РефератыМатематикаПоПоток вектора через поверхность. Применение теоремы Гаусса как метод расчета полей в симметричных случаях

Поток вектора через поверхность. Применение теоремы Гаусса как метод расчета полей в симметричных случаях

.


М.И. Векслер, Г.Г. Зегря


Для решения задач применяется выражение






= qinside

представляющее собой комбинацию уравнения Максвелла с теоремой Гаусса: - собственно теорема Гаусса, - уравнение Максвелла ().


Eсли - некоторый вектор, то - поток вектора через поверхность. В частности, в вышеприведенном выражении стоит поток вектора . Векторный элемент площади . Орт нормали зависит от геометрии задачи:













=




Задача. Заряд q расположен в точке (0, 0, l). Найти поток вектора через круг радиуса R c центром в начале координат, лежащий в плоскости xy.


Решение: В плоскости xy зарядом создается поле





При вычислении потока нам потребуется величина , где - вектор нормали к кругу, который во всех точках ориентирован одинаково, а именно по или . Примем для определенности





Тогда, поскольку , а , имеем:





В последнем выражении сделан переход к полярным координатам: r - это расстояние от начала координат в плоскости xy. Теперь можно производить интегрирование по площади круга:












Φ =
=
=

Задача. Вычислить поток вектора через сферу радиуса R.


Ответ: Φ = 4π Ra


Теорема Гаусса верна всегда (это математический закон), но помогает только в симметричных случаях, когда очевидна геометрия поля. В декартовом случае заряд должен изменяться только вдоль одной координаты (например x), в цилиндрическом - только в зависимости от удаления от оси цилиндра r, а в сферическом тоже только от r, но r - удаление от центра шара. Тогда при правильном выборе гауссовой поверхности поток вычисляется очень просто, так как параллелен вектору на части поверхности и ортогонален ему на другой её части.





Выбор гауссовой поверхности при расчете поля в точке x (или r):


- плоскостная геометрия: цилиндрическая поверхность любой формы сечения yz и любой его площади (S), занимающая область (–∞... x) вдоль оси x;


- сферическая геометрия: сфера радиуса r


- цилиндрическая геометрия: цилиндрическая поверхность круглого сечения радиуса r, имеющая произвольную длину L вдоль оси z.










= Dr(r)· 4π r2 – сферическая геометрия
Dr(r)· 2π r L – цилиндрическая
Dx(x) · S – Dx(–∞)· S – плоская геометрия

Dx(–∞)≠ 0 только в некорректных задачах. При этом Dx (–∞) = –qinside(x = +∞)/2S.


Как записать qinside для разных геометрий? Если мы различаем между зарядами ρ, σ, λ, q (то есть не пытаемся всё свести к ρ, приписывая ему и бесконечные значения), то










qinside =

qc - точечный заряд в центре, σi - заряды концентрических сфер радиусов Ri (таких сфер может быть произвольное количество), а интегрирует объемный заряд. Аналогично в другой геометрии: λa - заряженная нить по оси цилиндра z, σi - заряды цилиндров радиусов Ri.





Задача. Пластина ширины 2a (ее ε≈ 1) заряжена как ρ(x) = α x2; при x = 0 (центр пластины) φ = 0. Найти φ(x), применяя теорему Гаусса.


Решение: Начать следует с нахождения поля как функции координаты Ex(x). Берем гауссову поверхность в виде цилиндрической поверхности, занимающей область (–∞... x) вдоль оси x и имеющей площадь сечения S в плоскости yz.


Поскольку





мы имеем выражение теоремы Гаусса в виде






=

В зависимости от того, в какой диапазон попадает x (x<–a, –a<x<a, x>a), левая часть дает












=
=
= 0, x<–a

Подставляя qinside в теорему Гаусса, с учетом Dx = ε0Ex получаем поле:





Теперь можно найти φ c учетом условия φ|x = 0 = 0, применяя формулу





в которой x может быть как больше, так и меньше нуля. Соответственно, для каждого из трех отрезков, на которых найдено Ex, получаем:












φ(x) =
=
=

Как видим, в итоге получается тот же результат, который был ранее получен путем решения уравнения Пуассона.


Задача. Имеются две концентрические заряженные сферы (σ1, R1 и σ2, R2). Найти Er(r) и φ(r).


Решение: По теореме Гаусса,




qinside = 4π r2 Dr(r) = 4π ε0 r2 Er

причем










qinside = 0 при r<R1
4πσ1R12 при R1<r<R2
4πσ1R12+4πσ2R22 при r>R2

Cоответственно, поле на каждом из участков будет










Er = 0 при r<R1

При вычислении потенциала мы должны вычислить интеграл . При этом необходимо правильно выписывать Er на каждoм участке:























φ(r) =
=
φ(r) =
=
φ(r) =
=

В этих выражениях для φ(r) возможны очевидные алгебраические упрощения, но мы оставим их в таком виде, поскольку в дальнейших задачах они нам потребуются именно такими.







Задача. Имеется равномерно заряженный по объему (ρ0) бесконечно длинный цилиндр круглого сечения радиуса R. Найти поле Er(r) и потенциал φ(r); при вычислении потенциала положить φ|r = 0 = 0.


Решение: В цилиндрической системе координат при наличии только объемного заряда имеем:










= Dr(r)· 2π r L = qinside
qinside =

Здесь L - произвольно выбранная длина вдоль оси цилиндра, которая далее сокращается. При вычислении qinside необходимо раздельно рассматривать случаи r<R и r>R:








qinside =

После этого, так как Dr = ε0Er, получаем поле:










Er(r) =
Er(r) =

Потенциал находится интегрированием Er с оговоренным в задаче условием φ|r = 0 = 0:
















φ(r) =
φ(r) =
=

Из вида получившегося φ(r) ясно, что на бесконечности потенциал оказывается бесконечным. Это следствие некорректности ситуации: описанный в задаче цилиндр имеет бесконечную длину и несет бесконечный суммарный заряд, чего на практике быть не может. Чтобы избежать проблем, возникающих при естественном условии φ|r = ∞ = 0, искусственно задано φ|r = 0 = 0.


Список литературы


1. И.Е. Иродов, Задачи по общей физике, 3-е изд., М.: Издательство БИНОМ, 1998. - 448 с.; или 2-е изд., М.: Наука, 1988. - 416 с.


2. В.В. Батыгин, И.Н. Топтыгин, Сборник задач по электродинамике (под ред. М.М. Бредова), 2-е изд., М.: Наука, 1970. - 503 с.


3. Л.Д. Ландау, Е.М. Лифшиц, Теоретическая физика. т.8 Электродинамика сплошных сред, 2-е изд., М.: Наука, 1992. - 661 с.

Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Поток вектора через поверхность. Применение теоремы Гаусса как метод расчета полей в симметричных случаях

Слов:1155
Символов:10017
Размер:19.56 Кб.