РефератыМатематикаЛиЛинейные системы уравнений

Линейные системы уравнений

Реферат


Тема: «Линейные системы уравнений»


Содержание


1. Уравнения, векторы, матрицы, алгебра


2. Умножение матриц как внешнее произведение векторов


3. Нормы векторов и матриц


4. Матрицы и определители


5. Собственные значения и собственные векторы


6. Ортогональные матрицы из собственных векторов


7. Функции с матричным аргументом


8. Вычисление проекторов матрицы


Пример использования числовых характеристик матриц


10. Оценка величины и нахождение собственных значений


Литература


1. Уравнения, векторы, матрицы, линейная алгебра


Многие из рассмотренных нами задач сводились к формированию систем линейных алгебраических или дифференциальных уравнений, которые требовалось решить. Пока системы включали в себя не более трех-четырех переменных, их несложно было решать известными классическими методами: методом определителей (Крамера) или методом исключения переменных (Гаусса). С появлением цифровых вычислительных машин порядок алгебраических уравнений, решаемых методом исключений вырос в несколько десятков раз. Однако выявилось множество причин, по которым решение таких систем получить не удавалось. Появившиеся различные модификации метода исключения не привели к существенным улучшениям ситуации с получением решений. Появление же систем с количеством переменных более многих сотен и тысяч заставили обратиться и развивать итерационные методы и методы эквивалентных векторно-матричных преобразований применительно к решению линейных систем алгебраических уравнений.


Основные теоретические результаты были получены путем обобщения известных классических методов функционального анализа и алгебры конечномерных линейных пространств на векторно-матричные представления систем линейных алгебраических и дифференциальных уравнений.


Общая форма записи линейной системы алгебраических уравнений с n
неизвестными может быть представлена следующим образом:



Здесь – неизвестные,


– заданные числа,


– заданные числовые коэффициенты.


Последовательность записи уравнений в системе и обозначение неизвестных в последней не играет роли. В этом плане удобно при анализе и исследованиях системы использовать упорядоченную индексацию натурального ряда для неизвестных, значений правых частей и коэффициентов в уравнениях, однозначно привязывая, тем самым, каждое слагаемое и каждое уравнение к определенной позиции в общей записи. В результате можно выделить в данной записи уравнений три позиционно упорядоченных неделимых объекта:


список переменных – ,


список правых частей – и


матрицу коэффициентов – .


Первые два объекта в линейной алгебре называют вектором-строкой
, а второй – квадратной матрицей.


Операции с векторами, матрицами должны быть определены так, чтобы однозначно отображать допустимые эквивалентные преобразования исходной системы алгебраических уравнений. В предельных случаях задания векторов и матриц: , – аддитивные и мультипликативные операции должны переходить в аналогичные операции со скалярными величинами.


Если рассмотреть i-
тую строку исходной системы


,


то в ней кроме упорядоченного расположения компонент присутствует упорядоченное по индексу j
размещение коэффициентов , которые могут рассматриваться как вектор-строка . Результатом суммы покомпонентного перемножения двух векторов-строк должно быть число. В линейной алгебре такая операция с векторами определена и названа скалярным
или внутренним произведением
векторов:


.


Скалярное произведение линейно, так как обладает основными свойствами линейных преобразований , и коммутативно.


Определение скалярного произведения позволяет переписать исходную систему уравнений в виде вектора с компонентами из скалярных произведений:



или


.


Вторая форма представления векторов в форме столбцов более наглядна в смысле зрительного установления покомпонентного равенства двух векторов: стоящего слева от знака равенства и справа. Эта форма, форма вектора-столбца
принята за каноническую (основную).


Левый вектор-столбец в записи каждой строки содержит вектор неизвестных и естественно желание вынести его за прямые скобки. Оставшиеся коэффициенты упорядочены, как в матрице . Теперь для представления исходной системы уравнений в виде несложно определить векторно-матричную операцию , результатом которой является вектор с i-
той компонентой, равной .


Аксиоматическое построение линейной (векторной) алгебры с рассмотренными базовыми операциями позволило установить важные и полезные свойства, как самих объектов алгебры, так и их алгебраических выражений.


2. Умножение векторов и матриц


Среди n-
мерных векторов и векторных операций над ними важно выделить сумму n
векторов, умноженных на числовые константы:


,


которая при произвольном выборе в частности может оказаться нулевым вектором (с нулевыми компонентами) или одним из суммируемых векторов . Если нулевой вектор при суммировании не нулевых векторов можно получить лишь в случае, когда все , то такие векторы
в наборе называют линейно независимыми
. Такими векторами в частности будут единичные векторы
, у которых все компоненты нулевые, кроме единичной компоненты, расположенной на j-
строке.


Линейно независимый набор единичных векторов с геометрической точки зрения можно рассматривать как n-
мерную систему координат. Набор компонент любого вектора в этой n-
мерной системе определяет координаты точки конца вектора, исходящего из начала координат, а также являются длинами проекций вектора на координатных осях.


Среди матриц размера и операций с ними в первую очередь необходимо отметить операцию умножения матрицы на матрицу. Необходимость введения операции умножения матриц возникает уже при первом взгляде на полученную векторную форму записи линейного уравнения . Векторы слева и справа имеют равные компоненты. Так как коэффициенты в строках матрицы в общем произвольны по величине, то соответствующие компоненты вектора x

не обязаны быть равными компонентам вектора y

. Последнее означает, что умножение вектора x

на матрицу A
вызвало изменение длины и направления вектора x

. Если аналогичное преобразование выполняется над вектором правой части до решения уравнения, то вектор левой части должен быть преобразован так же:


.


Фактически мы имеем дело с заменой системы координат. Рассмотрим методику вычисления коэффициентов результирующей матрицы уравнения:




,


где – элемент матрицы С
, равный скалярному произведению вектор-строки матрицы В
на вектор-столбец матрицы А
.


Произведение матриц в общем случае не коммутативно. Ассоциативный и распределительный законы в матричных выражениях выполняются.


3.
Нормы векторов и матриц


Интерпретация упорядоченного набора чисел, как вектора в многомерном пространстве, позволяет говорить и о его длине. В прямоугольной системе координат по известным длинам проекций на координатные оси длину самого вектора вычисляют, как корень квадратный из суммы квадратов проекций:


,


где – компоненты вектора ,


– евклидова норма вектора, его длина.


В качестве нормы в литературе иногда используют квадрат длины вектора или другое выражение с компонентами вектора, лишь бы оно обладало свойствами расстояния: было положительным, линейным и удовлетворяло неравенству треугольника.


Деление вектора на величину его нормы называют нормированием
, т.е. приведением вектора к единичной длине.


Норма матрицы в принципе тоже может быть определена в виде корня квадратного из суммы квадратов ее элементов или другими выражениями со свойствами расстояний. Однако в ряде случаев работы с векторно-матричными выражениями нормы векторов и матриц должны быть согласованными ввиду того, что результатом произведения матрицы на вектор является опять же вектор. Если выражение для нормы вектора принято, то


,


где функция sup говорит о том, что из всех отношений норм, стоящих в числителе и знаменателе, взятых при любом векторе x

, кроме нулевого, выбирается наименьшее, т.е. это функция выбора нижней границы значений. Согласованная матричная норма для евклидовой нормы вектора удовлетворяет неравенству


.


Нормы вектора и матрицы служат, в основном, для сопоставительной оценки матриц и векторов, указывая на возможный диапазон представления строгих числовых характеристик. К числу последних, в первую очередь, нужно отнести определители матриц, собственные значения и собственные векторы матриц и ряд других.


4.
Матрицы и определители


Упорядоченный набор коэффициентов из системы линейных алгебраических уравнений используется для получения числовой характеристики, величина которой инвариантна по отношению к эквивалентным преобразованиям системы. Речь идет об определителе матрицы. Важное свойство определителей матрицы
обнаруживается в связи с вычислением произведения матриц:



Учитывая это свойство и зная, что определитель единичной матрицы det(E
)=1, можно найти матрицу B
и ее определитель из уравнения:



откуда следует, что и .


Из свойств определителей нелишне помнить и такие:



где – транспонированная матрица A
,


n
– размер квадратной матрицы A
,


– матрица перестановки строк или столбцов,


s, c=
0,1,…, n –
число выполненных перестановок строк и / или столбцов.


Если обратная матрица исходной системы уравнений определена, то, используя эквивалентные преобразования их векторно-матричной записи, решение уравнений можно представить в следующем виде:



Умножив вектор правых частей на обратную матрицу, получим вектор решения.


Классический способ вычисления обратной матрицы использует определители и осуществляется по формуле:


,


где – алгебраическое дополнение, а – минор матрицы A
, получаемый вычислением определителя матрицы A
, в которой вычеркнуты j-
тая строка и i-
тый столбец.


Такой способ вычисления определителя представляет в основном теоретический интерес, так как требует выполнения неоправданно большого числа операций.


Очень просто вычисляется определитель, если матрица диагональная или треугольная. В этом случае определитель равен произведению диагональных элементов. Кстати и решения уравнений, имеющих такие матрицы коэффициентов, получаются тривиально. Поэтому основные усилия разработчиков методов решения алгебраических уравнений направлены на поиск и обоснование эквивалентных преобразований матрицы с сохранением всех ее числовых характеристик, но имеющих в конце преобразований диагональную или треугольную форму.


5.
Собственные значения и собственные векторы


Рассмотрим теоретические основы и методы, позволяющие выполнять эквивалентные матричные преобразования.


Найдем вектор, который под воздействием матрицы A
изменяет только свою величину, но не направление. Для системы уравнений это означает, что вектор решения должен быть пропорционален с некоторым коэффициентом вектору правой части:



В результате несложных преобразований получены однородные векторно-матричные уравнения в столбцовой и в строчной формах с некоторым числовым параметром и неизвестным вектором-столбцом x

и вектором-строкой , представляющих собственное состояние системы. Однородная система может иметь отличное от нуля решение лишь в том случае, когда определитель ее равен нулю.

Это следует из формул получения решения методом определителей (Крамера), в которых и определитель знаменателя, и определитель числителя оказываются равными нулю.


Полагая, что решение все же существует, т.е. и , удовлетворить уравнению можно только за счет приравнивания нулю определителя однородной системы:



Раскрыв определитель и сгруппировав слагаемые при одинаковых степенях неизвестного параметра, получим алгебраическое уравнение степени n
относительно :



Это уравнение называется характеристическим уравнением
матрицы и имеет в общем случае n
корней, возможно комплексных, которые называются собственными значениями
матрицы и в совокупности составляют спектр матрицы
. Относительно n
корней различают два случая: все корни различные или некоторые корни кратные.


Важным свойством характеристического уравнения матрицы A
является то, что согласно теореме Гамильтона-Кели, матрица A
удовлетворяет ему:



где – k-
тая степень матрицы.


Подставляя каждое в однородную систему, получим векторно-матричные уравнения для нахождения векторов или векторов-строк . Эти векторы называются соответственно правыми собственными векторами
и левыми собственными векторами
матрицы.


Решение однородных уравнений имеет некоторую специфику. Если (как в равной мере и ) является решением, то, будучи умноженным на произвольную константу, оно тоже будет являться решением. Поэтому в качестве собственных векторов берут такие векторы, которые имеют норму, равную единице, и тогда:



Если все собственные числа различны, то собственные векторы матрицы A
образуют систему n
линейно независимых векторов таких, что



6.
Ортогональные матрицы из собственных векторов


Из правых собственных векторов можно составить матрицу T,
а из левых – матрицу , которые обладают уникальными свойствами по отношению к матрице A
.




Умножив матрицу A
слева на матрицу , а справа – на матрицу T
,
после несложных преобразований получим:



.


Каждое скалярное произведение в матрице, принимая во внимание линейную независимость собственных векторов, полученных для различных собственных значений, можно преобразовать так:



Поэтому, результатом преобразования матрицы A
будет диагональная матрица с собственными значениями, расположенными на диагонали:



Если вместо A
взять единичную матрицу и проделать аналогичные преобразования, то станет очевидным равенство , откуда следует . Последнее позволяет для преобразования матрицы A
в диагональную обходиться только системой правых собственных векторов-столбцов:



Последнее показывает, что умножение матрицы A
на слева и на S
справа, где S –
произвольная не особая матрица, преобразует ее в некоторую матрицу B
, которая имеет определитель, равный определителю матрицы A
. Такие преобразования матриц называют эквивалентными (подобными
).


Продолжая использовать T-
матрицу, несложно получить следующие важные результаты:


.


7.
Функции с матричным аргументом


Пусть теперь задана некоторая матричная функция от матрицы A
:




.


С другой стороны очевидно и обратное



,


где – матрица с одной единицей на i
-том месте диагонали ().




где – проекторы матрицы
A
, образуемые умножением одноименных правых и левых собственных векторов по правилам умножения прямоугольных матриц с размерами соответственно и . Сумма проекторов .


Проекторы обладают свойствами идемпотентных матриц
, т.е. матриц, все степени которых равны первой. Для невырожденных проекторов () матрицы A
() справедливо:



Представление функции от матрицы A
в виде взвешенной суммы проекций называется спектральным разложением
матричной функции по собственным значениям матрицы A
:


.


Если в качестве матричных функций взять и , то их спектральные разложения будут следующими:



8. Вычисление проекторов матрицы


Проекторы матрицы можно также вычислить, воспользовавшись интерполяционным многочленом Лагранжа с матричным аргументом:



По известному спектру проекторы матрицы можно найти и методом неопределенных коэффициентов. Для чего выбирают такие функции от матрицы A
, которые вычисляются очевидным образом, например, такие:



Записывая разложение для каждой функции, получим следующую систему линейных уравнений относительно проекторов:



В случае, когда в спектре матрицы имеются кратные собственные значения, вычисление проекторов осуществляется по интерполяционным формулам Лагранжа, учитывающим еще и заданные значения производных в отдельных точках. Разложение матричной функции по значениям ее на спектре в этом случае имеет вид:



где – значения i
-тых произ-водных функции в точках, соответствующих различным (не кратным) корням характеристического многочлена,


– число кратных корней ,


– проекторы кратных корней, в выражении которых содержатся


– проекторы различных корней.


9. Пример использования числовых характеристик матриц


Знание собственных значений матрицы и ее проекторов позволяет выполнять вычисления аналитических функций получающихся, например, при решениях систем линейных дифференциальных уравнений, при исследованиях эквивалентных матричных преобразований и пр.


Для примера построим матрицу с заданными собственными значениями и собственными векторами, основанными на векторах .


Сначала необходимо убедиться в линейной независимости исходных векторов и добиться того, чтобы левые и правые одноименные собственные векторы оказались ортогональными, т.е. . Проверка линейной независимости может быть объединена с процессом ортогонализации
заданной системы векторов методом Грама-Шмидта
.


Для заданных векторов построим систему векторов таких, что , следующим образом:



Откуда последовательно находятся коэффициенты :






Взаимной ортогональности векторов v

можно было бы добиваться и так, чтобы каждый был ортогонален каждому , положив и приравняв нулю скалярные произведения :



Определитель этой системы называют определителем Грама
:


,


где - матрица, в общем случае комплексно сопряженная с матрицей


, составленной из заданных векторов.


Если грамиан
положителен, а он всегда неотрицателен, то векторы линейно независимы, а если равен нулю, то зависимы. Это один из способов проверки конкретного набора векторов на их линейную независимость.


Для заданного выше набора векторов определитель произведения матрицы X
на транспонированную X
*
будет равен



Таким образом, заданная система векторов линейно независима. Для построения ортонормированной системы векторов последовательно вычислим коэффициенты и ортогональные векторы:



После нормирования векторы образуют правую систему собственных векторов. Транспонированная Т
-матрица с этими векторами есть -матрица (); ее строки являются собственными левосторонними векторами:


.


Внешнее (матричное) произведение каждого нормированного вектора самого на себя дает нам проекторы искомой матрицы:



Умножая каждое собственное значение из заданного набора на свой проектор и суммируя, получим:


.


Аналогично получается обратная матрица:


.


С помощью этих же проекторов вычисляется любая аналитическая функция, аргументом которой является матрица A
:


.


10.
Оценка величины и нахождение собственных значений


Краткое рассмотрение основных теоретических положений линейной алгебры позволяет сделать следующие выводы: для успешного решения систем линейных алгебраических уравнений и вычислений матричных функций необходимо уметь находить ее собственные значения и собственные векторы.


Для любой матрицы A
с действительными компонентами и любого ненулевого вектора v

существует отношение Рэлея,
связывающее скалярное произведение векторов v

и Av
с минимальным и максимальным собственными значениями:


.


К высказанному необходимо сделать еще ряд замечаний, связанных со случаями, когда исходная матрица имеет кратные собственные значения или оказывается вырожденной.


Характеристическое уравнение матрицы A
с кратным корнем можно записать в виде


.


На основании этой записи можно составить минимальное
характеристическое уравнение
, для которого матрица A
также является корнем:


.


Особенности в части определения собственных значений и векторов обычно возникают в несимметричных матрицах (). Некоторые из них никакими подобными преобразованиями не удается свести к диагональной. Например, не поддаются диагонализации матрицы n-
го порядка, которые не имеют n
линейно независимых собственных векторов. Однако любая
матрица A
размера с помощью преобразования подобия может быть приведена к прямой сумме жордановых блоков
или к канонической жордановой форме
:


,


где A
– произвольная матрица размера ;


– жорданов блок размера ;


V
– некоторая невырожденная матрица размера .


Характеристическое уравнение жорданова блока размера независимо от количества единиц в верхней диагонали записывается в виде произведения одинаковых сомножителей и, следовательно, имеет только кратных корней:


.


Если выразить матрицу V
в форме вектора с компонентами в виде векторов-столбцов , то из равенства AV=VJ
для каждого жорданового блока следует соотношение


.


Здесь в зависимости от структуры верхней диагонали, в которой может быть либо ноль, либо единица. Если жордановы блоки имеют размер , то мы имеем случай симметричной матрицы или матрицы с различными собственными значениями.


При поиске решений систем линейных уравнений с несимметричными матрицами, последние стремятся теми или иными приемами свести к выражению с симметричными матрицами.


Один из возможных подходов к решению несимметричных линейных систем состоит в замене исходной системы эквивалентной системой:


.


Недостаток этого подхода состоит в том, что мера обусловленности
произведения матрицы A
на свою транспонированную, оцениваемая отношением , оказывается больше, чем у матрицы A
.


Под мерой обусловленности понимают отношение наибольшего собственного значения матрицы к наименьшему. Это отношение влияет на скорость сходимости итерационных процедур при решении уравнений.


Итак, основными алгебраическими системами уравнений можно считать неоднородные системы уравнений с симметричными матрицами коэффициентов.


Литература


1. Вержбицкий В.М. Основы численных методов: Учебник для вузов – 3-е изд. М: Высшая школа, 2009. – 840 с.


2. Самарcкий А.А. Задачи и упражнения по численным методам. Изд. 3 Изд-во: КомКнига, ЛКИ, 2006. – 208 с.


3. Турчак Л.И., Плотников П.В. Основы численных методов. Изд-во: ФИЗМАТЛИТ®, 2003. – 304 с.


4. Хеннер Е.К., Лапчик М.П., Рагулина М.И. Численные методы. Изд-во: «Академия/Academia», 2004. – 384c.


5. Чистяков С.В. Численные и качественные методы прикладной математики. СПб: 2004. – 268 с.

Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Линейные системы уравнений

Слов:2908
Символов:25048
Размер:48.92 Кб.