РефератыБиологияФиФизиологический период развития микробиологии

Физиологический период развития микробиологии


Контрольная Микробиология



1.
Физиологический период развития микробиологии. Открытия Л. Пастера


Микробиология (от греч. micros – малый, bios – жизнь, logos – наука) – наука о микроскопически малых существах, называемых микроорганизмами. Микробиология изучает морфологию, физиологию, биохимию, систематику, генетику и экологию микроорганизмов, их роль и значение в круговороте веществ, патологии человека, животных и растений, в экономике.


К микроорганизмам относятся преимущественно одноклеточные организмы – бактерии, микроскопические грибы и водоросли, простейшие, а также организмы с неклеточной организацией – вирусы. Предметом изучения микробиологии традиционно служат в основном бактерии, а также в общем плане организации рассматриваются вирусы.


Микробиология прошла длительный путь развития, исчисляющийся многими тысячелетиями. Уже в V.VI тысячелетии до н.э. человек пользовался плодами деятельности микроорганизмов, не зная об их существовании. Виноделие, хлебопечение, сыроделие, выделка кож . не что иное, как процессы, проходящие с участием микроорганизмов. Тогда же, в древности, ученые и мыслители предполагали, что многие болезни вызываются какими-то посторонними невидимыми причинами, имеющими живую природу.


Следовательно, микробиология зародилась задолго до нашей эры. В своем развитии она прошла несколько этапов, не столько связанных хронологически, сколько обусловленных основными достижениями и открытиями.


Историю развития микробиологии можно 'разделить на пять этапов: эвристический, морфологический, физиологический, иммунологический и молекулярно-генетический.


Открытие новых микроорганизмов сопровождалось изучением не только их строения, но и жизнедеятельности. Поэтому XIX в., особенно его вторую половину, принято называть физиологическим периодом в развитии микробиологии. Этот этап связан с именем Л. Пастера,
который стал основоположником медицинской микробиологии, а также иммунологии и биотехнологии.


Начало изучению физиологии и биохимии микроорганизмов, выяснению их роли в природе и жизни человека положил французский ученый Луи Пастер (1822– 1895). С его работ начался физиологический период микробиологии. Л.


Пастер впервые в противоположность мнению химиков показал, что процессы брожения и гниения обусловливаются жизнедеятельностью ми-кроорганизмов, специфических для каждого вида брожения. Он установил, что эти процессы могут осуществляться без доступа молекулярного кислорода в анаэробных условиях. Таким образом, Пастер открыл принципиально новое биологическое явление – анаэробиоз. Благодаря своим исследованиям Пастер смог установить природу «болезней» вина и пива, показав, что их скисание и прогоркание также являются результатом жизнедеятельности микроорганизмов. Он предложил способ предохранения вина и пива от скисания и прогоркания (способ борьбы с контаминацией пищевых продуктов): их кратковременный прогрев до температуры 70–80 °С, названный впоследствии пастеризацией.


К области теоретических открытий Пастера относятся его работы о невозможности самозарождения жизни. Оппоненты Пастера утверждали, что в субстратах, подвергающихся брожению или гниению, их возбудители самозарождаются. Безупречными экспериментами Пастер показал, что в сосудах со стерильным бульоном, закрытых ватными пробками во избежание контакта с воздухом, самозарождение микроорганизмов невозможно. Рост микроорганизмов наблюдается тогда, когда в сосуд с питательной средой попадает воздух, содержащий микроорганизмы, или питательная среда подвергается недостаточной термической обработке, при которой устойчивые к температуре споры бактерий не погибают.


Неоценимый вклад внес Пастер в медицинскую микробиологию. В процессе исследований он установил, что не только брожение, болезни пива и вина, шелковичных червей обусловлены жизнедеятельностью микроорганизмов, но и многие болезни человека и животных также вызываются микроорганизмами. Они, подобно возбудителям брожения, очень специфичны: каждый вид патогенных микроорганизмов вызвает строго определенное заболевание. Пастер доказал микробную природу таких заболеваний человека и животных, как сибирская язва, куриная холера, бешенство. Кроме того, он разработал способ борьбы с возбудителями этих заболеваний с помощью вакцин – культур патогенных микроорганизмов с ослабленными вирулентными свойствами.


Л. Пастер с полным основанием может считаться основоположником общей, промышленной, медицинской и ветеринарной микробиологии.


2.
Процесс денитрификации. Химизм. Возбудители. Особенности энергетического обмена у них. Значение этого процесса в объединении почвы азотом, методы регулирования агротехническими приемами.


Денитрификация [от лат. de - приставка, означающая здесь завершение действия, nitr(ogenium) - азот и facio - делаю], широко распространённый в природе процесс восстановления нитратов до молекулярного азота, вызываемый бактериями. Денитрификация протекает с образованием нитритов и закиси азота по схеме: 2HNO3
→2HNO2
→N2
O→N2
.


Энергию, необходимую для восстановления нитратов, бактерии получают в результате окисления органических веществ (углеводы, спирты, органические кислоты), а кислород нитратов является акцептором электрона и водорода. Денитрификация,
происходящая при окислении глюкозы, может быть выражена уравнением: 5C6
H12
O6
+24KNO3
→24КНСО3
+6CO2
+12N2
+18H2
O.


Существуют также особые виды денитрифицирующих бактерий, восстанавливающие нитраты при окислении серы или молекулярного водорода. Денитрификация сильно угнетается и прекращается полностью в присутствии молекулярного кислорода. С денитрификацией не следует смешивать восстановление нитратов до аммиака, связанное с ассимиляцией микроорганизмами нитратов как источника азота. Такой способностью обладают многие бактерии, а также актиномицеты и грибы, которые вообще не способны вызывать денитрификацию. От денитрификации следует отличать ложную денитрификацию, при которой в культуре бактерий или в природе происходит чисто химическое взаимодействие нитритов с аммонийными солями, аминами или амидами, сопровождаемое выделением молекулярного азота. Например, NH4
CI + HNO2
→N2
+ HCl + 2H2
O. В 1 г
почвы содержатся десятки и сотни тысяч денитрифицирующих бактерий. Однако денитрификация в почве может протекать энергично только при определённых условиях: достаточном количестве нитратов и легко разлагаемого микроорганизмами безазотистого органического вещества, оптимальной реакции (pH 7,0-8,2) и температуре (25-30°С), а главное при анаэробных условиях. Именно поэтому денитрификация протекает весьма интенсивно во влажных, плохо аэрируемых почвах. При денитрификация содержание азота в почве падает в результате выделения молекулярного азота и следов закиси азота, что влечёт за собой снижение урожайности почвы. После внесения в глинистую почву нитратов и растительных остатков за 10 дней 75% азота нитратов улетучивается из почвы в виде молекулярного азота. Хорошая аэрация почвы (обработка), уменьшение влажности почвы в определённые периоды (дренаж), создание условий для лучшего потребления нитратов почвы культурными растениями - всё это может понизить денитрификацию в почве.


Процесс денитрификации в почвах.


Процессы денитрификации в почве нежелательны, так как они приводят к обеднению почвы азотом. Плохая аэрация, высокая влажность и щелочная реакция почвы (рН 7,0— 8,2) способствуют развитию денитрифицирующих бактерий, а рыхление почвы угнетает их. В окультуренных почвах Д. не приносит большого ущерба, так как в них обеспечена аэрация, а растворимых органических веществ содержится немного. Поэтому повышение окуль-туренности почвы — лучший метод борьбы с Д. В связи с этим для сохранения большего количества азота в почве прудов необходимо ее ежегодно во время осушения прудов рыхлить (верхний слой толщиной 20— 30 см разрыхляют, но не перевертывают, как при вспашке почвы).


В земной коре общие запасы азота составляют десятки миллиардов тонн. В основном он присутствует в виде органических соединений. В почвах Нечерноземной зоны в среднем содержится общего азота: в супесчаной — 0,05-0,07%, в суглинистой — 0,1- 0,2%, в глинистой — 0,1-0,23%, в торфянистой — 0,6-1%. Общий запас азота в супесчаной дерново-подзолистой почве — 1,5 т/га, а в черноземной-15 т/га. Это валовое содержание азота, а в минеральных соединениях его около 1% от общего. Скорость минерализации азота имеет важное значение.


Разложение органических азотистых веществ в почве происходит следующим путем: белки, гуминовые вещества — аминокислоты, амиды — аммиак — нитриты — нитраты. В результате процесса аммонификации образуются органические кислоты, спирты, углекислота и аммиак. Органические кислоты и спирты разлагаются до углекислого газа, водорода, воды, метана. Аммиак с кислотами образует соли, аммоний поглощается почвенными коллоидами и глинистыми минералами. Процесс аммонификации идет в аэробных и анаэробных условиях, но в анаэробных условиях при сильнокислой и щелочной реакциях замедляется. В аэробных условиях соли аммония окисляются до нитратов, образуется азотная кислота, которая нейтрализуется бикарбонатом кальция и поглощенными основаниями почвы. При влажности почвы 60-70%, 25-32 °С и рН 6,2-8,2 нитрификация идет интенсивно. Содержание нитратов (обычно 2-20 мг/кг почвы) зависит от состояния почвы. Например, под паром или под какой-либо культурой содержание нитратов может различаться в десятки раз.


В дерново-подзолистой почве при кислой реакции, избыточной влажности, плохой аэрации и низкой температуре процесс минерализации останавливается на стадии образования аммиака. Нитрификация подавляется осенью и ранней весной, летом этот процесс протекает интенсивно. Улучшение аэрации в результате обработки почвы усиливает нитрификацию; известкование также улучшает протекание данного процесса. Внесение органических и минеральных удобрений обогащает почву элементами питания, усиливая минерализацию.


В паровых полях происходит не только обогащение почвы нитратами; велики также потери. Чтобы избежать больших потерь азота при поливах, необходимо рассчитать количество поливной воды таким образом, чтобы почвенные воды не смыкались с грунтовыми. Большие потери азота происходят в результате процесса денитрификации — восстановления нитратов до газообразного азота. Особенно интенсивна денитрификация при анаэробных условиях, в щелочной среде и большом количестве органического вещества. Бактерии-денитрификаторы наиболее интенсивно окисляют органическое вещество, используя кислород нитратов, при температуре 28-30 °С и рН 7,0-7,5. Процесс денитрификации идет и в обычных условиях, поскольку всегда внутри агрегатов почвы могут создаваться анаэробные условия. Часть азота почвы и внесенных удобрений теряется в виде аммиака, например, при внесении аммонийных солей в карбонатные почвы или мочевины поверхностно. При внесении аммиака нужна глубокая заделка удобрений. Известкование усиливает потери аммиачного азота из мочевины и солей аммония. Солома или соломистый навоз закрепляют азот (иммобилизация) в телах микроорганизмов. Отношение азота к углероду в телах микроорганизмов 1:5-1:7, а в органических остатках (солома бобовых) 1:20-1:25, (солома злаковых) 1:80-1:100. Микроорганизмы дополнительно используют минеральный азот, содержащийся в почве. После отмирания микроорганизмов азот, закрепленный в их телах, минерализуется и может быть использован растениями.


Д. Н. Прянишников считал, что «... главным условием, определяющим среднюю высоту урожая в разные эпохи, была степень обеспеченности сельскохозяйственных растений азотом». Без применения удобрений за 30-50 лет запасы гумуса и азота, например, в дерново-подзолистой почве снижаются на 25-50%.


3.
Практическое использование характера взаимоотношений между микроорганизмами для регулирования их жизнедеятельности при производстве и хранении пищевых продуктов.


Хранение пищевых продуктов.


Микробиологические процессы снижают пищевую ценность, делают продукты непригодными к употреблению. К этим процессам относят брожение, гниение и плесневение.


Брожение
- это расщепление безазотистых органических веществ (углеводов, этилового спирта, молочной кислоты) под действием ферментов, в

ыделяемых микроорганизмами. В процессе хранения пищевых продуктов могут возникать спиртовое, молочно-кислое, уксусно-кислое, масляно-кислое брожение и др.


Спиртовое брожение лежит в основе виноделия, пивоварения, получения спирта. Однако этот вид брожения часто является причиной' порчи многих пищевых продуктов - варенья, джемов, компотов, соков.


При молочно-кислом брожении под действием молочно-кислых бактерий происходит разложение cахаров с образованием молочной кислоты. Этот процесс используют при производстве кисло-молочных продуктов, сыра, ржаного хлеба, квашеных овощей. Вместе с тем молочно-кислое брожение вызывает прокисание пива, вина, молока.


Уксусно-кислое брожение вызывается уксусно-кислыми бактериями, которые превращают спирт в уксусную кислоту. Это брожение является причиной порчи вин, пива, кваса.


Масляно-кислое брожение возникает при участии мас-ляно-кислых бактерий. Образующаяся при этом масляная кислота придает горечь и неприятный запах квашеной капусте, молочным продуктам, тесту. Выделяющиеся при этом газы обусловливают бомбаж консервов.


Гниение
- глубокий процесс распада белков под влиянием протеолитических ферментов, выделяемых гнилостными микроорганизмами. Конечными продуктами распада являются сероводород, углекислый газ, аммиак, метан, индол, меркаптаны и другие вещества, которые придают продуктам крайне неприятный запах и могут стать причиной отравления. Чаще всего загнивают продукты, богатые белком, - мясо, рыба, яйца и др.


Плесневение
вызывают плесневые грибы, выделяющие различные ферменты, расщепляющие углеводы, белки и жиры. При плесневении продукты покрываются налетами различного цвета, приобретают неприятные вкус и запах. Плесень вызывает порчу плодов, овощей, хлеба, мяса, масла, яиц.


Консервирование пищевых продуктов


Квашение и мочение как методы консервирования основаны на образовании молочной кислоты в результате сбраживания имеющегося в продуктах сахара под влиянием молочнокислых бактерий. Консервирующим действием обладает также поваренная соль, добавляемая при этих видах переработки. Квашение и мочение являются широко распространёнными в домашних условиях методами консервирования продуктов (мочение яблок, квашение капусты).


Соление основано на обезвоживании продукта и микробов под действием гипертонических 15—20-процентных растворов поваренной соли.


Для повышения осмотического давления с целью консервирования пищевых продуктов применяют сахар
или поваренную соль.
Сахар или сахарный сироп используют для выработки из плодов и ягод варенья, джема, повидла, желе, цукатов и других изделий. Концентрация сахара доводится до 65 %


Поваренную соль широко применяют для консервирования рыбы, мяса, грибов. Развитие гнилостных бактерий прекращается при концентрации соли 10 %, а при 20-25 % задерживается рост всех микробов. Сильносоленые продукты имеют низкие вкусовые качества. При солении овощей, грибов, рыбы потери растворимых веществ достигают 20-50 %. Различают сухой, мокрый и смешанный способы посола.


К биохимическим методам консервирования относят 'консервирование пищевых продуктов молочной кислотой (квашение, соление, мочение) и этиловым спиртом. Эти вещества, образующиеся в продуктах в результате биохимических процессов, подавляют деятельность гнилостных микроорганизмов, вызывающих порчу продуктов.


При квашении овощей и плодов содержащиеся в них сахара сбраживаются молочно-кислыми бактериями в молочную кислоту. Молочная кислота в количестве 0,6-1,4 %, придает продукту специфические приятные вкус и аромат. В квашении плодов и овощей помимо молочно-кислых бактерий участвуют дрожжи, сбраживающие сахара в спирт и углекислый газ. Содержание этилового спирта в квашеных продуктах не должно превышать 0,5-0,7%, в моченых яблоках - 0,8-1,8%,.


Качество квашеных продуктов зависит от содержания сахара, количества добавленной соли, условий хранения и других факторов.


Химические методы консервирования основаны на добавлении к пищевым продуктам небольшого количества химических веществ - консервантов, которые обладают бактерицидным или антисептическим действием и должны быть безвредными, не изменять вкус, запах и цвет продукта. К таким веществам относят уксусную, бензойную, сорбиновую, борную, пропионовую кислоты, сернистый ангидрид, метабисульфит калия, уротропин, некоторые антибиотики.


Маринованные продукты
содержат уксусную кислоту в количестве 0,6-1,2 %. При такой концентрации задерживается развитие микроорганизмов в продуктах, и они приобретают специфический вкус. Маринуют овощи, плоды, грибы, сельдь и др.


Копчение
относится к комбинированному методу консервирования. Суть его в том, что продукт после соления обрабатывают дымом или коптильной жидкостью. В их составе содержатся антисептические вещества - фенол, фурфурол, альдегиды, смолы и другие, которые предохраняют продукты от развития в них микроорганизмов. При копчении продукты приобретают особые вкус и аромат, поверхность их окрашивается в коричнево-золотистые тона. Этому процессу подвергают мясные и рыбные продукты.


4.
Заполнить таблицу 2, по использованию в пищевой промышленности биологических препаратов.


Таблица 2 - Биологические препараты, используемые в пищевой промышленности
































Биологические препараты


Используемые организмы


Механизм действия


Назначение


Закваска, кефирный грибок


22 вида микроорганизмов:vмолочнокислые стрептококки, молочнокислые палочки, уксуснокилые бактерии, дрожжи и др.


Закваска способствует молочнокислому брожению в молоке и частично спиртовому. Сочетание молочной кислоты, углекислоты и спирта обуславдивают специфический вкус кефира


Приготовление кефира из молока


Пекарские дрожжи


Сахаромицеты – одноклеточные грибы класса сумчатых грибов (S.Serevisiae)


Сахаромицеты преобразуют сахара, содержащиеся в муке в углекислый газ, который позволяет поднятся тесту


Приготовление хлебобулочных изделий и кондитерской промышленности


Грибы


Aspergillus orysae


Ферменты продуцируют грибы. Неочищенные ферментные препараты получают высушиванием мицелия вместе с субстратом с дальнейшим изменением. Далее при необходимости проводят чистку препарата


Получение ферментов α-амилазы и липазы для гидролиза углеводов и жиров


Закваска для йогурта


Болгарская палочка, термофильный стрептококк


При внесении этих культур в пастеризованное молоко сложные вещества распадаются на более простые, образуется молочная кислота при расщеплении молочного сахара


Приготовление йогурта из молока


Бифидобактерии


Виды: B.Bifidum, B.longum, B.brive, B.infantis


Бактерии вводят в молоко с молочнокислыми культурами


Приготовление Бифилайфа, повышающего иммунитет, нормализующего работу кишечника, улучшающего обмен веществ



5.
Заполнить таблицы 3, 4 и представить рисунки 1,2:


Таблица 3 - Типы питания микроорганизмов




























Типы питания


Источник энергии


Источник углерода


Микробы


Фотоавтотрофы


Фотосинтез (солнечный свет)


Углекислый газ


Зеленые серные бактерии, красные серные бактерии и красные несерные бактерии


Фотогетеротрофы


Фотосинтез (солнечный свет)


Органические соединения


Пурпурные несерные бактерии


Хемоавтотрофы


Хемосинтез (энергия окисления неорганических веществ)


Углекислый газ


Железобактерии, бесцветные серобактерии, нитрифицирующие бактерии


Хемогетеротрофы


сапрофиты


паразиты


Хемосинтез (энергия химических связей)


Органические соединения: органические вещества синтезированные другими организмами после смерти


Органические вещества живого организма


Грибы, актиномицеты,хламидомонадовыеипротококковыеводоросли


Бактерии(риккетсии,хламидии),вирусы













Таблица 4 - Способы получения энергии микроорганизмами





















Источники энергии


Исходные вещества


Конечные продукты


Источники кислорода (свободный, связанный)


Представители


Аэробное дыхание:


Полное окислениеорганических веществ


Неполноеокислениеорганическихвеществ


Окисление неорганическихсоединений


Углеводы


Углеводы


Аммиак


Углекислый газ и вода


Органическиекислоты


Неорганические кислоты


Свободный


Свободный


Свободный


Актиномицеты


Плесневые грибы, уксуснокислые бактерии


Nitrosospina, Nitrosicoccus,Thiobacillus


Анаэробноедыхание


Сульфатное


Нитратное


Брожение


Окисление неорганическихсоединений


Сульфаты


Нитраты


Органические углеродсодержащиесоединения


Сероводород сульфидных материалов


Аммиак, молекулярный азот


Сложные органические соединения (спирты, кислоты)


Связанный


Связанный


Связанный


Бактерии родов Desulfovibrio. Desulfotomaculum, Desulfococcus, Desulfosarcina, Desulfonema


Грибы


Молочнокислые бактерии, дрожжи






Список использованной литературы


1. Асонов Н. Р. Микробиология. - 4-е изд., перераб. и доп. - М.: Колос, 2001. - 352 с.


2. Гусев М.В., Микробиология. - М.: Издат. центр «Академия», 2003. - 464 с.


3. Емцев В.Т., Мишустин Е.Н. Микробиология. - М.: Колос, 1998. - 448 с.


4. Жарикова Г.Г. Микробиология продовольственных товаров. Санитария и гигиена. М.: «Академия», 2005. - 304 с.


5. Ирьянова Е.М. Микробиология: Краткий курс лекций. - Ижевск: РИО ИжГСХА, 2004.-156 с.


6. Умаров М. М., Кураков А. В., Степанов А. Л. Микробиологическая трансформация азота в почве. — М.: ГЕОС, 2007.


7. Лысак, В.В. Микробиология : учеб. пособие / В. В. Лысак. – Минск : БГУ, 2007.


1. Представьте рисунок 1 морфологические признаки грибов: Мукор, Пенициллиум, Аспер-гиллус, Триходерма; отметьте соответствующие обозначения цифрами: 1. Одноклеточный мицелий. 2.-Многоклеточный мицелий. 3. Спорангий со спорами. 4. Спорангиеносец. 5. Конидии. 6. Конидиеносец.


Изобразите на рисунке 2 разнообразие шаровидных, палочковидных, извитых и нитчатых форм.

Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Физиологический период развития микробиологии

Слов:2819
Символов:25481
Размер:49.77 Кб.