Санкт-Петербургское государственное образовательное учреждение среднего профессионального образования
Согласовано:
Предметной (цикловой) комиссией Председатель
____________/_____________
(Подпись) (ФИО)
«_____» __________200__г.
Утверждено
:
Заместителем директора по УР
__________/______________/
(Подпись) (ФИО)
«____»________200___г.
Указания по проведению
практической работы № ___1____
Задачи на вычисление пределов
(Название работы)
По дисциплине «Математика»
Специальность __080110, 080112, 080501__
Разработал преподаватель
_____________(___................. __)
(Подпись) (ФИО)
«_______» _________________200___г.
Цель работы:
1. Формировать умения и навыки вычисления пределов
2. Формировать умения и навыки самостоятельного умственного труда
3. Прививать умения и навыки работы со справочным материалом
4. Определить уровень остаточных знаний студентов по данной теме
Перечень справочной литературы :
1. Богомолов Н.В. «Практические занятия по математике», М: Высшая школа, 2004
2. Письменный Д. «Конспект лекций по высшей математике», ч.1., Москва, Айрис-Пресс, 2004
3. Шипачев В.С. «Задачник по высшей математике», М: Высшая школа, 2003
4. Выгодский М.Я. «Справочник по высшей математике», Росткнига, 2001
Краткие теоретические сведения:
Предел последовательности
Определение.
Число называется пределом последовательности , если для любого положительно го числа найдется такое натуральное число , что при всех > выполняется неравенство
Пишут:
Графически это выглядит так:
n
-
Т.е. элемент находится в - окрестности точки а. При этом последовательности называется сходящейся, в противном случае – расходящейся.
Основные свойства сходящихся последовательностей
1)Сходящаяся последовательность ограничена.
2)Пусть , , тогда а) б) в)
3)Если и для всех выполняется неравенства , то .
4) Если и последовательность {уn
} - ограниченная, то
№1. Найти пределы:
|
|
|
|
Бесконечно большие и бесконечно малые функции
Определение.
Например: 1) при б. м. ф. т.к. 2) при б. м. ф. т. к Определение.
Например, есть б. б. Ф при ; если б. б. ф. при действительно и Теорема
Теорема (обратная).
Например, требуется вычислить . Представим числитель и знаменатель в виде суммы числа и б.м.ф. Функции при есть б.м.ф. таким образом Основные теоремы о пределах
Теорема 1.
Теорема справедлива для алгебраической суммы любого конечного числа функций. Теорема 2.
Теорема 3.
. Следствие 1.
Следствие 2.
Теорема 4.
Примеры:
1)== == === 2) = = 3) Первый замечательный предел
Второй замечательный предел
или Примеры:
Вычислить: 1) . 2) . 3) 4) === №2. Найти пределы:
№3. Найти пределы:
Порядок проведения работы:
1. Используя теоретические сведения выполнить предложенное преподавателем задание 2.
Лист 1. Практическая работа по теме «Вычисление пределов» Выполнил:__________ (ФИО) группа:_____________ Проверил:__________ Оценка:____________ Лист 2. № примера Решение: Ответ: Оформление работы:
Функция называется бесконечно малой при , если
Функция называется бесконечно большой при , если , или
(о связи между функций, ее приделом и бесконечно малой функцией
). Если функция имеет придел, равный , то ее можно представить как сумму числа и бесконечно малой функции , т.е. если
Если функцию можно представить в виде суммы числа А и б.м.ф. (x), то число А является пределом функции, т.е если , то
Предел суммы (разности) двух функций равен сумме (разности) их пределов:
Функция может иметь только один предел при .
Предел произведения двух функций равен произведению их пределов:
Постоянный множитель можно выносить за знак предела:
Предел степени с натуральным показателем равен той же степени предела: .
Предел дроби равен пределу числителя, деленному на предел знаменателя, если предел знаменателя не равен нулю.
Соответствующим образом оформить работу
Название реферата: Вычисление пределов
Слов: | 679 |
Символов: | 6475 |
Размер: | 12.65 Кб. |
Вам также могут понравиться эти работы: