РефератыМатематикаЧиЧисленные методы для решения нелинейных уравнений

Численные методы для решения нелинейных уравнений

Министерство общего и профессионального образования Российской Федерации


Саратовский государственный технический университет


ЧИСЛЕННЫЕ МЕТОДЫ РЕШЕНИЯ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

Методические указания


к самостоятельной работе по курсу «Высшая математика»


для студентов всех специальностей


под контролем преподавателя


Одобрено


редакционно-издательским советом


Саратовского государственного


технического университета






Саратов 2008


Введение


Данная работа ориентирована на изучение некоторых численных методов приближенного решения систем нелинейных уравнений с любым числом уравнений, составление на базе этих методов вычислительных схем алгоритмов и программ на алгоритмическом языке ФОРТРАН – IV.


Методические указания могут быть использованы как в процессе выполнения курсовой работы, так и для решения практических задач.


Задача настоящих указаний состоит в том, чтобы научить студентов решать системы нелинейных уравнений с помощью ЭВМ и затем полученные навыки использовать в курсовом и дипломном проектировании.


Предполагается, что студенты прослушали лекционный курс по основам алгоритмического языка ФОРТРАН – IV.


В качестве справочного пособия по языкам программирования может быть использована литература. [5]


Численные методы для решения нелинейных уравнений


Цель работы:

изучение численных методов приближенного решения нелинейных систем уравнений, составление на базе вычислительных схем алгоритмов; программ на алгоритмическом языке ФОРТРАН – IV, приобретение практических навыков отладки и решения задач с помощью ЭВМ.


1. Определения и условные обозначения


– конечномерное линейное пространство, элементами (точками, векторами) являются группы из упорядоченных действительных чисел, например:



где – действительные числа, .


В введена операция сложения элементов, т. е. определено отображение ,


где


Оно обладает следующими свойствами:


1. ,


2. ,


3. , что (элемент называется нулевым),


4. , что (элемент называется противоположным элементу ).


В введена операция умножения элементов на действительные числа, т.е. определено отображение ,


где


Оно обладает следующими свойствами:


1. ,


2.


Операции сложения элементов и умножения их на числа удовлетворяют законам дистрибутивности:


1. ,


2. .


Каждой паре элементов поставлено в соответствие действительное число, обозначаемое символом и называемое скалярным произведением, где



и выполнены следующие условия:


1. ,


2. ,


3. ,


4. , причем – нулевой элемент.


Матрица вида


, (1)


где – действительные числа (,) определяет линейный оператор, отображающий линейное пространство в себя, а именно, для


,


где .


Над линейными операторами, действующими в линейном пространстве , вводятся следующие операции:


1. сложение операторов , при этом, если , то ,


2. умножение операторов на числа: при этом, если , то ,


3. умножение операторов: , при этом, если , то .


Обратным к оператору называется оператор такой, что , где – единичный оператор, реализующий тождественное отображение, а именно,


.


Пусть число и элемент , таковы, что .


Тогда число называется собственным числом линейного оператора , а элемент – собственным вектором этого оператора, соответствующим собственному числу .


Линейный оператор называется сопряженным к оператору , если для любых элементов выполняется равенство .


Для всякого оператора сопряженный оператор существует, единствен; если , то .


Справедливы равенства:


1. ,


2. ,


3. ,


4. , если существует.


Каждому элементу ставится в соответствие действительное положительное число, обозначаемое символом и называемое нормой элемента .


Введем в рассмотрение три нормы для :


,


,


.


При этом выполняются следующие неравенства:


.


Норма элемента удовлетворяет следующим условиям (аксиомам нормы):


1. , причем , лишь если ,


2. ,


3. .


Говорят, что последовательность элементов сходится к элементу ,


а именно, ,


или ,


если .


Определенная таким образом сходимость в конечномерном линейном пространстве называется сходимостью по норме.


Множество элементов , удовлетворяющих неравенству называется замкнутым (открытым) шаром в пространстве с центром в точке и обозначается .


Каждому линейному оператору, определяемому квадратной матрицей (1),
ставится в соответствие действительное неотрицательное число, обозначаемое символом и называемое нормой линейного оператора .


Норма линейного оператора удовлетворяет следующим условиям аксиомам норм:


4.4 , причем , лишь если – нулевая матрица,


4.4 ,


4.4 .


Введем в рассмотрение три нормы для А
отображающего в :


,


,


,


где i
-
ое собственное значение матрицы .


Эти нормы линейного оператора А
согласованы с соответствующими нормами элемента (вектора) в смысле условия .


2. Основные сведения о системах нелинейных уравнений в


Общая форма систем нелинейных уравнений в имеет вид:


(2)


или F
(x
) = 0,


где – заданные функции n
переменных, – неизвестные.


Функция при действительных значениях аргументов принимают действительные значения, т.е. являются действительнозначными. Вычислять будем только действительные решения.


Решением системы нелинейных уравнений (2)
называется совокупность (группа) чисел , которые, будучи подставлены на место неизвестных , обращают каждое уравнение системы в тождество.


Частным случаем системы (2)
является система линейных уравнений:



или ,


где А
– матрица вида (1),
порождающая линейный оператор, отображающий в



Система линейных уравнений (2)
поставим в соответствие линеаризованное уравнение (первые два члена из разложения в ряд Тейлора (2)
) в точке вида


(2)


или ,


где – квадратная матрица Якоби, составленная из частных производных первого порядка функций, а именно , вычисленных точке .


Для дальнейшего нам потребуется еще одна форма записи системы нелинейных уравнений в , а именно:


(3)


или ,


где .


Операции, с помощью которых осуществляется преобразование системы (2)
к системе (3
), могут быть любыми, необходимо только, чтобы искомое решение системы (3)
удовлетворяло системе (2).


Функции удовлетворяют тем же условиям, что и функции .


3.
Отделение
решений


Задача отделения решений систем нелинейных уравнений состоит в определении достаточно малой окрестности (шара малого радиуса, центром которого является решение) около какого-нибудь одного решения и в выборе в этой окрестности начального приближения к решению. Начальное приближение должно попасть при этом в область сходимости метода.


Задача отделения решений не имеет достаточно эффективных методов общего характера. При решении уравнения предполагается знание начальных приближений к изолированному решению из постановки конкретной задачи. Если же таких данных нет, то можно дать лишь некоторые рекомендации для конкретных видов уравнений.


Так, если дано скалярное уравнение , то его решение с геометрической точки зрения можно рассматривать как абсциссы точек пересечения графика функции с осью абсцисс. Построив график функции y
=
f
(
x
),
приближенно определяем окрестности изолированных точек пересечения графика с горизонтальной осью. Сами точки пересечения берем за начальные приближения к точным решениям.


Безусловно, графические построения имеют большие погрешности, и выбранные начальные приближения могут не попасть в область сходимости применяемого метода.


Тогда нужно провести пробные решения на ЭВМ выбранным методом с исследованием сходимости.


Если приближения сходятся, то начальные приближения выбраны в области сходимости метода и можно получить приближенное решение с заданной точностью.


Если приближения расходятся, следует провести более точные графические построения и выбрать начальное приближение в области сходимости.


Аналогично отделяются решения для системы двух нелинейных уравнений


, .


В этом случае на плоскости x,y
строятся линии уровня функции двух переменных и . Координаты точек пересечения графиков этих функций дают начальные приближения изолированных решений.


4. Методы решения нелинейных уравнений



4.1 Метод простой итерации


Метод простой итерации (см. [1]) применяется для решения систем нелинейных уравнений с любым числом уравнений. Его можно применять как для уточнения найденного решения, так и для первоначального нахождения решения. В последнем случае, однако, метод может не дать результата.


Для применения метода простой итерации система уравнений (2)
приводится к виду (3).


Затем, взяв начальное приближение , которое предполагается либо известным, либо произвольным, строим последовательность


(4)



по следующим формулам


(5)



Замечание. Для приведения системы уравнений (2)
к виду (3)
можно использовать прием:



где – релаксационный параметр, определяется методом Зейделя.


4.2 Метод Зейделя<

/b>


Метод Зейделя отличается от метода простой итерации тем, что вычисления ведутся по формулам:


(6)


Иными словами, при вычислении используются не , как в методе простой итерации, а .


4.3 Метод Ньютона


Этот метод (см.[1], [4]) предложен И.Ньютоном в 1669 году, однако наиболее полное обоснование было сделано советским математиком Л.В.Канторовичем в 1949 году (см.[4]), поэтому в литературе этот метод часто называют методом Ньютона-Канторовича.


Метод Ньютона является одним из итерационных методов, получаемых линеаризацией линейного оператора


,


где из уравнения (2).


Так, для к
-го приближения к точному решению уравнения (2)
ставится в соответствие линеаризованное уравнение вида (2),
а именно:



или ,


где – квадратная матрица Якоби, составленная из частных производных первого порядка функций, т.е. , вычисленных в точке .


Таким образом, последовательность (4)
строится по следующим правилам:




(),


где – обратный оператор к линейному оператору , определяемому квадратной матрицей



Трудности построения алгоритма метода Ньютона, связанные с обращением производной (построение ), обычно преодолеваются тем, что вместо методов обращения матрицы решают алгебраическую систему уравнений (7)
относительно неизвестных . Алгоритмы решения системы линейных алгебраических уравнений хорошо отработаны, для них имеются стандартные программы для ЭВМ и, кроме того, в результате решения системы одновременно с обращением матрицы получается умножение обратной матрицы на вектор .


Итерационная формула метода Ньютона при таком подходе будет иметь вид:


(7)


. (8)


4.4 Модифицированный метод Ньютона


Эта разновидность метода Ньютона строится путем определения производной только в одной точке приближенного решения, т. е. Последовательные приближения (4)
строятся по формулам:


, (9)


где – начальное приближение к точному решению .


4.5 Метод Зейделя на основе линеаризованного уравнения


Итерационная формула для построения приближенного решения нелинейного уравнения (2)
на основе линеаризованного уравнения (7)
имеет вид:



4.6 Метод наискорейшего спуска


Методы спуска (см. [2]) сводят решение системы (2)
к задаче нахождения минимума специально построенного функционала (функционал – отображение в R
), а именно:


,


где .


Функционал в конечном пространстве Rn
можно рассматривать как функцию многих переменных .


Для нахождения точки , в которой функционал f
принимает минимальное нулевое значение, выбирают точку , находят и строят итерационную формулу: с начальным приближением .


В итерационной формуле параметр hk
пока не определен, выберем его таким образом, чтобы выполнилось условие: , начиная с x
0
, в предположении, что f
– монотонный функционал.


Для выбора hk
построим функционал, зависящий от параметра, который изменяется непрерывно: .


При h
=0 имеем, что f
(0) – линия уровня функционала, проходящая через точку xk
. Для нахождения следующей линии уровня, более близкой к минимуму, будем выбирать h
таким образом, чтобы для данного xk



Это условие минимума по h
будем рассматривать как уравнение для получения hk
.


Решим его приближенно, т.к. ошибка в несколько процентов обычно не влияет на скорость сходимости. Отметим кстати, что число hk
всегда должно быть положительным. Для этого разложим функцию в ряд Тейлора по h
в точке h
=0 и возьмем только линейную часть этого разложения


.


Подстановка линейной части в условие , дает уравнение для приближенного определения


.


Решая построенное уравнение относительно h
, получим:


или .


Таким образом, итерационная формула метода наискорейшего спуска имеет вид:


или , где производные вычислены в точке .


Метод наискорейшего спуска требует большего количества вычислений, чем другие методы первого порядка. Однако он обладает по сравнению с другими методами важным преимуществом, заключающемся в неизбежной сходимости процесса. При этом нужно помнить, что метод наискорейшего спуска может привести не к решению системы уравнений (2)
, а к значениям аргумента, дающим относительный экстремум функции


, т.е. .


5. Сходимость методов решения нелинейных уравнений


Если метод сходится, то есть , где


– точное решение


– k-тое приближение к точному решению, то итерационный процесс следовало бы закончить по достижению заданной погрешности , где e
– заданная точность (погрешность).


Однако практически это условие выполнить нельзя, так как неизвестно, тогда для окончания итерационного процесса можно воспользоваться неравенствами , или , где и – заданные величины.


При таком окончании итераций погрешность может возрасти по сравнению с и, поэтому, чтобы не увеличивалась, величины и соответственно уменьшают или увеличивают число итераций.


Методы простой итерации, Зейделя, модифицированный метод Ньютона, метод наискорейшего спуска (см. [1]
, [2]
, [3]
, [4]
) являются методами первого порядка – это значит, что имеет место неравенство , k
=1, 2, . . . , где – константа, своя у каждого метода, зависящая от выбора начального приближения , функции fi

, i
= 1, 2, . . . , n
, и их частных производных первого и второго порядков – точнее их оценок в некоторой окрестности искомого решения, которой принадлежит начальное приближение.


Метод Ньютона является методом второго порядка, то есть для него имеет место неравенство , k
=1, 2, . . . , где – константа, зависящая от тех же величин, что и константа .


А теперь рассмотрим достаточные условия сходимости метода простой итерации и метода Ньютона.


Сходимость процесса простой итерации зависит от двух условий. Первое условие состоит в том, что какая-нибудь точка должна оказаться близкой к исходному решению . Степень необходимой близости зависит от функций j
1
,
j
2
, . . . , j
n
. Это требование не относится к системам линейных уравнений, для которых сходимость процесса простой итерации зависит только от второго условия.


Второе условие связано с матрицей, составленной из частных производных первого порядка функций j
1
,
j
2
, . . . , j
n

– матрицей Якоби


,


вычисленных в точке .


В случае, когда рассматривается система линейных алгебраических уравнений, матрица M
состоит из постоянных чисел – коэффициентов, стоящих при неизвестных в правой части уравнения (3)
. В случае нелинейных уравнений элементы матрицы M
зависят, вообще говоря, от . Для сходимости процесса простой итерации достаточно, чтобы выполнялось неравенство: для из некоторой окрестности точного решения , которой должно принадлежать начальное приближение .


Приведем также достаточные условия сходимости метода Ньютона для системы уравнений вида (2)
по норме .


Предположим, что имеется начальное приближение к искомому решению системы (2)
, функции непрерывны и имеют непрерывные частные производные до второго порядка в шаре , тогда, если выполнены условия:


1) Матрица Якоби системы (2)
на начальном приближении имеет обратную и известна оценка нормы обратной матрицы ,


2) Для всех точек шара выполнено неравенство


при i
, j
= 1, 2, . . . , n
,


3) Выполнено неравенство


,


где L
– постоянная 0 £ L
£ 1,


4) Числа b
, N
, r
подчинены условию a
= nbNr
< 0,4, тогда система уравнений (2)
в шаре имеет единственное решение, к которому сходятся последовательные приближения (8)
или (7’)
, (9’)
.


Для других методов условия сходимости имеют сложный вид, и мы отсылаем читателя к специальной литературе [1]
, [2]
, [3]
, [4]
.


6. Примерный перечень возможных исследований


1) Сравнение различных методов на экономичность при решении конкретной задачи:


· по числу операций на одной итерации;


· по числу итераций, необходимых для достижения заданной точности;


2) Зависимость числа итераций для достижения заданной точности:


· от выбора вида нормы;


· от выбора критерия окончания итерационного процесса по или по невязке ;


· от выбора начального приближения;


· от погрешности задания коэффициентов в уравнении.


7. Контрольные вопросы


1) Понятие о нелинейных системах уравнений в Rn
.


2) Понятие приближенного и точного решения нелинейной системы уравнений.


3) Сущность графического метода отделения решения для системы двух нелинейных уравнений, каковы его преимущества и недостатки?


4) Сущность метода простой итерации и метода Зейделя. Каковы условия применимости метода простой итерации?


5) Сущность метода Ньютона и его модификации. Какова скорость сходимости метода Ньютона?


6) Сущность метода наискорейшего спуска. Как выбирается параметр спуска?


8. Порядок выполнения курсовой работы


1) Получить вариант задания, индивидуальный для каждого студента, у преподавателя, а именно:


Найти решение системы нелинейных уравнений в первой координатной четверти с номером – N
1
(см. варианты заданий п.10), применив для первого этапа уточнения метод с номером – N
2
, а для второго этапа уточнения метод с номером – N
3
, точность вычислений на первом этапе – EPS1Î[0.1 – 0.01], на втором этапе – EPS2 Î [0.1 - 0.0001], N
4
– номер нормы, I – номер параметра a
, J – номер параметра b
, начальное приближение выбрать произвольно или графически, aÎ(0,1).


2) Разработать обязательные для выполнения задания разделы данных методических указаний.

Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Численные методы для решения нелинейных уравнений

Слов:2701
Символов:22680
Размер:44.30 Кб.