость легких, или комплианс (С = =deltaV/P), вязкое сопротивление, или резистанс (R = deltaP/V) дыха­тельных путей, ткани
легких и грудной клетки.


8.3. ЛЕГОЧНАЯ ВЕНТИЛЯЦИЯ


8.3.1. Легочные объемы и емкости


В
процессе легочной вентиляции непрерывно обновляется газовый состав альвеолярного воздуха. Величина легочной вентиляции оп­ределяется глубиной дыхания, или дыхательным объемом, и частотой дыхательных движений. Во время дыхательных движений легкие человека заполняются вдыхаемым воздухом, объем которого явля­ется частью общего объема легких. Для количественного описания легочной вентиляции общую емкость легких разделили на несколько компонентов или объемов. При этом легочной емкостью называется сумма двух и более объемов.


Легочные объемы подразделяют на статические и динамические. Статические легочные объемы измеряют при завершенных дыха­тельных движениях без лимитирования их скорости. Динамические легочные объемы измеряют при проведении дыхательных движений с ограничением времени на их выполнение.


Легочные объемы.
Объем воздуха в легких и дыхательных путях зависит от следующих показателей: 1) антропометрических инди­видуальных характеристик человека и дыхательной системы; 2) свойств легочной ткани; 3) поверхностного натяжения альвеол; 4) силы, развиваемой дыхательными мышцами.


Измеряют статические и динамические легочные объемы. Схе-


матическое изображение статических легочных объемов и емкостей представлено на рис. 8.4.


Дыхательный объем (ДО) — объем воздуха, который вды­хает и выдыхает человек во время спокойного дыхания. У взрослого человека ДО составляет примерно 500 мл. Величина ДО зависит от условий измерения (покой, нагрузка, положение тела). ДО рас­считывают как среднюю величину после измерения примерно шести спокойных дыхательных движений.


Резервный объем вдоха (РОвд
) — максимальный объем воздуха, который способен вдохнуть испытуемый после спокойного вдоха. Величина РОвд
составляет 1,5—1,8 л.


Резервный объем выдоха (РОвыд) — максимальный объем воздуха, который человек дополнительно может выдохнуть с уровня спокойного выдоха. Величина РОВЬ1Д
ниже в горизонтальном поло­жении, чем в вертикальном, уменьшается при ожирении. Она равна в среднем 1,0—1,4 л.


Остаточный объем (00)—объем воздуха, который остается в легких после максимального выдоха. Величина остаточного объема равна 1,0—1,5 л.


Исследование динамических легочных объемов представляет на­учный и клинический интерес и их описание выходит за рамки курса нормальной физиологии.


Легочные емкости. Ж и з н е н н а я емкость легких (ЖЕЛ) включает в себя дыхательный объем, резервный объем вдоха, ре­зервный объем выдоха. У мужчин среднего возраста ЖЕЛ варьирует в пределах 3,5—5,0 л и более. Для женщин типичны более низкие величины (3,0—4,0 л). В зависимости от методики измерения ЖЕЛ различают ЖЕЛ вдоха, когда после полного выдоха производится максимально глубокий вдох и ЖЕЛ выдоха, когда после полного вдоха производится максимальный выдох.


Емкость вдоха (Е_вд) равна сумме дыхательного объема и резервного объема вдоха. У человека Евд
составляет в среднем 2,0—2,3 л.


Функциональная остаточная емкость (ФОЕ) — объ­ем воздуха в легких после спокойного выдоха. ФОЕ является суммой резервного объема выдоха и остаточного объема. ФОЕ измеряется методами газовой дилюции, или разведения газов, и плетизмогра-фически. На величину ФОЕ существенно влияет уровень физической активности человека и положение тела: ФОЕ меньше в горизон­тальном положении тела, чем в положении сидя или стоя. ФОЕ уменьшается при ожирении вследствие уменьшения общей растя­жимости грудной клетки.


Общая емкость легких (ОЕЛ) — объем воздуха в легких по окончании полного вдоха. ОЕЛ рассчитывают двумя способами: ОЕЛ - ОО + ЖЕЛ или ОЕЛ - ФОЕ + E_вд. ОЕЛ может быть измерена с помощью плетизмографии или методом газовой дилюции.


Измерение легочных объемов и емкостей имеет клиническое значение при исследовании функции легких у здоровых лиц и при диагностике заболевания легких человека. Измерение легочных объ-


емов и емкостей обычно производят методами спирометрии, пнев-мотахометрии с интеграцией показателей и бодиплетизмографии. Статические легочные объемы могут снижаться при патологических состояниях, приводящих к ограничению расправления легких. К ним относятся нейромышечные заболевания, болезни грудной клетки, живота, поражения плевры, повышающие жесткость легочной ткани, и заболевания, вызывающие уменьшение числа функционирующих альвеол (ателектаз, резекция, рубцовые изменения легких).


Для сопоставимости результатов измерений газовых объемов и емкостей полученные данные должны соотноситься с условиями в легких, где температура альвеолярного воздуха соответствует температуре тела, воздух находится при определенном давлении и насыщен водяными парами. Это состояние называется стандар­тным и обозначается буквами BTPS (bodytemperature, pressure, saturated).


8.3.2. Альвеолярная вентиляция


Обмену O2 и СO2 между атмосферным воздухом и внутренней средой организма способствует непрерывное обновление состава воз­духа, заполняющего многочисленные альвеолы легких. Альвеолярная вентиляция является частью общей вентиляции легких, которая достигает альвеол. Альвеолярная вентиляция непосредственно влияет на содержание O2 и С02
в альвеолярном воздухе и таким образом определяет характер газообмена между кровью и воздухом, запол­няющим альвеолы. В каждой альвеоле состав воздуха определяется соотношением многих факторов. Во-первых, на его состав влияет величина анатомического мертвого пространства легких. Во-вторых, распределение воздуха по многочисленным воздухоносным ходам и альвеолам зависит от чисто физических причин. В-третьих, для обмена газов в легких решающее значение имеет соответствие вен­тиляции альвеол и перфузии легочных капилляров.


Анатомическое и альвеолярное мертвое пространство.
Анато­мическим мертвым пространством
(Vd) называют кондуктивную, или воздухопроводящую, зону легкого, которая не участвует в га­зообмене (верхние дыхательные пути, трахея, бронхи и терминаль­ные бронхиолы). Анатомическое мертвое пространство выполняет ряд важных функций: нагревает вдыхаемый атмосферный воздух, задерживает примерно 30% выдыхаемых тепла и воды. Последнее предупреждает высушивание альвеолярно-капиллярной мембраны легких. Как известно, воздухоносные пути каждого легкого человека имеют 23 генерации, или деления, бронхиального дерева по типу дихотомии от трахеи до альвеол. После прохождения через бронхи 8—12 порядка температура вдыхаемого воздуха достигает 37°С, а влажность — 100%. Анатомическое мертвое пространство практи­чески соответствует кондуктивной зоне легких, объем которой варь­ирует от 100 до 200 мл, а в среднем составляет 2 мл на 1 кг массы тела, т. е. 150 мл при массе тела 75 кг.


Для расчета Vd
можно использовать формулу:


где Fa
,
Fe
,
F
1
CO
2
соответственно концентрация (фракция) СО2 в альвеолярном, выдыхаемом и вдыхаемом воздухе, aVe
— венти­ляция легких.


В процессе внешнего дыхания ряд факторов может изменять объем анатомического мертвого пространства. Например, увеличение дыхательного объема сопровождается растяжением дыхательных пу­тей. На объем анатомического мертвого пространства влияют частота дыхания, которая изменяет время, необходимое для диффузии газов, а также ритмические сокращения сердца и пульсация крупных сосудов. Наконец, Vdварьирует при изменении тонуса гладких мышц бронхов (например, ацетилхолин повышает, а атропин, на­против, понижает тонус гладких мышц дыхательных путей).


В анатомическом мертвом пространстве воздушный поток имеет наибольшую линейную скорость. По направлению к альвеолярным ходам и альвеолярным мешочкам линейная скорость движения воз­духа уменьшается до величин весьма незначительных для конвен-тивного воздухопроведения. Это объясняется тем, что вследствие многократных ветвлений бронхиального дерева общее поперечное сечение воздухоносных путей настолько возрастает, что поступа­тельное перемещение газов становится незначительным.


Существует точка зрения, что в пределах переходной зоны легких (от кондуктивной к респираторной), а также респираторной или альвеолярной зоны легкого O2 и СО2 переносятся к альвеолярной мембране в основном с помощью диффузии. Это способствует бы­строму выравниванию концентрации дыхательных газов на огромной диффузионной поверхности легких.


Альвеолярное мертвое пространство.
В здоровом легком неко­торое количество апикальных альвеол вентилируется нормально, но частично или полностью не перфузируется кровью. Подобное фи­зиологическое состояние обозначают как «альвеолярное мертвое про­странство». В физиологических условиях альвеолярное мертвое про­странство может появляться в случае снижения минутного объема крови, уменьшения давления в артериальных сосудах легких, а в патологических состояниях — при анемии, легочной эмболии или эмфиземе. В подобных зонах легких не происходит газообмена.


Сумма объемов анатомического и альвеолярного мертвого про­странства называется физиологическим,
или функциональным, мер­твым пространством.


Анатомическое мертвое пространство снижает эффективность альвеолярной вентиляции. Во время спокойного вдоха объемом 500 мл в альвеолы поступает только 350 мл вдыхаемого, или атмосфер­ного, воздуха. Остальные 150 мл вдыхаемого воздуха представляют собой альвеолярный воздух, который после газообмена задержива­ется в анатомическом мертвом пространстве в конце каждого выдоха. Анатомическое мертвое пространство, составляющее в среднем 1
/3
дыхательного объема, снижает на эту величину эффективность аль-


веолярной вентиляции при спокойном дыхании. Состав альвеоляр­ного воздуха существенно отличается от состава вдыхаемого и вы­дыхаемого из легких человека воздуха (табл. 8.1).


Если дыхательный объем увеличивается в несколько раз, напри­мер, при мышечной работе он достигает порядка 2500 мл, то объем анатомического мертвого пространства практически не влияет на эффективность альвеолярной вентиляции.


Газы, входящие в состав атмосферного, альвеолярного и выды­хаемого воздуха, имеют определенное парциальное
(partialis— ча­стичный) давление,
т. е. давление, приходящееся на долю данного газа в смеси газов. Общее давление газа обусловлено кинетическим движением молекул, воздействующих на поверхность раздела сред. В легких такой поверхностью являются воздухоносные пути и аль­веолы. Согласно закону Дальтона, парциальное давление газа в какой-либо смеси прямо пропорционально его объемному содержа­нию. Альвеолярный воздух представлен смесью в основном O2, С02
и N2. Кроме того, в альвеолярном воздухе содержатся водяные пары, которые также оказывают определенное парциальное давле­ние, поэтому при общем давлении смеси газов 760,0 мм рт. ст. парциальное давление 02
(Ро2) в альвеолярном воздухе составляет около 104,0 мм рт. ст., С02
(Рсо2)
— 40,0 мм рт. ст. N2
(Pn2) — 569,0 мм рт. ст. Парциальное давление водяных паров при темпе­ратуре 37 °С составляет 47 мм рт. ст.


Необходимо учитывать, что приведенные в табл. 8.1 значения парциального давления газов соответствуют их давлению на уровне моря (Р = 760 мм рт. ст.) и эти значения будут уменьшаться с подъемом на высоту.


Различное содержание O2
и СO2
в альвеолярном и выдыхаемом из легких воздуха свидетельствует о том, что в воздухоносных путях лег­ких от трахеи до альвеол существуют многочисленные градиенты кон­центрации дыхательных газов, фронт которых может динамично сме­щаться в ту или иную сторону в зависимости от вентиляции легких.


На состав газов в альвеолах легких влияет не только вентиляция легких и величина анатомического мертвого пространства, но и


перфузия кровью легочных капилляров. Если вентиляция относи­тельно перфузии избыточна, то состав альвеолярного воздуха при­ближается к составу вдыхаемого воздуха. Напротив, в случае не­достаточной вентиляции состав альвеолярного воздуха приближается к газовому составу венозной крови. Различие в соотношении аль­веолярной вентиляции и перфузии легочных капилляров могут воз­никать как в целом легком, так и в его региональных участках. На особенности локального кровотока в легочных капиллярах влияет прежде всего состав альвеолярного воздуха. Например, низкое со­держание О2 (гипоксия), а также понижение содержания СO2 (ги-покапния) в альвеолярном воздухе вызывают повышение тонуса гладких мышц легочных сосудов и их сужение.


Кровоток в капиллярах легких и легочная вентиляция перерас­пределяются при изменении положения тела в пространстве. Изме­нение направления действия гравитационной силы влияет на кро­вообращение в легких из-за относительно низкого артериального давления в сосудах малого круга кровообращения, равного в среднем 15—20 мм рт. ст. (2,0—2,6 кПа). При любом положении тела в пространстве нижние отделы легких по сравнению с верхними будут иметь не только большую вентиляцию, но и больший кровоток. Например, в положении тела головой вниз нижними будут апи­кальные, или верхушечные, отделы легких.


Альвеолярную вентиляцию за один дыхательный цикл можно рассчитать по формуле:


VA

=

f

*(

VT

-

Vd

),


где f — частота дыхания; V_T — дыхательный объем.


Объем альвеолярной вентиляции за одну минуту определяется по формуле:


V

а-

V

е-

(

f

*

Vd

)


В конечном счете величина альвеолярной вентиляции тем ниже, чем выше частота дыхания и меньше дыхательный объем.


Резервы аппарата внешнего дыхания весьма велики. В покое частота дыхательных движений человека близка к 16 в минуту, а объем вдыхаемого воздуха — около 500 мл.


Минутный объем дыхания (МОД) — это общее количе­ство воздуха, которое проходит через легкие за 1 мин. У человека в покое МОД составляет в среднем 8 л*мин-1
. МОД можно рас­считать, умножив частоту дыхания в минуту на величину дыха­тельного объема.


Максимальная вентиляция легких — объем возду­ха, который проходит через легкие за 1 мин во время максимальных по частоте и глубине дыхательных движений. Максимальная вен­тиляция вызывается произвольно, возникает во время работы, при недостатке содержания О2 (гипоксия), а также при избытке содер­жания СОа (гиперкапния) во вдыхаемом воздухе.


При максимальной произвольной вентиляции легких частота ды-


хания может возрастать до 50—60 в 1 мин, а ДО — до 2
—4 л. В этих условиях МОД может доходить до 100—200 л*мин~1.


Максимальную произвольную вентиляцию измеряют во время форсированного дыхания, как правило, в течение 15 с. В норме у человека при физической нагрузке уровень максимальной вентиля­ции всегда ниже, чем максимальная произвольная вентиляция.


8.4. МЕХАНИКА ДЫХАНИЯ


В нормальных условиях вентиляции дыхательные мышцы раз­вивают усилия, которые направлены на преодоление эластических, или упругих, и вязких сопротивлений. Упругие и вязкие сопротив­ления в дыхательной системе постоянно формируют различные со­отношения между давлением воздуха в воздухоносных путях и объемом легких, а также между давлением воздуха в воздухоносных путях и скоростью воздушного потока во время вдоха и выдоха.


8.4.1. Растяжимость легких


Растяжимость легких (compliance, С) служит показателем эластических свойств
системы внешнего дыхания. Величину растя­жимости легких измеряют в виде зависимости давление — объем и рассчитывают по формуле: С =
V
/
delta
Р,
где С — растяжимость легких.


Нормальная величина растяжимости легких взрослого человека составляет около 200 мл* см вод. ст.-1
. У детей показатель растя­жимости легких значительно меньше, чем у взрослого человека.


Снижение растяжимости легких вызывают следующие факторы: повышение давления в сосудах легких или переполнение сосудов легких кровью; длительное отсутствие вентиляции легких или их отделов; нетренированность дыхательной функции; снижение упру­гих свойств ткани легких с возрастом.


Поверхностным натяжением
жидкости называется сила, дейст­вующая в поперечном направлении на границу жидкости. Величина поверхностного натяжения определяется отношением этой силы к длине границы жидкости, единицей измерения в системе СИ явля­ется н/м. Поверхность альвеол покрыта тонким слоем воды. Моле­кулы поверхностного слоя воды с большой силой притягиваются друг к другу. Сила поверхностного натяжения тонкого слоя воды на поверхности альвеол всегда направлена на сжатие и спадение альвеол. Следовательно, поверхностное натяжение жидкости в аль­веолах является еще одним очень важным фактором, влияющим на растяжимость легких. Причем сила поверхностного натяжения аль­веол очень значительная и может вызвать их полное спадение, что исключило бы всякую возможность вентиляции легких. Спадению альвеол препятствует антиателектатический фактор, или сурфак-тант.
В легких альвеолярные секреторные клетки, входящие в состав аэрогематического барьера, содержат осмиофильные пластин­чатые тельца, которые выбрасываются в альвеолы и превращаются


в поверхностно-активное вещество — сурфактант. Синтез и
замена сурфактанта происходит довольно быстро, поэтому нарушение кро­вотока в легких может снизить его запасы и увеличить поверхностное натяжение жидкости в альвеолах, что ведет к их ателектазу, или спадению. Недостаточная функция сурфактанта приводит к рас­стройствам дыхания, нередко вызывающим смерть.


В легких сурфактант выполняет следующие функции: снижает поверхностное натяжение альвеол; увеличивает растяжимость лег­ких; обеспечивает стабильность легочных альвеол, препятствуя их спадению и появлению ателектаза; препятствует транссудации (вы­ходу) жидкости на поверхность альвеол из плазмы капилляров легкого.


8.4.2. Сопротивление дыхательных
путей


Движение воздуха в дыхательных путях и смещение ткани легких требует затраты механической энергии.


Дыхательные пути имеют вид сложной асимметрично делящейся системы, состоящей из многочисленных бифуркаций и ветвей разного калибра. В такой системе типичным является сочетание ламинарного и
турбулентного потоков воздуха. Возникающее сопротивление току воздуха приводит к снижению давления по ходу воздухоносных путей. Как известно, это давление обеспечивает движение воздуха в воздухоносных путях легких.


Вязкое сопротивление дыхательных путей нередко называется легочным резистансом (resistance, R). Этот показатель рас­считывают по формуле: R
=
deltaP
/
V
.


Сопротивление легких включает в себя сопротивление ткани легких и дыхательных путей. В свою очередь сопротивление дыха­тельных путей подразделяют на сопротивление верхних (полость рта, носовые ходы, глотка), нижних (трахея, главные бронхи) и мелких (меньше 2 мм в диаметре) дыхательных путей. При этом сопротивление дыхательных путей обратно пропорционально диа­метру их просвета. Следовательно, мелкие дыхательные пути со­здают наибольшее сопротивление потоку воздуха в легких. Кроме того, на этот проказатель влияют вязкость и плотность газа.


Сопротивление дыхательных путей очень чувствительно к фак­торам, которые влияют на диаметр дыхательных путей. Такими факторами являются легочный объем, тонус бронхиальных мышц, секреция слизи и спадение дыхательных путей во время выдоха или их сдавление каким-либо объемным процессом в легких (на­пример, опухолью).


8.4.3.
Работа дыхания


Работа дыхания (W) — показатель, с помощью которого оценивают работу дыхательных мышц. Поскольку во время вдоха и
выдоха затрачивается энергия мышц по преодолению упругих и вязких сопротивлений, то работу дыхания можно рассчитать как


произведение давления в легких на их объем (W = Р * V). Работу дыхания измеряют путем непрерывной регистрации внутриплев-рального или внутрипищеводного давления (Р) и сопутствующих ему изменений объема легких (V). При этом регистрируется диаг­рамма давление — объем в виде так называемой «дыхательной петли», площадь которой равна величине работы дыхания (рис. 8.5). Изменение внутриплеврального давления во время вдоха отражает кривая ОБГ. При этом совершается работа, равная площади ОБГДО. Работа по преодолению эластического сопротивления выражается площадью ОАГДО, а вязкого — площадью ОБГАО. При увеличении легочного сопротивления и объемной скорости движения воздуха в легких внутриплевральное давление становится более отрицатель­ным. При этом точка Б будет смещаться вправо к точке В и далее.


Работу по преодолению сопротивления дыхательных путей и тканей легких на выдохе отражает площадь ОАГЕО. Поскольку эта площадь вписана в площадь работы дыхания на вдохе, то в экспи­рацию работа дыхания по преодолению вязких сил совершается за счет энергии, запасенной в эластических структурах системы ды­хания во время предшествующего вдоха.


Энергия сокращения дыхательных мышц на вдохе затрачивается на преодоление эластической тяги легких и сопротивления воздуш­ному потоку со стороны воздухопроводящих путей, а также на преодоление сопротивления мышечным усилиям со стороны пере­мещаемых тканей легких и грудной клетки.


На фоне частого дыхания возрастает работа по преодолению вязких сил (площадь ОБГАО), а при глубоком дыхании возрастает


работа по преодолению эластического сопротивления (площадь ОАГДО).


В среднем при минутном объеме дыхания 10 л*мин~1 работа дыхания составляет 0,2—0,3 кгм*мин~1 , а при 40 л*мин~1 —


2—4 кгм*мин-1
. При максимальной физической работе дыхатель­ные мышцы могут потреблять до 20% от общего объема погло­щенного кислорода. Считают, что потребление такого значитель­ного количества O2
дыхательными мышцами ограничивает предел выполняемой человеком физической нагрузки.


8.5. ГАЗООБМЕН И ТРАНСПОРТ ГАЗОВ


8.5.1. Диффузия газов через аэрогематический барьер


В организме газообмен O2 и СO2 через альвеолярно-капиллярную мембрану происходит с помощью диффузии. Диффузия O2 и СO2 через аэрогематический барьер зависит от следующих факторов: вентиляции дыхательных путей; смешивания и диффузии газов в альвеолярных протоках и альвеолах; смешивания и диффузии газов через аэрогематический барьер, мембрану эритроцитов и плазму альвеолярных капилляров; химической реакции газов с различными компонентами крови, и наконец от перфузии кровью легочных капилляров.


Диффузия газов через альвеолярно-капиллярную мембрану лег­ких осуществляется в два этапа. На первом этапе диффузионный перенос газов происходит по концентрационному градиенту через тонкий аэрогематический барьер, на втором — происходит связы­вание газов в крови легочных капилляров, объем которой составляет 80—150 мл, при толщине слоя крови в капиллярах всего 5—8 мкм и скорости кровотока около 0,1 мм* с-1
. После преодоления аэро-гематического барьера газы диффундируют через плазму крови в эритроциты.


Значительным препятствием на пути диффузии O2 является мем­брана эритроцитов. Плазма крови практически не препятствует диффузии газов в отличие от альвеолярно-капиллярной мембраны и мембраны эритроцитов (рис. 8.6).


Общие закономерности процесса диффузии могут быть выражены в соответствии с законом Фика следующей формулой:


M/t=deltaP/(X*C*K*ALPHA)


где М — количество газа, t
— время, M
/
t
— скорость диффузии, deltaР
— разница парциального давления газа в двух точках, X
— расстояние между этими точками, С — поверхность газообмена, К
— коэффициент диффузии, а
— коэффициент растворимости газа.


В легких deltaР является градиентом давлений газа в альвеолах и в крови легочных капилляров. Проницаемость альвеолярно-капил-


лярной мембраны прямо пропорциональна площади контакта между функционирующими альвеолами и капиллярами (С), коэффициен­там диффузии и растворимости (К и а).


Анатомо-физиологическая структура легких создает исключи­тельно благоприятные условия для газообмена: дыхательная зона каждого легкого содержит около 300 млн альвеол и приблизительно аналогичное число капилляров, имеет площадь 40—140 м2
, при толщине аэрогематического барьера всего 0,3—1,2 мкм.


Особенности диффузии газов через аэрогематический барьер ко­личественно характеризуются через диффузионную способность лег­ких.
Диффузионную способность легких, например для О2, можно определить по формуле:


DL_O2=V_O2/(PA_O2 - Pa_O2) мл.мин


где DLo
2
— диффузионная способность легких, Vог
— количество потребляемого кислорода, РАо2
и Ра
O
2
— парциальное давление и напряжение кислорода соответственно в альвеолярном воздухе и в артериальной крови.


Для О2 диффузионная способность легких — это объем газа, переносимого из альвеол в кровь в минуту при градиенте альвео-лярно-капиллярного давления газа 1 мм рт. ст. Согласно закону Фика, диффузионная способность мембраны аэрогематического барь­ера обратно пропорциональна ее толщине и молекулярной массе газа и прямо пропорциональна площади мембраны и в особенности коэффициенту растворимости О2 и СO2 в жидком слое альвеоляр-но-капиллярной мембраны.


8.5.2. Содержание газов в альвеолярном воздухе


Ранее (см. табл. 8.1) было указано парциальное давление газов в альвеолярной газовой смеси, которое поддерживается на достаточно постоянном уровне, несмотря на возможные изменения режима легочной вентиляции. Потребление кислорода (VO2) отражает ин­тенсивность клеточного метаболизма. В стационарных условиях ве-


личина V02
, измеренная в выдыхаемом воздухе, в целом соответ­ствует клеточному VO2. Конечным продуктом метаболизма является CO2 (Vсо2). Отношение образующегося в результате окисления CO2 к количеству потребляемого в организме O2, t. e. VC02/V02, назы­вается дыхательным коэффициентом.


В условиях покоя в организме за минуту потребляется в среднем 250 мл O2 и выделяется около 230 мл CO2.


Из всего O2 вдыхаемого воздуха (21% от всего объема) в кровь через аэрогематический барьер в легких поступает только /з. Нор­мальное парциальное давление газов в альвеолярном воздухе поддер­живается в том случае, если легочная вентиляция равна 25-кратной величине потребляемого O2. Другим обязательным условием поддер­жания нормальной концентрации газов в альвеолярном воздухе явля­ется оптимальное отношение альвеолярной вентиляции к сердечному дебиту (Q) : Va/Q, которое обычно соответствует 0,8—1,0. Для газо­обмена в легких подобное отношение является оптимальным. Различ­ные зоны легких не представляют собой идеальную модель для под-держания оптимального отношения Va/Q, поскольку альвеолы нерав­номерно вентилируются воздухом и перфузируются кровью.


Для поддержания определенного состава альвеолярного воздуха важна величина альвеолярной вентиляции и ее отношение к уровню метаболизма, т. е. количеству потребляемого O2 и выделяемого CO2. При любом переходном состоянии (например, начало работы и др.) необходимо время для становления оптимального состава альвео­лярного воздуха. Главное значение имеют оптимальные отношения альвеолярной вентиляции к кровотоку.


Состав альвеолярного воздуха измеряют во рту во вторую по­ловину фазы выдоха с помощью быстродействующих анализаторов. В физиологической практике используются масс-спектрометр, ко­торый позволяет определять количество любого дыхательного газа; инфракрасный анализатор CO2 и анализатор O2. Анализаторы не­прерывно регистрируют концентрацию газов в выдыхаемом воздухе.


8.5.3. Газообмен и транспорт 02


Транспорт O2 осуществляется в физически растворенном и хи­мически связанном виде. Физические процессы, т. е. растворение газа, не могут обеспечить запросы организма в 02
. Подсчитано, что физически растворенный O2 может поддерживать нормальное по­требление O2 в организме (250 мл «мин-1
), если минутный объем кровообращения составит примерно 83 л*мин~1
в покое. Наиболее оптимальным является механизм транспорта O2 в химически свя­занном виде.


Согласно закону Фика, газообмен O2 между альвеолярным воздухом и кровью происходит благодаря наличию концентраци­онного градиента O2 между этими средами. В альвеолах легких парциальное давление O2 составляет 13,3 кПа, или 100 мм рт. ст., а в притекающей к легким венозной крови парциальное


напряжение O2 составляет примерно 5,3 кПа, или 40 мм рт. ст. Давление газов в воде или в тканях организма обозначают тер­мином «напряжение газов» и обозначают символами РO2. РсO2-Градиент O2 на альвеолярно-капиллярной мембране, равный в среднем 60 мм рт. ст., является одним из важнейших, но не единственным, сO2ласно закону Фика, факторов начальной стадии диффузии этO2о газа из альвеол в кровь.


Транспорт O2 начинается в капиллярах легких после его хими­ческO2о связывания с гемO2лобином.


ГемO2лобин
(НЬ) способен избирательно связывать O2 и образо­вывать оксигемO2лобин
(НЬO2) в зоне высокой концентрации O2 в легких и освобождать молекулярный O2 в области пониженнO2о содержания O2 в тканях. При этом свойства гемO2лобина не изме­няются и он может выполнять свою функцию на протяжении дли­тельнO2о времени.


ГемO2лобин переносит О2 от легких к тканям. Эта функция зависит от двух свойств гемO2лобина: 1) способности изменяться от восстановленной формы, которая называется дезоксигемO2лобином, до окисленной (НЬ + О2 -> НЬО2) с высокой скоростью (полупериод 0,01 с и менее) при нормальном РO2 в альвеолярном воздухе; 2) способности отдавать O2 в тканях (НЬO2 -> НЬ + O2) в зависимости от метаболических потребностей клеток организма.


Зависимость степени оксигенации гемO2лобина от парциальнO2о давления O2 в альвеолярном воздухе графически представляется в


виде кривой диссоциации оксигемоглобина,
или сатурационной кри­вой (рис. 8.7). Плато кривой диссоциации характерно для насы­щенной O2 (сатурированной) артериальной крови, а крутая нисхо­дящая часть кривой — венозной, или десатурированной, крови в тканях.


На сродство кислорода к гемоглобину влияют различные мета­болические факторы, что выражается в виде смещения кривой дис­социации влево или вправо. Сродство гемоглобина к кислороду регулируется важнейшими факторами метаболизма тканей: Ро2, рН, температурой и внутриклеточной концентрацией 2,3-дифосфогли-церата. Величина рН и содержание С02
в любой части организма закономерно изменяют сродство гемоглобина к O2: уменьшение рН крови вызывает сдвиг кривой диссоциации соответственно вправо (уменьшается сродство гемоглобина к O2), а увеличение рН крови — сдвиг кривой диссоциации влево (повышается сродство гемоглобина к O2) (см. рис. 8.7, А). Например, рН в эритроцитах на 0,2 единицы ниже, чем в плазме крови. В тканях вследствие повышенного со­держания СO2 рН также меньше, чем в плазме крови. Влияние рН на кривую диссоциации оксигемоглобина называется «эффектом Бора».


Рост температуры уменьшает сродство гемоглобина к O2. В ра­ботающих мышцах увеличение температуры способствует освобож­дению O2. Уменьшение температуры тканей или содержания 2,3-дифосфоглицерата вызывает сдвиг влево кривой диссоциации окси­гемоглобина (см. рис. 8.7, Б).


Метаболические факторы являются основными регуляторами связывания O2 с гемоглобином в капиллярах легких, когда уровень O2, рН и СO2 в крови повышает сродство гемоглобина к O2 по ходу легочных капилляров. В условиях тканей организма эти же факторы метаболизма понижают сродство гемоглобина к O2 и способствуют переходу оксигемоглобина в его восстановленную форму — дезоксигемоглобин. В результате O2 по концентрацион­ному градиенту поступает из крови тканевых капилляров в ткани организма.


Оксид углерода (И) — СО, способен соединяться с атомом железа гемоглобина, изменяя его свойства и реакцию с O2. Очень высокое сродство СО к Нb (в 200 раз выше, чем у O2) блокируют один или более атомов железа в молекуле гема, изменяя сродство НЬ к O2.


Под кислородной емкостью крови
понимают количество O2, которое связывается кровью до полного насыщения гемоглобина. При содержании гемоглобина в крови 8,7 ммоль»л-1
кислородная емкость крови составляет 0,19 мл O2 в 1 мл крови (температура 0 °С и барометрическое давление 760 мм рт. ст., или 101,3 кПа). Величину кислородной емкости крови определяет количество гемо­глобина, 1 г которого связывает 1,36—1,34 мл O2. Кровь человека содержит около 700—800 г гемоглобина и может связать таким образом почти 1 л O2. Физически растворенного в 1 мл плазмы крови O2 очень мало (около 0,003 мл), что не может обеспечить


кислородный запрос тканей. Растворимость О2 в плазме крови равна 0,225 мл*л~1
*кПа-1
.


Обмен O2 между кровью капилляров и клетками тканей также осуществляется путем диффузии. Концентрационный градиент О2 между артериальной кровью (100 мм рт. ст., или 13,3 кПа) и тканями (около 40 мм рт. ст., или 5,3 кПа) равен в среднем 60 мм рт. ст. (8,0 кПа). Изменение градиента может быть обусловлено как содержанием О2 в артериальной крови, так и коэффициентом утилизации O2, который составляет в среднем для организма 30— 40%. Коэффициентом утилизации кислорода
называется количе­ство O2, отданного при прохождении крови через тканевые капил­ляры, отнесенное к кислородной емкости крови.


С другой стороны, известно, что при напряжении O2 в артери­альной крови капилляров, равном 100 мм рт. ст. (13,3 кПа), на мембранах клеток, находящихся между капиллярами, эта величина не превышает 20 мм рт. ст. (2,7 кПа), а в митохондриях равна в среднем 0,5 мм рт. ст. (0,06 кПа).


8.5.4. Газообмен и транспорт CO2


Поступление CO2 в легких из крови в альвеолы обеспечивается из следующих источников: 1) из CO2, растворенного в плазме крови (5—10%); 2) из гидрокарбонатов (80—90%); 3) из карбаминовых соединений эритроцитов (5—15%), которые способны диссоцииро­вать.


Для С02
коэффициент растворимости в мембранах аэрогемати-ческого барьера больше, чем для О2, и составляет в среднем 0,231 ммоль*л-1
кПа-1
, поэтому CO2 диффундирует быстрее, чем О2. Это положение является верным только для диффузии молекулярного СО2. Большая часть СО2 транспортируется в организме в связанном состоянии в виде гидрокарбонатов и карбаминовых соединений, что увеличивает время обмена С02
, затрачиваемое на диссоциацию этих соединений.


В венозной крови, притекающей к капиллярам легких, напря­жение СО2 составляет в среднем 46 мм рт. ст. (6,1 кПа), а в альвеолярном воздухе парциальное давление CO2 равно в среднем 40 мм рт. ст. (5,3 кПа), что обеспечивает диффузию CO2 из плазмы крови в альвеолы легких по концентрационному градиенту.


Эндотелий капилляров проницаем только для молекулярного CO2 как полярной молекулы (О = С = О). Из крови в альвеолы диффундирует физически растворенный в плазме крови молеку­лярный CO2. Кроме того, в альвеолы легких диффундирует CO2, который высвобождается из карбаминовых соединений эритроцитов благодаря реакции окисления гемоглобина в капиллярах легкого, а также из гидрокарбонатов плазмы крови в результате их быстрой диссоциации с помощью фермента карбоангидразы, содержащейся в эритроцитах.


Молекулярный CO2 проходит аэрогематический барьер, а затем поступает в альвеолы.


В норме через 1 с происходит выравнивание концентраций СО2 на альвеолярно-капиллярной мембране, поэтому за половину времени капиллярного кровотока происходит полный обмен СО2 через аэрогематический барьер. Реально равновесие наступает не­сколько медленнее. Это связано с тем, что перенос СО2, так же как и О2, ограничивается скоростью перфузии капилляров легких.


Диффузия С02
из тканей в кровь. Обмен С02
между клетками тканей с кровью тканевых капилляров осуществляется с помощью следующих реакций: 1) обмена Сl~ и НС03~
через мембрану эрит­роцита; 2) образования угольной кислоты из гидрокарбонатов; 3) диссоциации угольной кислоты и гидрокарбонатов (рис. 8.8).


В ходе газообмена СО2 между тканями и кровью содержание НСОГв эритроците повышается и они начинают диффундировать в кровь. Для поддержания электронейтральности в эритроциты нач­нут поступать из плазмы дополнительно ионы С1. Наибольшее количество бикарбонатов плазмы крови образуется при участии карбоангидразы эритроцитов.


Карбаминовый комплекс С02
с гемоглобином образуется в ре­зультате реакции С02
с радикалом NH2
глобина. Эта реакция про­текает без участия какого-либо фермента, т. е. она не нуждается в катализе. Реакция С02
с НЬ приводит, во-первых, к высвобождению Н+
; во-вторых, в ходе образования карбаминовых комплексов сни­жается сродство НЬ к 02
. Эффект сходен с действием низкого рН. Как известно, в тканях низкое рН потенцирует высвобождение 02
из оксигемоглобина при высокой концентрации С02
(эффект Бора).


С другой стороны, связывание 02
гемоглобином снижает сродство его аминогрупп к СО2 (эффект Холдена).


Каждая реакция в настоящее время хорошо изучена. Например, полупериод обмена С1~и НСОГ равен 0,11—0,16 с при 37 °С. В ус­ловиях invitroобразование молекулярного С02
из гидрокарбонатов происходит чрезвычайно медленно и диффузия этого газа занимает около 5 мин, тогда как в капиллярах легкого равновесие наступает через 1 с. Это определяется функцией фермента карбоангидразы угольной кислоты. В функции карбоангидразы выделяют следующие типы реакций:


С02
+н2
о -><-н2
СОз -><- н+
+НСО3-


Процесс выведения С02
из крови в альвеолы легкого менее лимитирован, чем оксигенация крови. Это обусловлено тем, что молекулярный С02
легче проникает через биологические мембраны, чем 02
. По этой причине он легко проникает из тканей в кровь. К тому же карбоангидраза способствует образованию гидрокарбо­ната. Яды, которые ограничивают транспорт 02
(такие как СО, метгемоглобинобразующие субстанции — нитриты, метиленовый си­ний, ферроцианиды и др.) не действуют на транспорт С02
. Блокаторы карбоангидразы, например диакарб, которые используются нередко в клинической практике или для профилактики горной или высотной болезни, полностью никогда не нарушают образование молекуляр­ного С02
. Наконец, ткани обладают большой буферной емкостью, но не защищены от дефицита 02
. По этой причине нарушение транспорта 02
наступает в организме гораздо чаще и быстрее, чем нарушения газообмена С02
. Тем не менее при некоторых заболе­ваниях высокое содержание С02
и ацидоз могут быть причиной смерти.


Измерение напряжения 02
и С02
в артериальной или смешанной венозной крови производят полярографическими методами с исполь­зованием очень небольшого количества крови. Количество газов в крови измеряют после их полного извлечения из пробы крови, взятой для анализа.


Такие исследования выполняют с помощью манометрических приборов типа аппарата Ван-Слайка, или гемоалкариметра (необ­ходимо 0,5—2,0 мл крови) или на микроманометре Холандера (не­обходимо около 50 мкл крови).


8.6. РЕГУЛЯЦИЯ ВНЕШНЕГО ДЫХАНИЯ


Основная функция дыхательной системы заключается в обес­печении газообмена О2 и СО2 между окружающей средой и ор­ганизмом в соответствии с его метаболическими потребностями. В целом эту функцию регулирует сеть многочисленных нейронов ЦНС, которые связаны с дыхательным центром продолговатого мозга.


8.6.1. Дыхательный центр


Под дыхательным центром следует понимать совокуп­ность нейронов специфических (дыхательных) ядер продолговатого мозга, способных генерировать дыхательный ритм.


В нормальных (физиологических) условиях дыхательный центр получает афферентные сигналы от периферических и центральных хеморецепторов, сигнализирующих соответственно о парциальном давлении O2 в крови и концентрации Н+
во внеклеточной жидкости мозга. В период бодрствования деятельность дыхательного центра регулируется дополнительными сигналами, исходящими из различ­ных структур ЦНС. У человека это, например, структуры, обеспе­чивающие речь. Речь (пение) может в значительной степени от­клонить от нормального уровень газов крови, даже снизить реакцию дыхательного центра на гипоксию или гиперкапнию. Афферентные сигналы от хеморецепторов тесно взаимодействуют с другими аф­ферентными стимулами дыхательного центра, но в конечном счете химический, или гуморальный, контроль дыхания всегда доминирует над нейрогенным. Например, человек произвольно не может беско­нечно долго задерживать дыхание из-за нарастающих во время остановки дыхания гипоксии и гиперкапнии.


Дыхательный центр выполняет две основные функции в системе дыхания: моторную, или двигательную, которая проявляется в виде сокращения дыхательных мышц, и гомеостатическую, связанную с изменением характера дыхания при сдвигах содержания 02
и СO2 во внутренней среде организма.


Двигательная функция
дыхательного центра заключается в ге­нерации дыхательного ритма и его паттерна. Под генерацией ды­хательного ритма
понимают генерацию дыхательным центром вдо­ха и его прекращение (переход в экспирацию). Под паттерном дыхания
следует понимать длительность вдоха и выдоха, величину дыхательного объема, минутного объема дыхания. Моторная функ­ция дыхательного центра адаптирует дыхание к метаболическим потребностям организма, приспосабливает дыхание в поведенческих реакциях (поза, бег и др.), а также осуществляет интеграцию ды­хания с другими функциями ЦНС.


Гомеостатическая функция
дыхательного центра поддерживает нормальные величины дыхательных газов (O2, СO2) и рН в крови и внеклеточной жидкости мозга, регулирует дыхание при изменении температуры тела, адаптирует дыхательную функцию к условиям измененной газовой среды, например при пониженном и повышенном барометрическом давлении.


Локализация и функциональные свойства дыхательных нейро­нов. Нейроны дыхательного центра локализованы в дорсомедиальной и вентролатеральной областях продолговатого мозга и образуют так называемые дорсальную и вентральную дыхательную группу.


Дыхательные нейроны, активность которых вызывает инспира­цию или экспирацию, называются соответственно инспираторными
и экспираторными нейронами.
Инспираторные и экспираторные


нейроны иннервируют дыхательные мышцы. В дорсальной и вент­ральной дыхательной группах продолговатого мозга обнаружены следующие основные типы дыхательных нейронов: 1) ранние инс-пираторные, которые разряжаются с максимальной частотой в начале фазы вдоха; 2) поздние инспираторные, максимальная частота раз­рядов которых приходится на конец инспирации; 3) полные инс­пираторные с постоянной или с постепенно нарастающей активостью в течение фазы вдоха; 4) постинспираторные, которые имеют мак­симальный разряд в начале фазы выдоха; 5) экспираторные с по­стоянной или постепенно нарастающей активностью, которую они проявляют во вторую часть фазы выдоха; 6) преинспираторные, которые имеют максимальный пик активности непосредственно пе­ред началом вдоха. Тип нейронов определяется по проявлению его активности относительно фазы вдоха и выдоха.


На рис. 8.9 схематично изображены паттерны электрической активности дыхательных нейронов.


Нейроны дыхательного центра, активность которых совпадает с


ритмом дыхания, но они не иннервируют дыхательные мышцы, называются респираторно-связанными нейронами. К респираторно-связанным нейронам относят клетки дыхательного центра, иннер-вирующие мышцы верхних дыхательных путей, например гортани.


Дорсальная дыхательная группа (ДДГ) включает в се­бя симметричные области продолговатого мозга, расположенные вен-тролатеральнее ядра одиночного пучка (рис. 8.10). Дыхательные ней­роны этой группы относятся только к инспираторному типу нейронов и представлены поздними и полными инспираторными нейронами.


Нейроны ДДГ получают афферентные сигналы от легочных ре­цепторов растяжения по волокнам блуждающего нерва, нейроны которого имеют обширные синаптические связи с другими отделами дыхательного центра и с различными отделами ЦНС. Только часть инспираторных нейронов ДДГ связана аксонами с дыхательными мотонейронами спинного мозга, преимущественно с контралатераль-ной стороны.


Вентральная дыхательная группа (ВДГ) расположе­на латеральнее обоюдного ядра продолговатого мозга, или ядра блуждающего нерва. ВДГ подразделяется на ростральную и кау-дальную части относительно уровня задвижки (obex) продолговатого мозга (см. рис. 8.10).


Ростральная часть ВДГ состоит из инспираторных нейронов раз­ных типов: ранних, полных, поздних инспираторных и постинспи-раторных. Ранние инспираторные и постинспираторные нейроны ВДГ называются проприобульбарными нейронами,
так как они не направляют свои аксоны за пределы дыхательного центра продол­говатого мозга и контактируют только с другими типами дыхатель­ных нейронов. Часть полных и поздних инспираторных нейронов направляют свои аксоны к дыхательным мотонейронам спинного мозга, а следовательно, управляют мышцами вдоха.


Каудальная часть ВДГ состоит только из экспираторных нейро­нов. Все экспираторные нейроны направляют аксоны в спинной


мозг. При этом 40% экспираторных нейронов иннервирует внут­ренние межреберные мышцы, а 60% — мышцы брюшной стенки.


Ростральнее ВДГ локализованы компактной группой экспира­торные нейроны (комплекс Бетцингера), аксоны которых связаны только с другими типами нейронов дыхательного центра. Предпо­лагают, что именно эти нейроны синхронизируют деятельность пра­вой и левой половин дыхательного центра.


В непосредственной близости от нейронов ВДГ расположены различные типы респираторно-связанных нейронов, которые иннер-вируют мышцы верхних дыхательных путей и гортани.


Нейроны дыхательного центра в зависимости от проекции их аксонов подразделяют на три группы: 1) нейроны, иннервируюшие мышцы верхних дыхательных путей и регулирующие поток воздуха в дыхательных путях; 2) нейроны, которые синаптически связаны с дыхательными мотонейронами спинного мозга и управляют таким образом мышцами вдоха и выдоха; 3) проприобульбарные нейроны, которые связаны с другими нейронами дыхательного центра и уча­ствуют только в генерации дыхательного ритма.


Другие области локализации дыхательных ней­ронов. В мосту
находятся два ядра дыхательных нейронов: меди­альное парабрахиальное ядро и ядро Шатра (ядро Келликера). Иногда эти ядра называют пневмотаксическим центром.
В первом ядре находятся преимущественно инспираторные, экспираторные, а также фазавопереходные нейроны, а во втором — инспираторные нейроны. У наркотизированных животных разрушение этих ядер вызывает уменьшение частоты и увеличение амплитуды дыхатель­ных движений. Предполагают, что дыхательные нейроны моста участвуют в механизме смены фаз дыхания и регулируют величину дыхательного объема. В сочетании с двусторонней перерезкой блуж­дающих нервов разрушение указанных ядер вызывает остановку дыхания на вдохе, или инспираторный апнейзис.
Инспираторный апнейзис прерывается редкими, кратковременными и быстрыми вы­дохами. После выхода животных из наркоза апнейзис исчезает и восстанавливается ритмичное дыхание.


Диафрагмальные мотонейроны.
Образуют диафрагмальный нерв. Нейроны расположены узким столбом в медиальной части вентральных рогов от С_III до С_
V
.
Диафрагмальный нерв состоит из 700—800 миелинизированных и более 1500 немиелинизированных волокон. Подавляющее количество волокон является аксонами а-
мотонейронов, а меньшая часть представлена афферентными волок­нами мышечных и сухожильных веретен, локализованных в диаф­рагме, а также рецепторов плевры, брюшины и свободных нервных окончаний самой диафрагмы.


Мотонейроны сегментов спинного мозга, иннервирующие ды­хательные мышцы.
На уровне C1—С_II вблизи латерального края промежуточной зоны серого вещества находятся инспираторные ней­роны, которые участвуют в регуляции активности межреберных и диафрагмальных мотонейронов (см. рис. 8.10).


Мотонейроны, иннервирующие межреберные мышцы, локализо-


ваны в сером веществе передних рогов на уровне от T_IVдо Тх
. Причем одни нейроны регулируют преимущественно дыхательную, а другие — преимущественно позно-тоническую активность меж­реберных мышц.


Мотонейроны, иннервирующие мышцы брюшной стенки, лока­лизованы в пределах вентральных рогов спинного мозга на уровне Tiv

L
_
III
.


Генерация дыхательного ритма. Спонтанная активность нейронов дыхательного центра начинает появляться к концу периода внутриут­робного развития. Об этом судят по периодически возникающим рит­мическим сокращениям мышц вдоха у плода. В настоящее время до­казано, что возбуждение дыхательного центра у плода появляется благодаря пейсмекерным свойствам сети дыхательных нейронов про­долговатого мозга. Иными словами, первоначально дыхательные ней­роны способны самовозбуждаться. Этот же механизм поддерживает вентиляцию легких у новорожденных в первые дни после рождения. С момента рождения по мере формирования синаптических связей ды­хательного центра с различными отделами ЦНС пейсмекерный меха­низм дыхательной активности быстро теряет свое физиологическое значение. У взрослых ритм активности в нейронах дыхательного цен­тра возникает и изменяется только под влиянием различных синапти­ческих воздействий на дыхательные нейроны.


Дыхательный цикл подразделяют на фазу вдоха и фазу выдоха относительно движения воздуха из атмосферы в сторону альвеол (вдох) и обратно (выдох). Двум фазам внешнего дыхания соответ­ствуют три фазы активности нейронов дыхательного центра про­долговатого мозга: инспираторная, которая соответствует вдоху; постинспираторная, которая соответствует первой половине выдоха и называется пассивной контролируемой экспирацией; экспиратор­ная, которая соответствует второй половине фазы выдоха и назы­вается фазой активной экспирации (рис. 8.11).


Генерация дыхательного ритма происходит в сети нейронов про­долговатого мозга, сформированной шестью типами дыхательных нейронов (см. рис. 8.9). Доказано, что сеть основных типов дыха­тельных нейронов продолговатого мозга способна генерировать ды­хательный ритм invitroв срезах продолговатого мозга толщиной всего 500 мкм, помещенных в искусственную питательную среду.


Инспираторная активность дыхательного центра начинается с мощного стартового разряда ранних инспираторных нейронов, ко­торый появляется спонтанно за 100—200 мс до разряда в диафраг-мальном нерве. В этот момент ранние инспираторные нейроны полностью освобождаются от сильного торможения со стороны по-стинспираторных нейронов. Полное растормаживание ранних инс­пираторных нейронов происходит в момент, когда активируются преинспираторные нейроны дыхательного центра, которые оконча­тельно блокируют разряд экспираторных нейронов.


Стартовый разряд ранних инспираторных нейронов начинает активировать полные инспираторные нейроны, которые способны совозбуждать друг друга. Полные инспираторные нейроны, благодаря


этому свойству, поддерживают и увеличивают частоту генерации потенциалов действия в течение фазы вдоха. Именно этот тип дыхательных нейронов создает нарастающую активность в диафраг-мальном и межреберных нервах, вызывая увеличение силы сокра­щения диафрагмы и наружных межреберных мышц.


Ранние инспираторные нейроны в силу особых физиологических свойств их мембраны прекращают генерировать потенциалы дейст­вия к середине фазы вдоха. Это моносинаптически растормаживает поздние инспираторные нейроны, поэтому их активность появляется в конце вдоха.


Поздние инспираторные нейроны способны дополнительно акти­вировать в конце вдоха сокращение диафрагмы и наружных меж­реберных мышц. Одновременно поздние инспираторные нейроны выполняют функцию начального выключения инспирации. В период своей активности они получают возбуждающие стимулы от легочных рецепторов растяжения, которые измеряют степень растяжения ды­хательных путей во время вдоха. Максимальный по частоте разряд поздних инспираторных нейронов приходится на момент прекраще­ния активности других типов инспираторных нейронов дыхательного центра.


Прекращение активности всех типов инспираторных нейронов дыхательного центра растормаживает постинспираторные нейроны. Причем процесс растормаживания постинспираторных нейронов на­чинается гораздо раньше, а именно в период убывания разрядов


ранних инспираторных нейронов. С момента появления активности постинспираторных нейронов выключается инспирация и начинается фаза пассивной контролируемой экспирации. Постинспираторные нейроны регулируют степень расслабления диафрагмы в первую половину фазы выдоха. В эту фазу заторможены все другие типы нейронов дыхательного центра. Однако в постинспираторную фазу сохраняется активность респираторно-связанных нейронов дыхатель­ного центра, которые регулируют тонус мышц верхних дыхательных путей, прежде всего гортани.


Вторая половина фазы выдоха, или фаза активной экспирации, полностью зависит от механизма ритмогенеза инспираторной и пост-инспираторной активности. Например, при быстрых дыхательных движениях постинспираторная фаза может непосредственно пере­ходить в фазу следующей инспирации.


Активность дыхательных мышц в течение трех фаз нейронной активности дыхательного центра изменяется следующим образом (см. рис. 8.11). В инспирацию мышечные волокна диафрагмы и наружных межреберных мышц постепенно увеличивают силу со­кращения. В этот же период активируются мышцы гортани, которые расширяют голосовую щель, что снижает сопротивление воздушному потоку на вдохе. Работа инспираторных мышц во время вдоха создает достаточный запас энергии, которая высвобождается в пост­инспираторную фазу, или в фазу пассивной контролируемой экс­пирации. В постинспираторную фазу дыхания объем выдыхаемого из легких воздуха контролируется медленным расслаблением диаф­рагмы и одновременным сокращением мышц гортани. Сужение го­лосовой щели в постинспираторную фазу увеличивает сопротивление воздушному потоку на выдохе. Это является очень важным физио­логическим механизмом, который препятствует спадению воздухо­носных путей легких при резком увеличении скорости воздушного потока на выдохе, например при форсированном дыхании или за­щитных рефлексах кашля и чиханья.


Во вторую фазу выдоха, или фазу активной экспирации, экс­пираторный поток воздуха усиливается за счет сокращения внут­ренних межреберных мышц и мышц брюшной стенки. В эту фазу отсутствует электрическая активность диафрагмы и наружных меж­реберных мышц.


Координация деятельности правой и левой половин дыхательного центра является еще одной функцией дыхательных нейронов. Ды­хательный центр имеет дорсальную и вентральную группу нейронов как в правой, так и в левой половине продолговатого мозга и таким образом состоит из двух симметричных половин. Эта функция вы­полняется за счет синаптического взаимодействия различных типов дыхательных нейронов. Дыхательные нейроны взаимосвязаны как в пределах одной половины дыхательного центра, так и с нейронами противоположной стороны. При этом наибольшее значение в син­хронизации деятельности правой и левой половин дыхательного центра имеют проприобульбарные дыхательные нейроны и экспи­раторные нейроны комплекса Бетцингера.


8.6.2. Рефлекторная регуляция дыхания


Рефлекторная регуляция дыхания осуществляется благодаря то­му, что нейроны дыхательного центра имеют связи с многочислен­ными механорецепторами дыхательных путей и альвеол легких и рецепторов сосудистых рефлексогенных зон. В легких человека на­ходятся следующие типы механорецепторов: 1) ирритантные,
или быстроадаптирующиеся, рецепторы слизистой оболочки дыхатель­ных путей; 2) рецепторы растяжения
гладких мышц дыхательных путей; 3) J-рецепторы.


Рефлексы со слизистой оболочки полости носа. Раздражение ирритантных рецепторов слизистой оболочки полости носа, например табачным дымом, инертными частицами пыли, газообразными ве­ществами, водой вызывает сужение бронхов, голосовой щели, бра-дикардию, снижение сердечного выброса, сужение просвета сосудов кожи и мышц. Защитный рефлекс проявляется у новорожденных при кратковременном погружении в воду. У них возникает остановка дыхания, препятствующая проникновению воды в верхние дыха­тельные пути.


Рефлексы с глотки. Механическое раздражение рецепторов сли­зистой оболочки задней части полости носа вызывает сильнейшее сокращение диафрагмы, наружных межреберных мышц, а следова­тельно, вдох, который открывает дыхательный путь через носовые ходы (аспирационный рефлекс). Этот рефлекс выражен у новорож­денных.


Рефлексы с гортани и трахеи. Многочисленные нервные окон­чания расположены между эпителиальными клетками слизистой оболочки гортани и главных бронхов. Эти рецепторы раздражаются вдыхаемыми частицами, раздражающими газами, бронхиальным секретом, инородными телами. Все это вызывает кашлевой рефлекс, проявляющийся в резком выдохе на фоне сужения гортани и со­кращение гладких мышц бронхов, которое сохраняется долгое время после рефлекса.


Кашлевой рефлекс является основным легочным рефлексом блуж­дающего нерва.


Рефлексы с рецепторов бронхиол. Многочисленные миелинизи-рованные рецепторы находятся в эпителии внутрилегочных бронхов и бронхиол. Раздражение этих рецепторов вызывает гиперпноэ, бронхоконстрикцию, сокращение гортани, гиперсекрецию слизи, но никогда не сопровождается кашлем. Рецепторы наиболее чувстви­тельны к трем типам раздражителей: 1) табачному дыму, много­численным инертным и раздражающим химическим веществам; 2) повреждению и механическому растяжению дыхательных путей при глубоком дыхании, а также пневмотораксе, ателектазах, дей­ствии бронхоконстрикторов; 3) легочной эмболии, легочной капил­лярной гипертензии и к легочным анафилактическим феноменам.


Рефлексы с J-рецепторов. В альвеолярных перегородках в кон­такте с капиллярами находятся особые J-рецепторы. Эти рецепторы особенно чувствительны к интерстициальному отеку, легочной ве-


нозной гипертензии, микроэмболии, раздражающим газам и инга­ляционным наркотическим веществам, фенилдигуаниду (при внут­ривенном введении этого вещества). Стимуляция J-рецепторов вы­зывает вначале апноэ, затем поверхностное тахипноэ, гипотензию и брадикардию.


Рефлекс Геринга — Брейера.
Раздувание легких у наркотизи­рованного животного рефлекторно тормозит вдох и вызывает выдох. Перерезка блуждающих нервов устраняет рефлекс. Нервные окон­чания, расположенные в бронхиальных мышцах, играют роль ре­цепторов растяжения легких. Их относят к медленно адаптирую­щимся рецепторам растяжения легких, которые иннервируются ми-елинизированными волокнами блуждающего нерва.


Рефлекс Геринга — Брейера контролирует глубину и частоту дыхания. У человека он имеет физиологическое значение при ды­хательных объемах свыше 1 л (например, при физической нагрузке). У бодрствующего взрослого человека кратковременная двусторонняя блокада блуждающих нервов с помощью местной анестезии не влияет ни на глубину, ни на частоту дыхания.


У новорожденных рефлекс Геринга — Брейера четко проявляется только в первые 3—4 дня после рождения.


Проприоцептивный контроль дыхания. Рецепторы суставов груд­ной клетки посылают импульсы в кору больших полушарий и являются единственным источником информации о движениях груд­ной клетки и дыхательных объемах.


Межреберные мышцы, в меньшей степени диафрагма, содержат большое количество мышечных веретен. Активность этих рецепторов проявляется при пассивном растяжении мышц, изометрическом со­кращении и изолированном сокращении интрафузальных мышечных волокон. Рецепторы посылают сигналы в соответствующие сегменты спинного мозга. Недостаточное укорочение инспираторных или экс­пираторных мышц усиливает импульсацию от мышечных веретен, которые через у
-мотонейроны повышают активность a-мотонейронов и дозируют таким образом мышечное усилие.


Хеморефлексы дыхания. Ро2
и Рсо2
в артериальной крови че­ловека и животных поддерживается на достаточно стабильном уров­не, несмотря на значительные изменения потребления О2 и выде­ление СО2. Гипоксия и понижение рН крови (ацидоз) вызывают усиление вентиляции (гипервентиляция), а гипероксия и повышение рН крови (алкалоз) — понижение вентиляции (гиповентиляция) или апноэ. Контроль за нормальным содержанием во внутренней среде организма О2, СО2 и рН осуществляется периферическими и центральными хеморецепторами.


Адекватным раздражителем для периферических хеморецепторов является уменьшение Ро2
артериальной крови, в меньшей степени увеличение Рсо2 и рН, а для центральных хеморецепторов — уве­личение концентрации Н+
во внеклеточной жидкости мозга.


Артериальные (периферические) хеморецепто­ры. Периферические хеморецепторы находятся в каротидных и


аортальных тельцах. Сигналы от артериальных хеморецепторов по синокаротидным и аортальным нервам первоначально поступают к нейронам ядра одиночного пучка продолговатого мозга, а затем переключаются на нейроны дыхательного центра. Ответ перифери­ческих хеморецепторов на понижение Рао2
является очень быстрым, но нелинейным. При РаO2 в пределах 80—60 мм рт. ст. (10,6—8,0 кПа) наблюдается слабое усиление вентиляции, а при Рао2 ниже 50 мм рт. ст. (6,7 кПа) возникает выраженная гипервентиляция.


Расо2 и рН крови только потенцируют эффект гипоксии на артериальные хеморецепторы и не являются адекватными раздра­жителями для этого типа хеморецепторов дыхания.


Реакция артериальных хеморецепторов и дыхания на гипоксию.
Недостаток СЬ в артериальной крови является основным раздражи­телем периферических хеморецепторов. Импульсная активность в афферентных волокнах синокаротидного нерва прекращается при Ра02
выше 400 мм рт. ст. (53,2 кПа). При нормоксии частота разрядов синокаротидного нерва составляет 10% от их максимальной реакции, которая наблюдается при Ра02
около 50
мм рт. ст. и ниже. Гипоксическая реакция дыхания практически отсутствует у корен­ных жителей высокогорья и исчезает примерно через 5 лет у жителей равнин после начала их апаптации к высокогорью (3500 м и выше).


Центральные хеморецепторы. Окончательно не уста­новлено местоположение центральных хеморецепторов. Исследова­тели считают, что такие хеморецепторы находятся в ростральных отделах продолговатого мозга вблизи его вентральной поверхности, а также в различных зонах дорсального дыхательного ядра.


Наличие центральных хеморецепторов доказывается достаточно просто: после перерезки синокаротидных и аортальных нервов у подопытных животных исчезает чувствительность дыхательного цен­тра к гипоксии, но полностью сохраняется реакция дыхания на гиперкапнию и ацидоз. Перерезка ствола мозга непосредственно выше продолговатого мозга не влияет на характер этой реакции.


Адекватным раздражителем для центральных хеморецепторов является изменение концентрации Н+ во внеклеточной жидкости мозга. Функцию регулятора пороговых сдвигов рН в области цен­тральных хеморецепторов выполняют структуры гематоэнцефали-ческого барьера, который отделяет кровь от внеклеточной жидкости мозга. Через этот барьер осуществляется транспорт О2, СО2 и Н+
между кровью и внеклеточной жидкостью мозга. Транспорт СО2 и Н+
из внутренней среды мозга в плазму крови через структуры гематоэнцефалического барьера регулируется с участием фермента карбоангидразы.


Реакция дыхания на СО2.
Гиперкапния и ацидоз стимулируют, а гипокапния и алкалоз тормозят центральные хеморецепторы.


Для определения чувствительности центральных хеморецепторов к изменению рН внеклеточной жидкости мозга используют метод возвратного дыхания. Испытуемый дышит из замкнутой емкости, заполненной предварительно чистым 02
. При дыхании в замкнутой


системе выдыхаемый СO2 вызывает линейное увеличение концент­рации СО2 и одновременно повышает концентрацию Н+
в крови, а также во внеклеточной жидкости мозга. Тест проводят в течение 4—5 мин под контролем содержания СO2
в выдыхаемом воздухе.


На рис. 8.12 показано изменение объема вентиляции при раз­личном уровне напряжения СO2 в артериальной крови. При Расо2 ниже 40 мм рт. ст. (5,3 кПа) может возникнуть апноэ в результате гипокапнии. В этот период дыхательный центр мало чувствителен к гипоксической стимуляции периферических хеморецепторов.


8.6.3. Координация дыхания
с другими функциями организма


В
филогенетическом развитии организма человека и животных дыхательный центр приобретает сложные синаптические взаимоот­ношения с различными отделами ЦНС.


В отличие от других физиологических функций организма ды­хание находится под контролем автономной (вегетативной) и сома­тической нервной системы, поэтому у человека и животных дыхание нередко называют вегето-соматической функцией. Существует тес­ное взаимодействие регуляции дыхания гуморальной и рефлекторной природы и процессами сознательной деятельности мозга. Однако во время сна или в состояниях, связанных с отсутствием сознания у человека, сохраняется внешнее дыхание и обеспечивается нормаль­ное поддержание газового гомеостаза внутренней среды. С другой стороны, человек имеет возможность по собственному желанию


изменять глубину и частоту дыхания или задерживать его, например во время пребывания под водой. Произвольное управление дыханием основано на корковом представительстве проприоцептивного анали­затора дыхательных мышц и на наличии коркового контроля ды­хательных мышц.


Электрическое раздражение коры больших полушарий у человека и животных показало, что возбуждение одних корковых зон вызы­вает увеличение, а раздражение других — уменьшение легочной вентиляции. Наиболее сильное угнетение дыхания возникает при электрической стимуляции лимбической системы переднего мозга. При участии центров терморегуляции гипоталамуса возникает ги-перпноэ при гипертермических состояниях.


Однако многие нейрофизиологические механизмы взаимодейст­вия нейронов переднего мозга с дыхательным центром остаются пока мало изученными.


Дыхание опосредованно через газы крови влияет на кровообра­щение во многих органах. Важнейшим гуморальным, или метабо­лическим, регулятором локального мозгового кровотока являются Н+
артериальной крови и межклеточной жидкости. В качестве ме­таболического регулятора тонуса сосудов мозга рассматривают также СО2. В последнее время эта точка зрения подвергается сомнению, поскольку СО2 как молекулярное соединение практически отсутст­вует во внутренней среде организма. Молекулярный СO2 (О = С = О) встречается в организме в альвеолярном воздухе, а в тканях только при переносе СО2 через аэрогематический и гистогематический барь­еры. В крови и межклеточной жидкости СO2 находится в связанном состоянии, в виде гидрокарбонатов, поэтому правильнее говорить о метаболической регуляции Н+
тонуса гладких мышц артериальных сосудов и их просвета. В головном мозге повышение концентрации Н+
расширяет сосуды, а понижение концентрации Н+
в артериальной крови или межклеточной жидкости, напротив, повышает тонус глад­ких мышц сосудистой стенки. Возникающие при этом изменения мозгового кровотока способствуют изменению градиента рН по обе стороны гематоэнцефалического барьера и создают благоприятные условия либо для вымывания из сосудов мозга крови с низким значением рН, либо для понижения рН крови в результате замед­ления кровотока.


Функциональное взаимодействие систем регуляции дыхания и кровообращения является предметом интенсивных физиологических исследований. Обе системы имеют общие рефлексогенные зоны в сосудах: аортальную и синокаротидные. Периферические хеморе-цепторы дыхания аортальных и каротидных телец, чувствительные к гипоксии в артериальной крови, и барорецепторы стенки аорты и каротидных синусов, чувствительные к изменению системного артериального давления, расположены в рефлексогенных зонах в непосредственной близости друг от друга. Все названные рецепторы посылают афферентные сигналы к специализированным нейронам основного чувствительного ядра продолговатого мозга — ядра оди­ночного пучка. В непосредственной близости от этого ядра находится


дорсальное дыхательное ядро дыхательного центра. Здесь же в про­долговатом мозге находится сосудодвигателъный центр.


Координацию деятельности дыхательного и сосудодвигательного центров продолговатого мозга осуществляют нейроны ряда интег-ративных ядер бульбарной ретикулярной формации.


8.7. ОСОБЕННОСТИ ДЫХАНИЯ ПРИ ФИЗИЧЕСКОЙ НАГРУЗКЕ И ПРИ ИЗМЕНЕННОМ ПАРЦИАЛЬНОМ ДАВЛЕНИИ 02


8.7.1. Дыхание при физической
нагрузке


При физической нагрузке потребление О2 и продукция СО2 возрастают в среднем в 15—20 раз. Одновременно усиливается вентиляция и ткани организма получают необходимое количество О2, а из организма выводится СО2.


Каждый человек имеет индивидуальные показатели внешнего дыхания. В норме частота дыхания варьирует от 16 до 25 в минуту, а дыхательный объем — от 2,5 до 0,5 л. При мышечной нагрузке разной мощности легочная вентиляция, как правило, пропорцио­нальна интенсивности выполняемой работы и потреблению О2 тка­нями организма. У нетренированного человека при максимальной мышечной работе минутный объем дыхания не превышает 80 л*мин, а у тренированного может быть 120—150 л *мин _1
и выше. Крат­ковременное произвольное увеличение вентиляции может составлять 150—200 л*мин _1
.


В момент начала мышечной работы вентиляция быстро увели­чивается, однако в начальный период работы не происходит каких-либо существенных изменений рН и газового состава артериальной и смешанной венозной крови. Следовательно, в возникновении ги-перпноэ в начале физической работы не участвуют периферические и центральные хеморецепторы как важнейшие чувствительные структуры дыхательного центра, чувствительные к гипоксии и к понижению рН внеклеточной жидкости мозга.


Уровень вентиляции в первые секунды мышечной активности регулируется сигналами, которые поступают к дыхательному центру из гипоталамуса, мозжечка, лимбической системы и двигательной зоны коры большого мозга. Одновременно активность нейронов ды­хательного центра усиливается раздражением проприоцепторов ра­ботающих мышц. Довольно быстро первоначальный резкий прирост вентиляции легких сменяется ее плавным подъемом до достаточно устойчивого состояния, или так называемого плато. В период «пла­то», или стабилизации вентиляции легких, происходит снижение Рао2
и повышение Расо2 крови, усиливается транспорт газов через аэрогематический барьер, начинают возбуждаться периферические и
центральные хеморецепторы. В этот период к нейрогенным сти­мулам дыхательного центра присоединяются гуморальные воздей­ствия, вызывающие дополнительный прирост вентиляции в процессе выполняемой работы. При тяжелой физической работе на уровень


вентиляции будут влиять также повышение температуры тела, кон­центрация катехоламинов, артериальная гипоксия и индивидуально лимитирующие факторы биомеханики дыхания.


Состояние «плато» наступает в среднем через 30 с после начала работы или изменения интенсивности уже выполняемой работы. В соответствии с энергетической оптимизацией дыхательного цикла повышение вентиляции при физической нагрузке происходит за счет различного соотношения частоты и глубины дыхания. При очень высокой легочной вентиляции поглощение O2 дыхательными мышцами сильно возрастает. Это обстоятельство ограничивает воз­можность выполнять предельную физическую нагрузку. Окончание работы вызывает быстрое снижение вентиляции легких до некоторой величины, после которой происходит медленное восстановление ды­хания до нормы.


8.7.2. Дыхание при подъеме на высоту


С увеличением высоты над уровнем моря падает барометри­ческое давление и парциальное давление 02, однако насыщение альвеолярного воздуха водяными парами при температуре тела не изменяется. На высоте 20 000 м содержание О2 во вдыхаемом воздухе падает до нуля. Если жители равнин поднимаются в горы, гипоксия увеличивает у них вентиляцию легких, стимулируя ар­териальные хеморецепторы. Изменения дыхания при высотной ги­поксии у разных людей различны. Возникающие во всех случаях реакции внешнего дыхания определяются рядом факторов: 1) ско­рость, с которой развивается гипоксия; 2) степень потребления O2 (покой или физическая нагрузка); 3) продолжительность ги-поксического воздействия.


Первоначальная гипоксическая стимуляция дыхания, возникаю­щая при подъеме на высоту, приводит к вымыванию из крови СО2 и развитию дыхательного алкалоза. Это в свою очередь вызывает увеличение рН внеклеточной жидкости мозга. Центральные хемо­рецепторы реагируют на подобный сдвиг рН в цереброспинальной жидкости мозга резким снижением своей активности, что заторма­живает нейроны дыхательного центра настолько, что он становится нечувствительным к стимулам, исходящим от периферических хе-морецепторов. Довольно быстро гиперпноэ сменяется непроизволь­ной гиповентиляцией, несмотря на сохраняющуюся гипоксемию. Подобное снижение функции дыхательного центра увеличивает сте­пень гипоксического состояния организма, что чрезвычайно опасно, прежде всего для нейронов коры большого мозга.


При акклиматизации к условиям высокогорья наступает адап­тация физиологических механизмов к гипоксии. К основным фак­торам долговременной адаптации относятся: повышение содержания СО2 и понижение содержания О2 в крови на фоне снижения чув­ствительности периферических хеморецепторов к гипоксии, а также рост концентрации гемоглобина.


8.7.3. Дыхание при высоком давлении


При производстве подводных работ водолаз дышит под давлением выше атмосферного на 1 атм на каждые 10 м погружения. Если человек вдыхает воздух обычного состава, то происходит растворение азота в жировой ткани. Диффузия азота из тканей происходит медленно, поэтому подъем водолаза на поверхность должен осуще­ствляться очень медленно. В противном случае возможно внутри-сосудистое образование пузырьков азота (кровь «закипает») с тя­желыми повреждениями ЦНС, органов зрения, слуха, сильными болями в области суставов. Возникает так называемая кессонная болезнь. Для лечения пострадавшего необходимо вновь поместить в среду с высоким давлением. Постепенная декомпрессия может продолжаться несколько часов или суток.


Вероятность возникновения кессонной болезни может быть зна­чительно снижена при дыхании специальными газовыми смесями, например кислородно-гелиевой смесью. Это связано с тем, что рас­творимость гелия меньше, чем азота, и он быстрее диффундирует из тканей, так как его молекулярная масса в 7 раз меньше, чем у азота. Кроме того, эта смесь обладает меньшей плотностью, поэтому уменьшается работа, затрачиваемая на внешнее дыхание.


8.7.4.
Дыхание чистым 02


В клинической практике иногда возникает потребность в по­вышении Ро2
в артериальной крови. При этом повышение пар­циального давления O2 во вдыхаемом воздухе оказывает лечебный эффект. Однако продолжительное дыхание чистым О2 может иметь отрицательный эффект. У здоровых испытуемых отмечаются боли за грудиной, особенно при глубоких вдохах, уменьшается жиз­ненная емкость легких. Возможно перевозбуждение ЦНС и появ­ление судорог.


Полагают, что кислородное отравление связано с инактивацией некоторых ферментов, в частности дегидрогеназ.


У недоношенных новорожденных при длительном воздействии избытка 02
образуется фиброзная ткань за хрусталиком и разви­вается слепота.


8.8. ДИСПНОЭ И ПАТОЛОГИЧЕСКИЕ ТИПЫ ДЫХАНИЯ


При некоторых патологических состояниях у человека возникают серьезные нарушения газообмена, которые могут проявляться остро либо развиваться скрыто в течение многих лет с постепенным снижением функциональных резервов дыхания. В нормальных ус­ловиях дыхание и кровообращение сопряженно контролируются ней­ронами дыхательного и сосудодвигательного центров продолговатого мозга. В состояниях функциональной недостаточности может угне-


таться возбудимость нейронов дыхательного центра и их синапти-ческое взаимодействие с другими отделами центральной или пери­ферической нервной системы. Наркоз, гипоксия, патологические процессы снижают содержание O2 и повышают уровень С02
в ар­териальной крови. Нередко резкое понижение содержания О 2 и повышение уровня СO2 могут быть причиной асфиксии, в результате уменьшения легочной вентиляции. Состояние асфиксии может воз­никнуть при острых нарушениях проходимости дыхательного тракта, при нарушении кровообращения (шок). Под асфиксией
следует по­нимать резкое снижение Рог и одновременное повышение Рсог в артериальной крови, когда дыхательные движения становятся не­эффективными, а гипоксия и ацидоз головного мозга являются причиной смерти. Основной причиной дыхательных расстройств яв­ляются сосудистые нарушения, возникающие во время наркоза, гипоксии и прямого действия наркотических веществ на базальный тонус сосудов.


Под апноэ
следует понимать временную остановку дыхания. Подобное состояние может возникнуть при низком уровне стиму­ляции афферентными воздействиями нейронов дыхательного центра, либо в результате активного торможения механизма генерации ды­хательного ритма, либо при снижении чувствительности нейронов дыхательного центра к синаптическому возбуждению, а также при сочетании указанных факторов.


Термином «диспноэ»
обозначают затрудненное, мучительное ды­хание с преувеличенным субъективным чувством необходимости глубокого дыхания. В норме диспноэ возникает при тяжелой физи­ческой работе и таким образом ограничивает максимальные пределы этой работы. Основными причинами диспноэ являются возбуждаю­щее воздействие рефлексов на дыхательный центр без сопутствую­щих регулирующих влияний центральных и периферических хемо-рецепторов; стимуляция дыхания химическими веществами без под­ключения к регуляции хеморецепторов; лихорадка.


Периодическое дыхание
встречается в патологических состояниях и проявляется в виде серий диспноических дыхательных усилий, прерываемых периодами отсутствия дыхания. Известными в клинике типами периодического дыхания являются дыхание Чейна — Стокса (с постепенным ростом и снижением величины дыхательного объема, после чего следует пауза различной продолжительности). Причиной такого дыхания является нарушение функции ЦНС в результате асфиксии. Периодическое дыхание Биота характеризуется внезапно появляющимися и также внезапно прекращающимися дыхательными движениями постоянной амплитуды. К так называемым терминаль­ным типам дыхания относят гаспинг
(отдельные глубокие вдохи) и дыхание Куссмауля (шумное учащенное дыхание без субъективных ощущений удушья).


При острой дыхательной недостаточности восстановление дыха­ния производят искусственной вентиляцией легких для оксигенации артериальной крови с одновременным восстановлением или поддер­жанием сердечной деятельности.


8.9. НЕДЫХАТЕЛЬНЫЕ ФУНКЦИИ ЛЕГКИХ


Легкие обеспечивают ряд функций, не связанных с обменом газов между кровью и внешней средой. К ним относятся следующие:


1) защита организма от вредных компонентов вдыхаемого воз­ духа;


2) метаболизм биологически активных веществ.


8.9.1. Защитные функции
дыхательной системы


В легкие из окружающей среды поступает воздух, содержащий раз­личные примеси в виде неорганических и органических частиц живо­тного и растительного происхождения, газообразных веществ и аэро­золей, а также инфекционных агентов: вирусов, бактерий и др.


Проходя по воздухоносным путям, воздух освобождается от по­сторонних примесей и поступает в респираторный отдел очищенным от пылевых частиц и микроорганизмов, что поддерживает стериль­ность альвеолярного пространства.


Очищение вдыхаемого воздуха от посторонних примесей осуще­ствляется с помощью следующих механизмов: 1) механическая очи­стка воздуха (фильтрация воздуха в полости носа, осаждение на слизистой оболочке дыхательных путей и транспорт мерцательным эпителием ингалированных частиц, чиханье и кашель); 2) действие клеточных (фагоцитоз) и гуморальных (лизоцим, интерферон, лак-тоферрин, иммуноглобулины) факторов неспецифической защиты.


Механическая очистка воздуха. Слизистая оболочка полости носа вырабатывает за сутки 100—500 мл секрета. Этот секрет, покрывающий слизистую оболочку, участвует в выведении из ды­хательных путей инородных частиц и способствует увлажнению вдыхаемого воздуха. При носовом дыхании наиболее крупные час­тицы пыли (размером до 30 мкм) задерживаются волосяным филь­тром преддверия полости носа, а частицы размером 10—30 мкм оседают на слизистой оболочке носовой полости благодаря турбу­лентному движению воздушной струи. Затем частицы пыли и мик­роорганизмы вместе со слизью перемещаются из передней части полости носа со скоростью 1—2 мм/ч к выходу из него за счет упорядоченного движения ресничек мерцательного эпителия. Из задней части полости носа слизь с осевшими на ней частицами движется со скоростью 10 мм/мин по направлению движения вды­хаемого воздуха к глотке, откуда в результате рефлекторно возни­кающих глотательных движений попадает в пищеварительный тракт.


Из полости носа воздух по воздухоносным путям поступает в трахею и далее в бронхи. Слизистая оболочка трахеи и бронхов продуцирует в сутки 10—100 мл секрета, который покрывает по­верхность слизистой оболочки трахеи и бронхов слоем толщиной 5—7 мкм. Регуляция продукции секрета осуществляется парасим­патическим и симпатическим отделами автономной (вегетативной) нервной системы. Активными стимуляторами секреции являются простангландин E1 и гистамин. Бокаловидные клетки реагируют в


основном на механические воздействия. Большую роль в рефлек­торной регуляции секреции играет раздражение ирритантных ре­цепторов блуждающего нерва. С помощью нервной системы регу­лируется не только объем, но и вязкоэластические свойства секрета.


Эскалация (выведение) секрета осуществляется реснитчатым эпи­телием трахеи и бронхов. Каждая клетка мерцательного эпителия имеет около 200 ресничек длиной 6 мкм и диаметром 0,2 мкм, которые совершают координированные колебательные движения с частотой 800—1000 в минуту. Эти клетки образуют поля различного размера. Число клеток реснитчатого эпителия, образующих одно поле, колеблется от нескольких десятков до нескольких сотен. На­правление движения ресничек в одном поле отличается от направ­ления движения в соседних полях, что обусловливает спиралеоб­разный характер выведения секрета. У женщин частота колебаний ресничек несколько выше, чем у мужчин. Источником энергии для движения ресничек служит АТФ. Наибольшая частота колебаний ресничек наблюдается при температуре 37 °С, снижение темпера­туры вызывает угнетение их двигательной активности.


В регуляции двигательной активности ресничек принимает уча­стие автономная нервная система, что подтверждается на следующем опыте: денервация легких у собак вызывает резкое нарушение транс­порта бронхиальной слизи, однако через 4—5 мес после операции под влиянием периферических нервных механизмов регуляции транспорт слизи полностью восстанавливается. На увеличение ак­тивности ресничек мерцательного эпителия влияют простагландины E1, E2
и лейкотриен С». К числу экзогенных факторов, тормозящих активность мерцательного эпителия, относится вдыхание табачного дыма.


Пылевые частицы диаметром 3—10 мкм и часть микроорганизмов оседают на слизистой оболочке трахеи и бронхов. Этому способствует прогрессирующее увеличение площади контакта вдыхаемого воздуха с поверхностью слизистой оболочки бронхиального дерева в резуль­тате последовательного его деления на более мелкие ветви. Слизь с прилипшими к ней частицами благодаря движению ресничек перемещается к глотке против направления движения вдыхаемого воздуха. Находящийся в виде капель слизистый секрет в процессе движения образует хлопья, из которых формируются более крупные структуры — диски. Капли транспортируются от одного поля к другому, хлопья и диски — при помощи комбинированного действия ресничек нескольких полей. Скорость эскалации слизи в различных частях бронхиального дерева различна. Медленнее всего осуществ­ляется ее транспорт в бронхах респираторного отдела. В трахее же скорость эскалации слизи может возрастать в 20—40 раз. Время выведения частиц, попавших в легкие с вдыхаемым воздухом, ко­леблется от 1 до 24 ч, у пожилых людей эта величина выше. В результате деятельности ресничек не только освобождаются брон­хи от микроорганизмов, но и сокращается время их контакта с клеткой эпителия до 0,1 с, что затрудняет инвазию микроорганизмов в ткань. Эффективность транспорта зависит как от функционального


состояния реснитчатого эпителия, так и от вязкости и эластичности слизи.


Механическое удаление инородных частиц осуществляется также защитными дыхательными рефлексами: чиханьем и кашлем (см. раздел 8.6.2).


Клеточные механизмы неспецифической защиты.
Частицы пыли размером менее 2 мкм, а также микроорганизмы и вирусы могут с током воздуха попадать в полость альвеол.


Эпителий, выстилающий респираторный отдел, состоит в основ­ном из дыхательных альвеолоцитов и альвеолярных секреторных клеток (альвеолоцитов Iи IIтипа). Кроме того, из альвеолярных стенок в альвеолярное пространство выступают крупные клетки округлой формы. Такие же клетки находятся в свободном состоянии и в просвете альвеол. Они часто содержат посторонние включения (угольный пигмент, асбестовые нити и др.). Данные клетки, полу­чившие название альвеолярных фагоцитов,
являются макрофагами. Продолжительность их жизни от нескольких месяцев до нескольких лет. Альвеолярные макрофаги осуществляют защитную функцию, фагоцитируя попавшие в альвеолярные пространства пылевые час­тицы, микроорганизмы и вирусы. Фагоцитозу подвергаются и струк­туры эндогенного происхождения: компоненты легочного сурфак-танта, клетки альвеолярного эпителия и продукты их распада. Аль­веолярные макрофаги движутся по воздухоносным путям и достигают бронхиол, где их дальнейшее продвижение облегчается деятельно­стью ресничек. Затем они с мокротой проглатываются или выделя­ются во внешнюю среду. Часть альвеолярных макрофагов вместе с поглощенными частичками мигрирует с альвеолярной поверхности в интерстициальную ткань, в дальнейшем перемещаясь в составе лимфы. При сердечной недостаточности в легких отмечается застой крови, в результате чего эритроциты попадают в альвеолы, где подвергаются фагоцитозу альвеолярными макрофагами. Последние выделяются в большом количестве с мокротой при кашле, причем благодаря наличию в них железосодержащего пигмента дают поло­жительную гистохимическую реакцию на железо. В фагоцитозе микроорганизмов в дыхательных путях активное участие принимают и нейтрофильные лейкоциты.


Гуморальные механизмы неспецифической защиты. Кроме му-коцилиарного транспорта и фагоцитоза защиту поверхности трахеи и бронхов обеспечивают и неспецифические гуморальные механиз­мы. В бронхиальной слизи содержатся лизоцим, интерферон, лак-тоферрин, протеазы и другие компоненты.


Интерферон уменьшает количество вирусов, которые колонизи­руют клетки, лактоферрин связывает железо, необходимое для жиз­недеятельности бактерий и благодаря этому оказывает бактериоста-тическое действие. Лизоцим расщепляет гликозоаминогликаны кле­точной оболочки микробов, после чего они становятся нежизне­способными.


Важным звеном гуморальной системы местного иммунитета яв­ляется секреторный иммуноглобулин A (slgA), содержание которого


в слизи проксимальных отделов бронхиального дерева в 10 раз выше, чем в сыворотке крови. Основное защитное действие slgAпроявляется в его способности агглютинировать бактерии и
препят­ствовать их фиксации на слизистой оболочке, а также нейтрализо-вывать токсины. Кроме того, slgAв присутствии комплемента осу­ществляет лизис бактерий совместно с лизоцимом. Бронхиальный секрет содержит иммуноглобулины и других классов, являющиеся компонентами общего гуморального иммунитета.


8.9.2. Метаболизм биологически активных веществ в легких


Легкие являются единственным органом в организме, куда по­ступает весь минутный объем крови. Это обеспечивает им роль своеобразного фильтра, который определяет состав биологически активных веществ в крови артериального русла.


Важная роль в трансформации биологически активных веществ принадлежит эндотелию легочных капилляров, обладающему по­глотительным и ферментным механизмами. Первый механизм обес­печивает поступление биологической субстанции в клетку, где эта субстанция депонируется, а затем подвергается инактивации фер­ментами. Второй механизм обеспечивает деградацию биологически активных веществ без стадии депонирования путем контакта их с фиксированными на поверхности эндотелия ферментами.


Поглощению и ферментной трансформации в легких подверга­ются такие вещества, как серотонин, ацетилхолин и в меньшей степени — норадреналин.


Легкие обладают самой мощной ферментной системой, разру­шающей брадикинин. Известно, что 80% брадикинина, введенного в легочный кровоток, инактивируются при однократном прохож­дении крови через легкие без предварительного поглощения. В лег­ких человека инактивируются 90—95% простагландинов группы Е и F.


В мелких углублениях (кавеолах) на внутренней поверхности легочных капилляров локализуется большое количество ангиотен-зинконвертирующего фермента, который катализирует процесс пре­вращения ангиотензина Iв ангиотензин II(см. раздел 7.2.3.4).


В эндотелии легочных сосудов сосредоточены ферменты, которые осуществляют синтез тромбоксана В2
и простагландинов. Легкие также играют важную роль в регуляции агрегатного состояния крови благодаря своей способности синтезировать факторы свертывающей и противосвертывающей систем (тромбопластин, факторы VII, VIII, гепарин и др.). Легкие являются основным источником тромбопла­стина, который сосредоточен в эндотелии капилляров. В зависимости от концентрации тромбопластина в крови они увеличивают или уменьшают его выработку.


Легкие обеспечивают как синтез, так и деструкцию белков и липидов с помощью протеолитических и липолитических ферментов. Здесь же подвергаются разрушению содержащиеся в крови агрегаты клеток, капель жира, тромбоэмболы и бактерии.


ОГЛАВЛЕНИЕ


ПРЕДИСЛОВИЕ......................................................................................
...........
5


Глава 1. ФИЗИОЛОГИЯ. ПРЕДМЕТ И МЕТОДЫ. ЗНАЧЕНИЕ ДЛЯ
МЕДИЦИНЫ. КРАТКАЯ ИСТОРИЯ. - IГ. И. Косицкий I,


В. М. Покровский, Г. Ф. Коротько .............................................. 7


1.1.
Физиология, ее предмет и роль в системе медицинского образования
7


1.2.
Методы физиологических исследований....................................
..........
9


1.3.
Физиология целостного организма ..........................................
........
14


1.4.
Организм и внешняя среда. Адаптация ..................................
17


1.5.
Краткая история физиологии ...................................................
21


Глава
2. ВОЗБУДИМЫЕ ТКАНИ................................................... 27


2.1. Физиология возбудимых тканей. — В. И. Кобрин
.........

27


2.1.1.
Строение и основные свойства клеточных мембран и ионных каналов
28


2.1.2.
Методы изучения возбудимых клеток .................................
34


2.1.3.
Потенциал покоя..........................................................................
38


2.1.4.
Потенциал действия.....................................................................
43


2.1.5.
Действие электрического тока на возбудимые ткани
48


2.2. Физиология нервной ткани. — Г. А. Кураев
...............

51


2.2.1.
Строение и морфофункциональная классификация нейронов
51


2.2.2.
Рецепторы. Рецепторный и генераторный потенциа­лы ...
........
58


2.2.3.
Афферентные нейроны, их функции........................................
........
59


2.2.4.
Вставочные нейроны, их роль в формировании ней­ронных сетей
59


2.2.5.
Эфферентные нейроны .............................................................
........
60


2.2.6.
Нейроглия.......................................................................................
61


2.2.7.
Проведение возбуждения по нервам .....................................
63


2.3.
Физиология синапсов. — Г. А. Кураев
..........................................

66


2.4.
Физиология мышечной ткани......................................................
71


2.4.1. Скелетные мышцы. — В. И. Кобрин
..........................................

........
72


2.4.1.1.
Классификация скелетных мышечных воло­кон ..............
........
72


2.4.1.2.
Функции и свойства скелетных мышц . .
73


2.4.1.3.
Механизм мышечного сокращения........................................
74


2.4.1.4.
Режимы мышечного сокращения............................................
79


2.4.1.5.
Работа и мощность мышцы ...................................................
84


2.4.1.6.
Энергетика мышечного сокращения ....
85


2.4.1.7.
Теплообразование при мышечном сокраще­нии .................
85


2.4.1.8.
Скелетно-мышечное взаимодействие ....
86


2.4.1.9.
Оценка функционального состояния мышеч­ной системы у человека
87


2.4.2. Гладкие мышцы. — Р. С. Орлов
.............................................

.........
89


2.4.2.1.
Классификация гладких мышц.............................................
89


2.4.2.2.
Строение гладких мышц.........................................................
90


2.4.2.3.
Иннервация гладких мышц ................................................
90


2.4.2.4.
Функции и свойства гладких мышц ....
91 2.5. Физиология железистой ткани. — Г. Ф. Коротько
....

94


2.5.1.
Секреция ....................................................................................
94


2.5.2.
Многофункциональность секреции ......................................
95


2.5.3.
Секреторный цикл......................................................................
.........
96


2.5.4.
Биопотенциалы гландулоцитов ............................................
96


2.5.5.
Регуляция секреции гландулоцитов........................................
97


Глава 3. ПРИНЦИПЫ ОРГАНИЗАЦИИ УПРАВЛЕНИЯ ФУНКЦИЯМИ. -


В. П. Дегтярев
.........................................................................................

...........
98


3.1.
Управление в живых организмах...............................................
98


3.2.
Саморегуляция физиологических функций ..........................
.......
102


3.3.
Системная организация управления. Функциональные сис­темы и их взаимодействие
104


Глааа
4. НЕРВНАЯ РЕГУЛЯЦИЯ ФИЗИОЛОГИЧЕСКИХ ФУНКЦИЙ . 109


4.1. Механизмы деятельности центральной нервной системы. —


О. Г. Чораян

..............................................................................................
109


4.1.1.
Методы исследования функций центральной нервной системы
109


4.1.2.
Рефлекторный принцип регуляции функций ....
110


4.1.3.
Торможение в центральной нервной системе ....
115


4.1.4.
Свойства нервных центров.......................................................
.......
117


4.1.5.
Принципы интеграции и координации в деятельности центральной нервной системы
120


4.1.6.
Нейронные комплексы и их роль в деятельности центральной нервной системы
123


4.1.7.
Гематоэнцефалический барьер и его функции ...
126


4.1.8.
Цереброспинальная жидкость ................................................
.......
129


4.1.9.
Элементы кибернетики нервной системы ...........................
.......
130


4.2. Физиология центральной нервной системы. — Г. А. Курске

134


4.2.1. Спинной мозг.............................................................
.......
134


4.2.1.1.
Морфофункциональная организация спин­ного мозга......
.......
134


4.2.1.2.
Особенности нейронной организации спин­ного мозга......
136


4.2.1.3.
Проводящие пути спинного мозга .....................................
139


4.2.1.4.
Рефлекторные функции спинного мозга . .
144


4.2.2. Ствол мозга................................................................
147


4.2.2.1.
Продолговатый мозг........................................ ........................
147


4.2.2.2.
Мост
151


4.2.2.3.
Средний мозг
152


4.2.2.4.
Ретикулярная формация ствола мозга ...
154


4.2.2.5.
Промежуточный мозг....................................................
..................
157


4.2.2.5.1. Таламус............................................................................. . .
157


4.2.2.6. Мозжечок......................................................
159


4.2.3. Лимбическая система ............................................
165


4.2.3.1.
Гиппокамп
168


4.2.3.2.
Миндалевидное тело.................................................................
169


4.2.3.3.
Гипоталамус
170


4.2.4. Базальные ядра.........................................................
172


4.2.4.1.
Хвостатое ядро. Скорлупа ...................................................
173


4.2.4.2.
Бледный шар
176


4.2.4.3.
O2рада
177


4.2.5. Кора большого мозга ............................................
177


4.2.5.1. Морфофункциональная организация ....
177


4.2.5.2. Сенсорные области .................................................................. ..... 183


4.2.5.3. Моторные области....................................................................... ..... 183


4.2.5.4.
Ассоциативные области............................................................... 184


4.2.5.5. Электрические проявления активности коры большого мозга..... 187


4.2.5.6. Межполушарные взаимоотношения............ 189


4.2.6. Координация движений. — В. С. Гурфинкель, Ю. С.


Левик
....................................................................................................... 193


4.3. Физиология автономной (вегетативной) нервной системы. —


А. Д. Ноэдрачев
.......................................................................................... 206


4.3.1. Функциональная структура автономной нервной си­ стемы ....................................................................................... 206


4.3.1.1. Симпатическая часть ................................................................ ..... 214


4.3.1.2. Парасимпатическая часть ........................................................ ..... 215


4.3.1.3. Метасимпатическая часть........................................................... 216


4.3.2.
Особенности конструкции автономной нервной сис­темы ........ ..... 217


4.3.3. Автономный (вегетативный) тонус ........................................... ..... 218


4.3.4.
Синаптическая передача возбуждения в автономной нервной системе 220


4.3.5. Влияние автономной нервной системы на функции тканей и органов 227


Г л а в а 5. ГОРМОНАЛЬНАЯ РЕГУЛЯЦИЯ ФИЗИОЛОГИЧЕСКИХ ФУНК­ ЦИЙ. - В. А. Ткачук, О. Е. Осадчий
............................................................... 242


5.1. Принципы гормональной регуляции ............................................ ..... 242


5.2. Железы внутренней секреции........................................................... ..... 247


5.2.1. Методы исследования .................................................................. 247


5.2.2. Гипофиз 249


5.2.3. Щитовидная железа........................................................................ 254


5.2.4. Околощитовидные железы............................................................. 255


5.2.5. Надпочечники .............................................................................. 256


5.2.6. Поджелудочная железа................................................................... 260


5.2.7. Половые железы............................................................................. 262


5.3. Образование, секреция и механизмы действия гормонов .264


5.3.1. Регуляция биосинтеза гормонов.................................................... .... 264


5.3.2. Секреция и перенос гормонов........................................................ .... 271


5.3.3. Механизмы действия гормонов на клетку.................................... .... 272


Глава
6. КРОВЬ. - Б. И. Кузиик
................................................... 276


6.1. Понятие о системе крови........................................................ 277


6.1.1. Основные функции крови ........................................................... 277


6.1.2. Количество крови в организме...................................................... 278


6.1.3. Состав плазмы крови ................................................................... 278


6.1.4. Физико-химические свойства крови .......................................... 280


6.2. Форменные элементы крови.................................................. .... 285


6.2.1. Эритроциты....................................................................................... 285


6.2.1.1. Гемоглобин и его соединения...................................................... 286


6.2.1.2. Цветовой показатель ................................................................ 287


6.2.1.3. Гемолиз ........................................................................ 288


6.2.1.4. Функции эритроцитов .............................................................. .... 288


6.2.1.5. Эритрон. Регуляция эритропоэза................................................ .... 289


6.2.2. Лейкоциты ..................................................................................... .... 292


6.2.2.1. Физиологические лейкоцитозы. Лейкопении292


6.2.2.2. Лейкоцитарная формула ........................................................... .... 293


6.2.2.3. Характеристика отдельных видов лейкоци­тов ........................ 294


6.2.2.4. Регуляция лейкопоэза.................................................................. 297


6.2.2.5. Неспецифическая резистентность и иммуни­тет ...................... .... 298


6.2.3. Тромбоциты...................................................................................
.....
307


6.3. Группы крови.......................................................................
.....
308


6.3.1.
Система АВО .............................................................................
.....
308


6.3.2.
Система резус (
Rh
-
hr
) и другие .............................................
.....
311


6.3.3.
Группы крови и заболеваемость..............................................
.....
313


6.4. Система гемостаза................................................................
.....
313


6.4.1.
Сосудисто-тромбоцитарный гемостаз......................................
.....
313


6.4.2.
Процесс свертывания крови ..................................................
.....
315


6.4.2.1.
Плазменные и клеточные факторы сверты­вания крови.
315


6.4.2.2.
Механизм свертывания крови...............................................
317


6.4.3.
Естественные антикоагулянты.................................................
320


6.4.4.
Фибринолиз..................................................................................
321


6.4.5.
Регуляция свертывания крови и фибринолиза . . .
323


Глава
7. КРОВО- И ЛИМФООБРАЩЕНИЕ. -
I
Е. Б. Бабский

I
,


Г. И. Косицкий , В. М. Покровский .................................................. 326


7.1. Деятельность сердца.............................................................
326


7.1.1. Электрические явления в сердце, проведение возбуж­ дения .........................................
............................................
326


7.1.1.1.
Электрическая активность клеток миокарда
327


7.1.1.2.
Функции проводящей системы сердца . . .
330


7.1.1.3.
Рефрактерная фаза миокарда и экстрасисто­ла ..................
331


7.1.1.4.
Электрокардиограмма.............................................................
.....
332


7.1.2. Нагнетательная функция сердца .......................
338


7.1.2.1.
Фазы сердечного цикла .......................................................
.....
340


7.1.2.2.
Сердечный выброс....................................................................
344


7.1.2.3.
Механические и звуковые проявления сер­дечной деятельности
347


7.1.3. Регуляция деятельности сердца.............................
349


7.1.3.1.
Внутрисердечные регуляторные механизмы
350


7.1.3.2.
Внесердечные регуляторные механизмы . .
353


7.1.3.3.
Взаимодействие внутрисердечных и внесер-дечных нервных регуляторных механизмов
359


7.1.3.4.
Рефлекторная регуляция деятельности серд­ца .................
.....
359


7.1.3.5.
Условнорефлекторная регуляция деятельно­сти сердца
361


7.1.3.6.
Гуморальная регуляция деятельности сердца
362


7.1.4. Эндокринная функция сердца . . ..........................
362


7.2. Функции сосудистой системы.............................................
363


7.2.1.
Основные принципы гемодинамики. Классификация сосудов
363


7.2.2.
Движение крови по сосудам.......................................................
367


7.2.2.1.
Артериальное давление крови...............................................
367


7.2.2.2.
Артериальный пульс ............................................................
370


7.2.2.3.
Объемная скорость кровотока................................................
371


7.2.2.4.
Движение крови в капиллярах. Микроцир­куляция .....
373


7.2.2.5.
Движение крови в венах..........................................................
375


7.2.2.6.
Время кругооборота крови......................................................
377


7.2.3. Регуляция движения крови по сосудам ............
378


7.2.3.1.
Иннервация сосудов.................................................................
378


7.2.3.2.
Сосудодвигательный центр.....................................................
.....
380


7.2.3.3.
Рефлекторная регуляция сосудистого тонуса
380


7.2.3.4.
Гуморальные влияния на сосуды..........................................
383


7.2.3.5.
Местные механизмы регуляции кровообраще­ния ...........
386


7.2.3.6.
Регуляция объема циркулирующей крови .
387


7.2.3,7. Кровяные депо...........................................................................
.......
389


7.2.4. Регионарное кровообращение. — Я. А. Хананашвили

390


7.2.4.1.
Мозговое кровообращение ..................................................
.......
391


7.2.4.2.
Венечное кровообращение ...................................................
392


7.2.4.3.
Легочное кровообращение ..................................................
.......
394


7.3. Лимфообращение. — Р. С. Орлов
..................................................

.......
396


7.3.1.
Строение лимфатической системы .......................................
.......
396


7.3.2.
Образование лимфы....................................................................
397


7.3.3.
Состав лимфы ...........................................................................
.......
397


7.3.4.
Движение лимфы .....................................................................
.......
398


7.3.5.
Функции лимфатической системы .....................................
400


Глава
8. ДЫХАНИЕ. - В.Ф.Пятин
.......................................... 401


8.1.
Сущность и стадии дыхания.........................................................
.......
401


8.2.
Внешнее дыхание.............................................................................
401


8.2.1. Биомеханика дыхательных движений ..................................
401


8.3. Легочная вентиляция .....................................................
406


8.3.1.
Легочные объемы и емкости.......................................................
.......
406


8.3.2.
Альвеолярная вентиляция........................................................
408


8.4. Механика дыхания...............................................................
.......
412


8.4.1.
Растяжимость легких ...............................................................
.......
412


8.4.2.
Сопротивление дыхательных путей........................................
.......
413


8.4.3.
Работа дыхания ........................................................................
.......
413


8.5. Газообмен и транспорт газов.............................................
415


8.5.1.
Диффузия газов через аэрогематический барьер . .
415


8.5.2.
Содержание газов в альвеолярном воздухе .........................
.......
416


8.5.3.
Газообмен и транспорт O2..........................................................
.......
417


8.5.4.
Газообмен и транспорт СO2 ....................................................
420


8.6. Регуляция внешнего дыхания ........................................
422


8.6.1.
Дыхательный центр.....................................................................
.......
423


8.6.2.
Рефлекторная регуляция дыхания .......................................
430


8.6.3.
Координация дыхания с другими функциями орга­низма
433


8.7. Особенности дыхания при физической нагрузке и при из­ мененном парциальном давлении 02............................................................
435


8.7.1.
Дыхание при физической нагрузке...........................................
435


8.7.2.
Дыхание при подъеме на высоту...............................................
........
46


8.7.3.
Дыхание при высоком давлении ...........................................
437


8.7.4.
Дыхание чистым О2......................................................................
437


8.8. Диспноэ и патологические типы дыхания.......................
437


8.9. Недыхательные функции легких. — Е. А. Малигонов, А. Г. Похотько
................................................................................................

439


8.9.1.
Защитные функции дыхательной системы ..........................
439


8.9.2.
Метаболизм биологически активных веществ в легких
442

Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Физо Покровский Том 1

Слов:127389
Символов:1107628
Размер:2,163.34 Кб.