РефератыМатематикаЗаЗагальні властивості неперервних функцій

Загальні властивості неперервних функцій



Загальні властивості неперервних функцій однакові як для функцій однієї змінної, так і для функцій багатьох змінних.


Теорема 3. (Вейєрштрасса).
Функція , визначена і неперервна в обмеженій замкненій області D, є обмеженою.


Для функції однієї змінної замкненою областю D є сегмент, наприклад, [а, b].


Сформулюємо теорему 3 для функції однієї змінної у = f(х). Функція f(х), неперервна на [а, b], є обмеженою.


Зауваження. Теорема 3 не виконується, якщо область D відкрита. Наприклад, у = неперервна в інтервалі (0, 1), але вона в цьому інтервалі не обмежена.


Теорема 4. (про знак функції).
Якщо функція неперервна в точці А і f(А) ≠ 0, то функція в до­статньо малому околі точки А зберігає знак.


Сформулюємо теорему 4 в термінах функції однієї змінної:


якщо функція у = f (х) неперервна в точці а і f(а) ≠ 0, то функція в достатньо малому околі точки а зберігає знак.


Дійсно, нехай , наприклад, f(а) > 0. Покажемо, що для будь-якого > 0 можна знайти таке > 0, що для всіх х (а — , а + ) виконується нерівність f(х) > 0.


Побудуємо -окіл точки а і -окіл точки f(а) (рис. 3.75).


Якщо взяти = min (h1
h2
), то завжди можна побудувати прямокутник із сторонами 2 і 2 такий, що f(х) > 0.


Теорема 5 (про корінь функції).
Якщо функція визначена і неперервна в деякій однозв'язній області D, причому в цій області дві точки А (а1
а2
, ..., аn
) і В (b1,
b2
, ..., bn
), в яких функція набуває значень різних знаків:


f(А) < 0, f(В) > 0,


то в цій області знайдеться принаймні одна точка С, в якій функція перетворюється в нуль, тобто f(С) = 0.



Введемо поняття однозв'язної області. Множина точок простору Е„ називається простою дугою Жордана (простою кривою), якщо цей простір можна дістати в результаті відображення деякого сегмента t0
≤ t ≤ Т за допомогою системи функцій



неперервних на цьому сегменті, причому двом різним значенням параметра t відповідають, дві різні точки.


Якщо точка М0
(, (t0
), ,…, збігається з точкою , то крива називається прос­тою замкненою кривою.


Розглянемо просту криву, задану рівняннями


х = х(t), y = y(t) (5.18)


на площині. Якщо будь-які дві точки області, розміщеної на площи­ні, можна сполучити простою кривою, яка міститься в цій області, то область називається зв'язною. Для утворення однозв'язної обла­сті необхідно розглядати замкнену криву (5.18).


Якщо побудувати просту замкнену криву (5.18) на площині, то площина розіб'ється на дві області — внутрішню і зовнішню.


Область D на площині називається однозв'язною, якщо будь-яка область внутрішня відносно простої довільної замкненої кривої, яка міститься в D, також міститься в D. На рис. 3.76 області а і б однозв'язні, а область в — неоднозв'язна. Поняття зв'язної і однозв'язної областей по

ширюється і на випадок n-вимірного простору.


Для функції однієї змінної теорема 5 формулюється таким чи­ном: якщо у = f(х) неперервна на [а, b] і на кінцях сегмента на­буває значень різних знаків, то всередині сегмента знайдеться принаймні одна точка така, що f () = 0.


Точка називається коренем (нулем) функції f(х), а сформульована теорема називається теоремою про корінь (про нуль).


На рис. б — три корені, а на рис., a — один.


Теорема
6
(про
проміжне
значення)
. Якщо функція неперервна в зв'язній області D (відкритій або замкненій) і набуває різних значень у точках М1
і М2
, то яким би не було число С, що міститься між значеннями f(М1
) і f(М2
), існує принаймні одна така точка М3
, яка лежить всередині D, що


f(М3
) = С


Сформулюємо теорему 6 для функції однієї змінної:


якщо у = f(х) неперервна у проміжку і набуває різних значень у двох точках а і b сегмента [а, b] f(a) = А і f(b) = В, то для будь-якого С, що лежить між А і В, А < С < В, всередині сегмента знайдеться принаймні одна така точка , що С = f().


Доведення. Нехай А < В і А < С < В (рис. 3.78). Побудуємо функцію Н (х) = f(х) - С.


Для цієї функції




Функція Н(х) неперервна на [а, b] як різниця двох неперервних функцій f(х) і сталої (х)= С. Отже, до функції Н(х) застосована теорема про корінь. Тоді на [а, b] існує точка така, що Н() = 0, тобто



Звідси



що й треба було довести.


Теорема
7 (про
найменше
і найбільше значення
). Якщо функція неперервна в обмеженій замкненій області D, то вона обмежена, тобто всі її значення містяться між двома скінченними числами та і М:


m ≤ f(X) ≤ M.




Числа т
і М називаються найменшим і найбільшим значен­нями функції. При цьому в області D знайдеться принаймні одна точка Х1
D, в якій функція f(X1
) набуває найменшого значення f(Х1
) = т
; і принаймні одна точка Х2
D, в якій функція набуває найбільшого значення f(Х2
) = М.


Сформулюємо теорему 7 для функції однієї змінної:


якщо функція у = f(х) неперервна на [а, b], то вона обмеже­на, тобто всі її значення містяться між. двома скінченними чи­слами т
і М, які називаються найменшим і найбільшим значен­нями функції на сегменті [а, b].


m ≤ f(x) ≤ M.


На рис. зображена неперервна на [а, b] функція, у якої є точки і такі, що



і одна точка х2
, в якій f(х2
) = М.


Теорема 8
(Кантора).
Якщо функція неперервна в обмеженій замкнутій області D, то вона рівномірно неперервна в D.


Теорему наводимо без доведення.

Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Загальні властивості неперервних функцій

Слов:934
Символов:6592
Размер:12.88 Кб.