Введение
Вторжение (часто необдуманное) человека в природу связано с непониманием законов гармонии живой природы. Формирование экологической культуры должно начинаться с постижения единства и многообразия биологических объектов. Сущность гармонии природы невозможно выявить только в биологических объектах, даже сопровождая их абстрактно-математическими построениями, – можно лишь наблюдая и осмысливая её проявления, подойти к тайнам живой природы: повторение живого объекта в себе подобном. Рассмотрение различных форм, приводящих к взаимосвязанным выводам и на их основе к модели формообразования. Поэтому цель работы: отыскание единства в многообразии, а инструмент исследования математика, позволяющая рассматривать форму как категорию пространства, а, следовательно, область приложения векторной геометрии.
1. Понятие «форма» в биологии и в векторной геометрии
Какое из чудес могло бы с большей силой поразить человеческое воображение, чем появление новой жизни? Пространство, которое только что представлялось ничем, становится яблоком, деревом, человеком. Возникновение нового существа – явление целостное. Любой научный эксперимент измерением и воображением ученого разделяет пространство (форму) и вещество (плоть), в то время как целостность – главное качество жизни. Природа скрыто управляет геометрическим подобием, и восприятие формы человеком тоже обнаруживают геометрическое подобие Геометрическое подобие нужно рассматривать как фундаментальную основу эволюции жизни и метод конструирования ею форм. Поэтому математические законы формообразования неизбежно оказываются на стыке научных дисциплин. Здесь требуется свой специальный язык, и начать нужно с определения понятия «форма». Раскрывая содержание этого понятия, можно толковать его традиционно: поверхность, очерчивающая объем живого существа или растения, но такое определение отдаляет нас от цели исследования: в нем исчезло само явление роста, оно отображает жизнь в чуждых ей категориях не как динамику, а как статику.
Поэтому, чтобы исследовать формообразование, необходимо соединить в понятии «форма» представление о росте, как о процессе энергетическом, и геометрическое его содержание, как «овладение пространством», как «развитие точки начала». Чтобы сделать акцент на геометрическую сущность явления, введем понятие «экспансия» [expansio (лат.) – расширение, распространение]. Пользуясь им, определим форму в живой природе как граничную поверхность замкнутого пространства экспансии
2. Математическая модель формообразования
2.1 Поиск метода исследования
Несколько слов о правомерности описания энергетических процессов на языке геометрии. Возможны 2 пути познания:
1) изучение объекта по физическим, химическим параметрам – погружение исследователя в безграничную сложность структурных иерархий самых различных уровней макро- и микромира, описываемых необозримым числом параметров на различных предметных языках.
2) путь геометрического абстрагирования, где предметом исследования служат только пространственные характеристики структур, хотя и необычные, но ведущие к модели формообразования. Единая математическая модель – представление об экспансии точки начала. В предлагаемой модели пространство понимается как совокупность точек, обладающих равной энергетической потенцией взаимодействия. Радиус взаимодействия отражает двойственность экспансии:
Единство аддитивности и мультипликативности справедливо для отрезков, взаимодействующих род углом π или 0 (прямая линия) и в векторной геометрии для любых углов взаимодействия (0≤α≤2π). Таким образом, «золотой» векторный треугольник строит класс замкнутых кривых – нетривиальные симметрии, отображающие биологические формы. Из триады золотого сечения можно перейти в пространство симметрий подобий следующим образом.
2.2 От золотого отрезка – к пространству симметрий подобий
2.2.1 Деление отрезка в золотом отношении
Золотое сечение – это закон пропорциональной связи целого и составляющих это целое частей. Классический пример золотого сечения – деление отрезка в среднепропорциональном отношении, когда целое так относится к большей своей части, как большая часть – к меньшей.
За кажущейся простотой операции деления в крайнем и среднем отношении скрыто множество удивительных форм выражения пропорции золотого сечения в мире живой природы. Линейный закон золотого сечения широко распространён как числоваяхарактеристика членений стеблей растений, их расположения на стволе и даже пропорций человеческого тела.
Рассмотрим один из способов деления отрезка в золотом сечении (так решали задачу деления отрезка в крайнем и среднем отношении в древнем Египте и древней Греции): делимый отрезок AD=а (рис. 1) достраивают до двойного квадрата ABCD со стороной AB=а/2. Потом из диагонали DB циркулем отсекают отрезок ВЕ=АВ=а/2. С помощью циркуля переносят отрезок FD = FE = x = 5 − a / 2. Задача решена: a: x = x: (a – x) = 1.618034…
Рис. 1
Вообще, любой способ деления отрезка в золотом сечении сводится к построению квадрата и двойного квадрата (полуквадрата). Таким образом, в математику приходят числа 2 и 5 (Диагонали квадрата и двойного квадрата). Появление диагонали BD двойного квадрата ABCD и есть появление отношения золотого сечения: сторона, а есть среднее между диагональю BD=5, увеличенной на сторону а/2, и этой же диагональю, уменьшенной на сторону а/2: 1,618…
2.2.2 А-ромб и «живой» треугольник
Изобразим на вертикали отрезок, разделённый в золотом сечении на две неравные части (рис. 2).
Большую часть ещё раз разделим в золотом сечении и так будем распространять золотую цепь до бесконечности в направлении, восходящем от большего к меньшему (аддитивность). В центрах полученных отрезков построим окружности радиусами этих отрезков. До открытия возможности, скрытой в золотом сечении и позволяющей моделировать формы, играющие ключевую роль в ритмах жизни живой природы, остаётся несколько шагов. Введение прямого угла в чертёж преобразовало линейный ряд золотого сечения в пространство симметрий подобий. Для этого отметим предел, к которому стремится убывающий вид (точка N на чертеже). Затем проведём касательные через точку N к проведённым окружностям. Соединив точки касания с центрами соответствующих окружностей, получаем треугольники с прямыми углами. Соединив точку О0 и Л1 (или П1), получим прямоугольный треугольник с аналогичным отношением сторон. В получившихся прямоугольных треугольниках отношение малого катета к большому равно отношению большого катета к гипотенузе. Такой треугольник – треугольник геометрической прогрессии получил в чертеже шесть ориентаций. Полученную фигуру будем называть асимметричным ромбом (А-ромбом); левая и правая части зеркальны, восходящая цепь золотого сечения развита окружностями, а не полуокружностями (что требуется для практического деления отрезка в золотом сечении), что позволяет выявить некоторые отражения образа данного чертежа в формах живой природы. А-ромб не имеет мерности: любой отрезок в структуре А-ромба можно принять за линейную меру длины. Тогда длина любого его элемента есть число n Ф, где n – целые числа, положительные либо отрицательные. Горизонтали, соединяющие точки пересечения окружностей, делят вертикальную ось А-ромба пополам (точка Е), а каждый её отрезок также пополам. Рис. 2 А-ромб.
Угол основания 2α в А-ромбе с точностью до пятого знака совпадает с числом 1,618…
Этот же угол определяет внутримолекулярные связи в молекуле воды: он является углом атомами водорода в молекуле воды (рис. 3).
Рис. 3
Что такое вода? Большую часть всякой живой клетки составляет вода. Клетки почти всегда окружены водной средой: это может быть пресная или морская вода, тканевый сок, плазма, внеклеточная жидкость. Биологическая информация может передаваться чистой водой, а, кроме того, вода может хранить память о биологически активных молекулах, контактировавших с ней и исчезнувших из нее вследствие многократных разбавлений. То есть, вода лежит в основе жи
Отрезок, делённый в золоте, устанавливает связь трёх величин: двух его частей и целого, которые можно выразить как числа х2, х и 1. Но треугольник А-ромба ООNЛ1 (и все ему подобные) тоже имеет соотношение сторон х2, х и 1 (Катеты суть 1 и Ф =1,272… гипотенуза (Ф) 2 =1,618…). Значит, деление отрезка в золоте есть частный случай треугольника ООNЛ1, – если катеты расположатся на одной прямой под углом π, гипотенуза совместится с катетами и возникнет случай деления отрезка в золотом сечении. Одну из сторон такого треугольника можно принять за 1, а две другие будут описываться квадратичной зависимостью. Отсюда следует, что треугольник, сохраняя ту же закономерность, может описывать, подобно часовым стрелкам, любые углы взаимодействия катетов в пределе угла 2π, то есть описывать некоторые замкнутые пространства. Проблема соразмерности и пропорций смещается в этом случае к описанию формы. Как будет вести себя «живой» треугольник, у которого стороны суть х2, х и 1? Итак, рассмотрим «живой» треугольник (рис. 7), в котором одна сторона лежит на вертикали, являясь осью симметрии на плоскости или же осью вращения в пространстве. Одна из сторон треугольника служит линейной мерой пространства, две другие – связаны квадратичной зависимостью: одна сторона есть квадрат другой. Очевидно, сформулированная задача имеет шесть вариантов решения. Положение на вертикали может занять любая из трёх сторон треугольника: х2, х или 1. При этом две другие стороны могут меняться местами.
Случай 1-ый. На вертикали переменная х:
а) Если к точке начала приложена константа хО=1, трек описал сферу;
б) Если к точке начала приложена переменная х2, трек описал поверхность, воспроизводящую яйцо удлиненной формы с отношением диаметров вертикального к горизонтальному 3:2. Форма типична для яиц утиных.
Случай 2-ой. На вертикали переменная х2:
а) Если к точке начала приложена константа хО=1, трек описывает сферический сегмент, имеющий в основании круг диаметром 3 и высоту ½. Сектор, построенный из точки начала и охватывающий этот сегмент, определён углом 2π/3. Поверхность сегмента составляет ¼ поверхности сферы, а так как она описана вершиной треугольника дважды, её следует понимать как сложенную вдвое оболочку, охватывающую пространство, равное 0.
2.2.3 Логарифмическая спираль
Вернёмся к А-ромбу. Треугольник Л1NOO, подобный треугольнику OOО1Л1, можно получить следующим образом. На стороне Л1П1 отложить подобный ему треугольник так, чтобы сторона Л1N стала меньшим катетом, а гипотенуза полученного подобного треугоьника лежала на стороне Л1N. При этом мерность треугольника со сторонами х2, х и 1 увеличилась в Ф раз. Продолжим такую цепь построений до бесконечности. Вершины полученных треугольников очерчивают логарифмическую спираль.
Эта спираль часто встречается в природе и повторяет формы чешуек на сосновой шишке, спираль раковины моллюска Наутилуса, соцветия многих растений, например, маргаритки или подсолнуха. Один из наиболее распространенных пауков, Эпейра, сплетая паутину, закручивает нити вокруг центра по логарифмической спирали. Спираль, если представить её как живой объект, возникающий из точки начала полярных координат, захватывает пространство по закону, представленному фундаментальными константами природы: иррациональное число Ф, рациональное число 2, трансцендентные числа е, π.
Существование спирали приводит к интересному выводу: число π можно заменить числом Ф: π=22:Ф1/2 ≈3,1446
Таким образом, поворотная симметрия π/2 и закон изменения мерности Ф1/2 строят логарифмическую спираль π.
Логарифмическая спираль – единственный тип спирали, не меняющей своей формы при увеличении размеров. Это свойство и объясняет, почему логарифмическая спираль часто встречается в природе.
2.4 Уравнение экспансии – векторная основа формообразования
Рассмотрим поподробнее уравнение экспансии, как возможную основу модели формообразования.
Какие бы факторы ни слагались в понятие «потенция S», и какие бы ни составляющие ни составляли потенцию U, для геометрической модели существенно важно взаимодействие внутренней потенции S и внешней U; при этом: «+» – экспансия из центра вовне, «–» – извне в центр.
Предположение о степенной зависимости R от U: R = Un, где 0≤n≤∞, вытекает из того, что изменить величину U кроме неё самой ничто не может; а S = const = 1. В этом случае условие R = Un строит U-симметрии. Наряду с рассмотренными U-доминантными формами обнаруживаются S-доминантные формы, заданные условием R = Sn. Уравнение экспансии продуцирует 8 типов симметрий, дихотомично полярных: S-симметрии и U-симметрии, плюс-симметрии и минус-симметрии, прямые (n) и обратные (1/n). И одновременно с этим уравнение экспансии устанавливает алгоритм отношений сохранения и изменчивости. В симметриях U программа S сферична и форма объекта не тождественна программе R≡S≡S. В симметриях U, напротив, программа не сферична, но форма R тождественна программе: R≡S≡S. Перемена знаков тождественно – нетождественно отображает кардинальные различия дихотомично организованного процесса становления биологических объектов.
Проведённые исследования биологических форм (реальных и в виде изображений) подтвердили соответствия рассмотренной векторной модели с высокой степенью точности: симметрии –1/2U, -2U, -1U повторили форму коконов и личинок насекомых, форму семени фасоли; симметрии –1/2S, -2S имели форму, характерную для яиц хищных птиц; симметрии +2S, +1/2S рисуют очертание и годичные кольца моллюска Pecten, с высокой точностью очерчивают фронтальные проекции капсул, в которых заключён головной мозг позвоночных (рис. 11), например, птиц, очерчивают форму яблока, тыквы, хурмы; симметрия +2U воспроизводит формы, характерные для птиц утиных.
Заключение
Исследование формообразования в данной работе потребовало особого подхода к понятию «форма» (с точки зрения векторной геометрии) и введения понятия «экспансия», то есть рассмотрения преобразований некоторой точки начала, обладающей свойствами пространства-вещества и нулевой мерностью в области пространства-вещества с действующими параметрами. Использование методологии золотого сечения и геометрического подобия в пространстве открывает путь к моделированию форм и живых структур.
Поэтапное моделирование включало в себя построение А-ромба, «живого» треугольника, логарифмической спирали, исследование уравнения экспансии с целью получения 8 типов симметрий: S-симметрии и U-симметрии, плюс-симметрии и минус – симметрии, прямые (n) и обратные (1/n). Представленная модель экспериментально проверена на соответствующих биологических объектах.
Проведённое исследование заставляет задуматься не только о том, что такое формообразование в природе, но и о том, почему феноменальный мир такой, как он есть, а не другой. Человечество должно заботиться о разнообразии и гармони биологических форм, сохраняя благоприятную экологическую обстановку.
Список используемой литературы
1. Стахов А.П. Коды золотой пропорции. – М., 1984
2. Урманцев Ю.А. Симметрия природы и природа симметрий. – М., 1972
3. Шевелёв И.Ш., Марутаев М.А., Шмелёв И.П. Золотое сечение: три взгляда на природу гармонии. – М.: Стройиздат, 1990
4. Фёдоров Е.С. Деление плоскости и пространства. – Л., 1979
5. Заварыкин В.М. и др. Численные методы: Учеб. пособие для студентов физ.-мат. спец. пед. ин-тов / В.М. Заварыкин, В.Г. Житомирский, М.П. Лапчик. – М.: Просвещение, 1990. – 176 с 6. Тынкевич М.А. Экономико-математические методы (исследование операций). Изд. 2, испр. и доп. – Кемерово, 2000. – 177 с.