№ 1
Три стрелка делают по одному выстрелу по одной и той же цели. Вероятности поражения целей равны соответственно р1 
= 0,9, р2 
= 0,8, р3 
= 0,7.
Найти вероятности того, что:
а) все три стрелка попадают в цель;
б) только один из них попадает в цель;
в) хотя бы один стрелок попадает в цель.
Обозначим события: А – все 3 стрелка попадают в цель; В – только один стрелок попадает в цель; С – хотя бы один стрелок попадает в цель.
Вероятности промахов равны соответственно: q1
= 0,1, q2
= 0,2, q3
= 0,3.
а) Р(А) = р1
р2
р3
= 0,9∙0,8∙0,7 = 0,504.
б) Р(В) = p1
q2
q3
+ q1
p2
q3
+ q1
q2
p3
= 0,9∙0,2∙0,3 + 0,1∙0,8∙0,3 + 0,1∙0,2∙0,7 = 0,092.
в) Событие – все три стрелка промахиваются. Тогда
Р(С) = 1 – Р() = 1 – 0,1∙0,2∙0,3 = 1 – 0,006 = 0,994.
№ 11
Вероятность наступления события в каждом из одинаковых независимых испытаний равна 0,02. Найти вероятность того, что в 150 испытаниях событие наступит ровно 5 раз
У нас nдостаточно великó, р малó, λ = np = 150 ∙ 0,02 = 3 < 9, k = 5. Справедливо равенство Пуассона: . Таким образом,
№ 21
По данному закону распределения дискретной случайной величины Х определить математическое ожидание М(Х), дисперсию D(X) и среднее квадратическое отклонение σ(Х).
|  хі
 | 
1 | 2 | 3 | 4 | 5 | 
| рі
 | 
0,05 | 0,18 | 0,23 | 0,41 | 0,13 | 
Последовательно получаем:
5
М(Х) = ∑ хі
рі
= 0,05 + 2∙0,18 + 3∙0,23 + 4∙0,41 + 5∙0,13 = 3,39.
i=1
5
D(X) = ∑ xi
²pi
– M² = 0,05 + 2²∙0,18 + 3²∙0,23 + 4²∙0,41 + 5²∙0,13 – 3,39² = i=1
1,1579.
σ(Х) = √D(X) = √1,1579 = 1,076.
№ 31
Случайная величина Х задана интегральной функцией
а) дифференциальную функцию f(x) (плотность вероятности);
б) математическое ожидание и дисперсию величины х;
в) вероятность того, что X примет значение, принадлежащее интервалу
;
г) построить графики функций F(x) и f(x).
Последовательно получаем:
а) ;
в) Р(a < x < b) = F(b) – F(a) ÞP= F(1) – F= – 0 = .
Графики функций поданы далее.
№ 41
Определить вероятность того, что нормально распределённая величина Х примет значение, принадлежащее интервалу (α; β) если известны математическое ожидание а и среднее квадратическое отклонение σ. Данные: α = 2; β = 13; а = 10; σ = 4.
Используем формулу Р(α < x < β) =
Имеем: Р(2 < x < 13) == Ф– Ф(–2).
Поскольку функция Лапласа есть нечетная, можем записать:
Ф– Ф(–2) = Ф+ Ф(2) = 0,2734 + 0,4772 = 0,7506.
№ 51
Поданному статистическому распределению выборки
|  хі
 | 
4 | 5,8 | 7,6 | 9,4 | 11,2 | 13 | 14,8 | 16,6 | 
| mі
 | 
5 | 8 | 12 | 25 | 30 | 20 | 18 | 6 | 
Определить: а) выборочную среднюю; б) выборочную дисперсию;в) выборочное среднее квадратическое отклонение.
Для решения задачи введём условную переменную
, где С – одно из значений хі
, как правило, соответствующее наибольшему значению mі 
, а h– это шаг (у нас h = 1,8). 
Пусть С = 11,2. Тогда .
Заполним таблицу:
| xi
 | 
mi
 | 
xi
 ´  | 
xi
 mi  | 
 (xi
 ´)²mi  | 
| 4 | 5 | – 4 | – 20 | 80 | 
| 5,8 | 8 | – 3 | – 24 | 72 | 
| 7,6 | 12 | – 2 | – 24 | 48 | 
| 9,4 | 25 | – 1 | – 25 | 25 | 
| 11,2 | 30 | 0 | 0 | 0 | 
| 13 | 20 | 1 | 20 | 20 | 
| 14,8 | 18 | 2 | 36 | 72 | 
| 16,6 | 6 | 3 | 18 | 54 | 
| ∑ = 124 | ∑ = – 19 | ∑ = 371 | 
Используя таблицу, найдём ;
D(x´) = ∑(xi
´)²mi
– (xi
´)² =  – (– 0,1532)² = 2,9685.
Теперь перейдем к фактическим значениям х и D(x):
_
x = x´h + C = – 0,1532∙1,8 + 11,2 = 10,9242;D(x) =D(x´)∙h² = 2,9685∙1,8² = 9,6178;
σ(x) = √D(x) = √9,6178 = 3,1013.
№ 61
По данной корреляционной таблиценайти выборочное уравнение регрессии.
| у х | 6 | 9 | 12 | 15 | 18 | 21 | ny
 | 
| 5 | 4 | 2 | 6 | ||||
| 15 | 5 | 23 | 28 | ||||
| 25 | 18 | 44 | 5 | 67 | |||
| 35 | 1 | 8 | 4 | 13 | |||
| 45 | 4 | 2 | 6 | ||||
| nx
 | 
4 | 7 | 42 | 52 | 13 | 2 | n= 120 | 
Для упрощения расчетов введем условные переменные
u = , v = .Составим таблицу:
| vu | – 3 | – 2 | – 1 | 0 | 1 | 2 | nv
 | 
nuv
 uv  | 
| – 2 | 4 6
 | 
2 4
 | 
6 | 32 | ||||
| – 1 | 5 2
 | 
23 1
 | 
28 | 33 | ||||
| 0 | 18 0
 | 
44 0
 | 
5 0
 | 
67 | 0 | |||
| 1 | 1–1
 | 
8 0
 | 
4 1
 | 
13 | 3 | |||
| 2 | 4 2
 | 
2 4
 | 
6 | 16 | ||||
| nu
 | 
4 | 7 | 42 | 52 | 13 | 2 | n = 120 | ∑ = 84 | 
Последовательно получаем:
;
;
;
;
σu
² = – (u)² = 1,058 – (– 0,425)² = 0,878; σu
= √0,878= 0,937;
σv
² = – (v)² = 0,742 – (– 0,125)² = 0,726; σv
= √0,726 = 0,8521;
По таблице, приведённой выше, получаем ∑nuv
uv = 84.
Находим выборочный коэффициент корреляции:
Далее последовательно находим:
x= u∙h1
+ C1
= – 0,425∙3 + 15 = 13,725; y = v∙h2
+ C2
= – 0,125∙10 + 25 = 23,75;
σx
= σu
∙h1
= 0,937∙3 = 2,811; σy
= σv
∙h2
= 0,8521∙10 = 8,521.
Уравнение регрессии в общем виде: Таким образом,
упрощая, окончательно получим искомое уравнение регрессии:
Необходимо произвести проверку полученного уравнения регрессии при, по крайней мере, двух значениях х.
1) при х = 12 по таблице имеем
по уравнению:
ух=12
= 2,457∙12 – 9,968 = 19,516; ε1
= 19,762 – 19,516 = 0,246;
2) при х = 18 по таблице имеем
по уравнению:
ух=18
= 2,457∙18 – 9,968 = 34,258; ε2
= 34,258 – 34,231 = 0,027.
Отмечаем хорошее совпадение эмпирических и теор
Вариант 2
№ 2
Для сигнализации об аварии установлены 3 независимо работающие устройства. Вероятности их срабатывания равны соответственно р1
= 0,9, р2
= 0,95, р3
= 0,85. Найти вероятности срабатывания при аварии:
а) только одного устройства;
б только двух устройств;
в) всех трёх устройств.
Обозначим события: А – срабатывает только одно устройство; В – срабатывают 2 устройства; С – срабатывают все 3 устройства. Вероятности противоположных событий (не срабатывания) соответственно равны q1
= 0,1, q2
= 0,05, q3
= 0,15. Тогда
а) Р(А) = p1
q2
q3
+ q1
p2
q3
+ q1
q2
p3
= 0,9∙0,05 ∙0,15 + 0,1∙0,95∙0,15 + 0,1∙0,05∙0,85 = 0,02525.
б) Р(В) = p1
p2
q3
+ p1
q2
p3
+ q1
p2
p3
= 0,9∙0,95∙0,15 + 0,9∙0,05∙0,85 + 0,1∙0,95∙0,85 = 0,24725.
в) Р(С) = р1
р2
р3
= 0,9∙0,95∙0,85 = 0,72675.
№ 12
В партии из 1000 изделий имеется 10 дефектных. Найти вероятность того, что из взятых наудачу из этой партии 50 изделий ровно 3 окажутся дефектными.
По условию n = 50, k = 3. Поскольку р малó, n достаточно большое, в то же время nр = 0,5 < 9, справедлива формула Пуассона:.
Таким образом,
№ 22
По данному закону распределения дискретной случайной величины Х определить математическое ожидание М(Х), дисперсию D(X) и среднее квадратическое отклонение σ(Х).
| хі
 | 
2 | 3 | 4 | 5 | 8 | 
| рі
 | 
0,25 | 0,15 | 0,27 | 0,08 | 0,25 | 
Последовательно получаем:
5
М(Х) = ∑ хі
рі
= 2∙0,25 + 3∙0,15 + 4∙0,27 + 5∙0,08 + 8∙0,25 = 4,43.
i=1
5
D(X) = ∑ xi
²pi
– M² = 2²∙0,25 + 3²∙0,15 + 4²∙0,27 +5²∙0,08 + 8²∙0,25 – 4,43² і=1
= 5,0451.
σ(Х) = √D(X) = √5,0451= 2,246.
№ 32
Случайная величина Х задана интегральной функцией
а) дифференциальную функцию f(x) (плотность вероятности);
б) математическое ожидание и дисперсию величины х;
в) вероятность того, что X примет значение, принадлежащее интервалу
;
г) построить графики функций F(x) и f(x).
Последовательно получаем:
а) ;
в) Р(a < x < b) = F(b) – F(a) ÞP= F(1) – F=
Графики функций приводятся далее.
№ 42
Определить вероятность того, что нормально распределённая величина Х примет значение, принадлежащее интервалу (α;β) если известны математическое ожидание а и среднее квадратическое отклонение σ. Данные: α = 5; β = 14; а = 9; σ = 5.
Используя формулу имеем
Поскольку функция Лапласа есть нечетная, можем записать:
№ 52
По данному статистическому распределению выборки
|  хі
 | 
7,6 | 8 | 8,4 | 8,8 | 9,2 | 9,6 | 10 | 10,4 | 
| mі
 | 
6 | 8 | 16 | 50 | 30 | 15 | 7 | 5 | 
Определить: а) выборочную среднюю; б) выборочную дисперсию;в) выборочное среднее квадратическое отклонение.
Для решения задачи введём условную переменную
где С – одно из значений хі 
, как правило, соответствующее наибольшему значению mі 
, а h – это шаг (у нас h = 0,4). 
Пусть С = 8,8. Тогда
Заполним таблицу:
| xi
 | 
mi
 | 
xi
 ´  | 
xi
 mi  | 
(xi
 ´)²mi  | 
| 7,6 | 6 | – 3 | – 18 | 54 | 
| 8 | 8 | – 2 | – 16 | 32 | 
| 8,4 | 16 | – 1 | – 16 | 16 | 
| 8,8 | 50 | 0 | 0 | 0 | 
| 9,2 | 30 | 1 | 30 | 30 | 
| 9,6 | 15 | 2 | 30 | 60 | 
| 10 | 7 | 3 | 21 | 63 | 
| 10,4 | 5 | 4 | 20 | 80 | 
| ∑ = 137 | ∑ = 51 | ∑ = 335 | 
Используя таблицу, найдём
;
D(x´) = ∑(xi
´)²mi
– (xi
´)² =  – 0,3723² = 2,3067.
Теперь перейдем к фактическим значениям х и D(x):
x = x´h + C = 0,3723∙0,4 + 8,8 = 8,9489; D(x) = D(x´)∙h² = 2,3067∙0,4² = 0,3961;
σ(x) = √D(x) = √0,3961 = 0,6075.
№ 62
По данной корреляционной таблице
| у х | 4 | 8 | 12 | 16 | 20 | 24 | ny
 | 
| 10 | 2 | 5 | 7 | ||||
| 20 | 6 | 8 | 4 | 18 | |||
| 30 | 8 | 46 | 10 | 64 | |||
| 40 | 5 | 20 | 4 | 29 | |||
| 50 | 3 | 14 | 2 | 5 | 22 | ||
| nx
 | 
2 | 19 | 62 | 48 | 6 | 3 | n = 140 | 
найти выборочное уравнение регрессии.
Для упрощения расчетов введём условные переменные
Составим таблицу.
| vu | – 2 | – 1 | 0 | 1 | 2 | 3 | nv
 | 
nuv
 uv  | 
| – 2 | 2 4
 | 
5 2
 | 
7 | 18 | ||||
| – 1 | 6 1
 | 
8 0
 | 
4 –1
 | 
18 | 2 | |||
| 0 | 8 0
 | 
46 0
 | 
10 0
 | 
64 | 0 | |||
| 1 | 5 0
 | 
20 1
 | 
4 2
 | 
29 | 28 | |||
| 2 | 3 0
 | 
14 2
 | 
2 4
 | 
5 6
 | 
22 | 66 | ||
| nu
 | 
2 | 19 | 62 | 48 | 6 | 3 | n = 140 | ∑ = 114 | 
Последовательно получаем:
;
;
;
;
σu
² = – (u)² = 0,9 – 0,329² = 0,792; σu
= √0,792 = 0,89;
σv
² = – (v)² = 1,164 – 0,293² = 1,079; σv
= √1,079 = 1,0385;
По таблице, приведённой выше, получаем ∑nuv
uv = 114.
Находим выборочный коэффициент корреляции:
Далее последовательно находим:
x = u∙h1
+ C1
= 0,329∙4 + 12 = 13,314; y = v∙h2
+ C2
=0,293∙10 + 30 = 32,929;
σx
= σu
∙h1
= 0,89∙4 = 3,56; σy
= σv
∙h2
= 1,0385∙10 = 10,385.
Уравнение регрессии в общем виде: Таким образом,
упрощая, окончательно получим искомое уравнение регрессии:
Необходимо произвести проверку полученного уравнения регрессии при, по крайней мере, двух значениях х.
1) при х = 12 по таблице имеем
по уравнению: ух=12
= 2,266∙12 + 2,752 = 29,944; ε1
= 30,484 – 29,944 = 0,54;
2) при х = 16 по таблице имеем
по уравнению: ух=16
= 2,266∙16 + 2,752 = 39,008; ε2
= 39,167 – 39,008 = 0,159.
Отмечаем хорошее совпадение эмпирических и теоретических данных.