1) Сво-ва живого.
1. Самовозобновление, связано с постоянным обменом вещества и энергии, и в основе которого лежит способность хранить и использовать биологическую информацию в виде уникальных информационных молекул: белков и нуклеиновых кислот. 2. Самовоспроизведение, которое обеспечивает преемственность между поколениями биологических систем. 3. Саморегуляция, которая основана на потоке вещества, энергии и информации . 4. Большинство химических процессов в организме находятся не в динамичном состоянии. 5. Живые организмы способны к росту. Признаки живого:
|
12) Эволюционные идеи. Эволюция.
Основательно теория эволюции была разработана французским натуралистом и философом Жан-Батистом Ламарком, который сконцентрировал внимание на процессах изменения организмов во времени и представлял эволюцию как прогрессивное развитие в природе. Биологическая эволюция
развитие живой природы, сопровождающееся изменением генетического состава популяций, формированием адаптаций, видообразованием и вымиранием видов, преобразованием экосистем и биосферы в целом. Социальная эволюция
Гены, наследственность, фенотип, мутации. Механизмы эволюции:
|
|
2) Химический состав клетки.
Макроэлементы:
Ультра микроэлементы:
|
10) Строение хромосом.
Исследование тонкой структуры хромосом показало, что они состоят из ДНК, белка и небольшого количества РНК. Молекула ДНК несет отрицательные заряды, распределенные по всей длине, а присоединенные к ней белки — гистоны заряжены положительно. Этот комплекс ДНК с белком называют хроматином. Наследственная информация организма строго упорядочена по отдельным хромосомам. У человека всего 46 хромосом. |
|
3) Белки. Строение, функции.
Протеины, полипептиды —высокомолекулярные органические вещества, состоящие из соединённых в цепочку пептидной связью альфа-аминокислот. Белки отличаются по степени растворимости в воде, но большинство белков в ней растворяются. К нерастворимым относятся, например, кератин (белок, из которого состоят волосы, шерсть млекопитающих, перья птиц и т. п.) и фиброин, который входит в состав шёлка и паутины. Белки также делятся на гидрофильные и гидрофобные. К гидрофильным относятся большинство белков цитоплазмы, ядра и межклеточного вещества, в том числе нерастворимые кератин и фиброин. К гидрофобным относятся бол
ьшинство белков, входящих в состав биологических мембран интегральных мембранных белков, которые взаимодействуют с гидрофобными липидами мембраны (у этих белков обычно есть и небольшие гидрофильные участки).
|
||
4) Клеточная теория.
Клеточная теория была сформулирована в 1839 г. немецким зоологам и физиологом Т. Шванном. Согласно этой теории, всем организмам присуще клеточное строение. Клеточная теория утверждала единство животного и растительного мира, наличие единого элемента тела живого организма — клетки. В 1665 году английский естествоиспытатель Р. Гуку открыл клетку. В 1674 году голландский натуралист А. ван Ле-венгук открыл одноклеточные организмы. Клеточная теория включает следующие основные положения: 1. Клетка — элементарная единица живого, способная к самообновлению, саморегуляции и самовоспроизведению й являющаяся единицей строения, функционирования и развития всех живых организмов. 2. Клетки всех живых организмов сходны по строению, химическому составу и основным проявлениям жизнедеятельности. 3. Размножение клеток происходит путем деления исходной материнской клетки. 4. В многоклеточном организме клетки специализируются по функциям и образуют ткани, из которых построены органы и их системы, связанные между собой межклеточными, гуморальными и нервными формами регуляции. |
||
5) Строение клетки.
Тело каждого многоклеточного животного и растения слагается из клеток, различных по внешнему виду, что связано с их функциями. Основные общие компоненты клетки — наружная мембрана, цитоплазма и ядро. Клетка может жить и нормально функционировать лишь при наличии всех этих компонентов, которые тесно взаимодействуют друг с другом и с окружающей средой. Состав: наружная мембрана, цитоплазма, митохондрии, эндоплазматическая сеть, рибосомы, комплекс Гольджи, клеточный центр, ядро, хромосомы, ядрышко, лизомсомы, хлоропласты и т.д. |
8) Биологическое значение митоза и мейоза.
Митоз - приводит к увеличению числа клеток, росту организма. Обеспечивает вегетативное размножение и регенерацию.Мейоз лежит в основе образования половых клеток (гамет) у животных и спор у растений. Обеспечивает возможность полового размножения и комбинативную изменчивость потомства. |
11) Кроссинговер.
Кроссинговер - процесс обмена участками хромосом при перекресте хромосом. Кроссинговер - взаимный обмен гомологичными участками хромосом между гомологичными (парными) хромосомами исходных гаплоидных наборов. Таким образом, особи имеют новые, различающиеся между собой генотипы. При кроссинговере происходит разрыв двойной спирали ДНК в одной материнской и одной отцовской хроматиде, а затем получившиеся отрезки воссоединяются "наперекрест" (процесс генетической рекомбинации). |
6) Митоз.
Митоз - деление ядра соматических клеток эукариотов с сохранением числа хромосом. В отличие от мейоза, митотическое деление протекает без осложнений в клетках любой плоидности, поскольку не включает как необходимый этап конъюгацию гомологичных хромосом в профазе. |
7) Мейоз.
Мейоз - деление ядра эукариотической клетки с уменьшением числа хромосом в два раза. Происходит в два этапа (редукционный и эквационный этапы мейоза). Мейоз не следует смешивать с гаметогенезом — образованием специализированных половых клеток, или гамет, из недифференцированных стволовых. |
9) Оплодотворение.
Во время овуляции все, что содержится во влагалище. После того, как сперматозоиды подняты вверх из влагалища, они двигаются к фаллопиевой трубе, где находится яйцеклетка. После того как, сперматозоид дошёл до яйцеклетки, то дальше он должен пробить плотную защитную мембрану яйцеклетки. После оплодотворения зародыш отправляется в матку. Спустя пять дней он начинает постепенно освобождаться от защитной мембраны. Начинается процесс прикрепления зародыша к стенкам матки. |