МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ
Учреждение Образования
"ГОМЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМ.Ф. СКОРИНЫ"
Математический факультет
Кафедра алгебры и геометрии
Допущена к защите
Зав. кафедрой___________________ Л.А. Шеметков
"____"________________200___г.
Дипломная работа
Насыщенные формации заданной структурой подформаций
Исполнитель
студент группы М-52
Рябченко Елена Александровна
Научный руководитель
к. ф. - м. н., доцент
Васильев Александр Федорович
Рецензент
к. ф. - м. н., доцент
Новиков Сергей Петрович
ГОМЕЛЬ 2005
Оглавление
Введение
1. Решетка всех -насыщенных формаций и ее основные свойства
Спутники формаций
Решетка внутренних -локальных спутников формации
2. -Насыщенные формации с ограниченным -дефектом
Понятие -дефекта.
3. Решетка - насыщенных формаций с дополнениями
-Насыщенные формации, у которых решетка является решеткой с дополнениями
Заключение
Список использованных источников
Введение
Важное место в современной алгебре занимает изучение конечных групп, для исследования которых было разработано немало средств. И хотя теория конечных групп никогда не испытывала недостатка в общих методах, идеях и нерешенных проблемах, все же обилие полученных результатов с неизбежностью привело к необходимости разработки новых общих методов и систематизирующихся точек зрения.
Толчок, произведенный работой Гашюца 1963 года, вызвал целую лавину исследований и привел к возникновению нового направления, новой теории. Уже в первые годы существования этой теории были получены значительные результаты. С этого момента началось интенсивное изучение различных классов конечных групп, наибольшую популярность среди которых получили формации.
Напомним, что формация - это класс групп, замкнутый относительно гомоморфных образов и конечных подпрямых произведений. В работе Гашюца был впервые выделен важный для приложений класс насыщенных формаций и предложен способ конструирования такого рода формаций при помощи специальных функций. В вопросах приложения теории формаций к исследованию непростых конечных групп нашли широкое применение насыщенные и -насыщенные формации. При их изучении выделились два подхода. Первый связан с так называемым локальным заданием формации . В качестве рабочего инструмента этого способа Гашюц предложил использовать функции вида
При этом вводится понятие локального спутника формации . Говорят, что - локальный спутник формации , если данная формация состоит из тех и только из тех групп, для которых имеет место для любого .
Позднее эта теория расширилась, и в результате возникла необходимость изучать частично насыщенные формации. Рабочим инструментом теперь стало понятие -локального спутника формации. В качестве которого выступает функция вида
где данная формация состоит только из тех групп , для которых и для любого . Формацию называют -насыщенной, если из всегда следует .
Как показал Гашюц, всякая локальная формация насыщена. В дальнейшем Любезедер и П. Шмид установили, что всякая непустая насыщенная формация локальна. Таким образом, оказалось, что класс локальных формаций совпадает с классом непустых насыщенных формаций. Идеи, заложенные в отмеченной выше работе Гашюца, привлекли внимание многих специалистов по алгебре и исследования, связанные с насыщенными формациями, составили одно из доминирующих направлений современной теории классов групп.
Развивая локальный метод Гашюца, Л.А. Шеметков предложил второй подход для изучения формаций, в основе которого лежит идея изучения формаций с заданной системой подформаций. Этот метод исследования был впервые рассмотрен в книге Л.А. Шеметкова "Формации конечных групп" (Москва: Наука, 1978 г) . Решение задач, поставленных в этой книге, дало толчок целому кругу новых идей и, в частности, это привело к возникновению таких важных понятий как минимальные не -формации, -кратно насыщенные формации, -дефект насыщенной формации, дополняемость подформаций, длина насыщенной формации и др.
Немаловажным из рабочих инструментов исследования частично насыщенных формаций являются результаты и методы общей теории решеток. Как известно, методы общей теории решеток с успехом используются при исследовании различных алгебраических объектов . Привлечение методов этой теории к изучению классов групп позволяет не только значительно упрощать доказательства многих уже известных теорем, но и с успехом решать ряд открытых вопросов, связанных с изучением внутреннего строения таких классов. Применение решеточных подходов в теории классов групп было впервые осуществлено в рамках теории многообразий групп. Позднее А.Н. Скиба показал , что привлечение решеточных конструкций весьма полезно и при изучении формаций групп. При этом существенную роль играет тот факт, что решетка всех насыщенных формаций модулярна. В дальнейшем рассматривался вопрос о модулярности и дистрибутивности решеток формаций других типов. Так в монографии Л.А. Шеметкова и А.Н. Скибы "Формации алгебраических систем" (М.: Наука, 1989 г) была доказана модулярность решетки всех -кратно насыщенных формаций; Баллестером-Болиншес и Л.А. Шеметковым было показано, что модулярна решетка всех -насыщенных формаций; Л.А. Шеметковым и А.Н. Скибой была установлена модулярность решетки -кратно -насыщенных формаций. Эти результаты позволили широко применять элементы общей теории решеток в вопросах изучения и классификации формаций таких типов. Широкий спектр применения решеточных конструкций при исследовании формаций представлен в монографии А.Н. Скибы "Алгебра формаций" (Минск: Беларуская навука, 1997 г) . Таким образом, дальнейшее развитие решеточных методов в теории классов групп является актуальной задачей.
В настоящее время теория насыщенных формаций является весьма развитым учением, обогащенным большим числом ярких теорем и содержательных примеров. Они отражены в ряде работ. В то же время, частично насыщенные формации и, в частности, -насыщенные формации изучены сравнительно мало. Следует отметить, что как показывают результаты ряда авторов, полученные в последние годы, -насыщенные формации весьма полезны при анализе многих вопросов при исследовании нормального строения конечных непростых групп. А методы, разработанные на основе частично насыщенных формаций широко используются в различных областях современной математики. Наиболее широкий диапазон применения этой теории в общей алгебре.
Настоящая дипломная работа посвящена изучению свойств частично насыщенных формаций с заданной структурой подформаций. Работа состоит из перечня условных обозначений, реферата, введения, основной части, включающей три раздела, заключения и списка цитируемой литературы. Каждый раздел условно можно разделить на две части. Первая часть носит вспомогательный характер. В ней приводятся обозначения, определения понятий, которые неоднократно используются в дальнейшем. В этой части также включены некоторые результаты теории формаций конечных групп для удобства ссылок и независимости текста работы от других источников. Во второй части работы находятся новые результаты, полученные автором в результате изучения данной темы.
Первый раздел
посвящен изложению основных свойств решетки -насыщенных формаций. Здесь собраны из различных источников и систематизированы основные результаты о частично насыщенных формациях и их -локальных спутниках. Доказано, что совокупность всех внутренних -локальных спутников формации образует полную модулярную решетку.
Во втором раздле
дипломной работы исследуется -дефект -насыщенной формации. Изучаются вопросы, связанные с понятием минимальных -насыщенных не -нильпотентных подформаций. Основным результатом этого раздела является теорема , дающая описание -насыщенных формаций -нильпотентного дефекта .
В третьем разделе
рассматриваются -насыщенные формации, у которых решетка -насыщенных формаций, заключенных между и , является решеткой с дополнениями. В теореме получено описание -насыщенных формаций такого вида.
Работа носит теоретический характер. Результаты ее могут быть использованы в учебном процессе при чтении спецкурсов на математических специальностях в высших учебных заведениях.
1. Решетка всех
-насыщенных формаций и ее основные свойства
Спутники формаций
В работе рассматриваются только конечные группы. Используются определения и обозначения, принятые в книгах - и работе .
Напомним, что через обозначают множество всех простых чисел. Пусть - некоторое непустое множество простых чисел. - дополнение к во множестве простых чисел, т.е. . Через обозначают множество всех различных простых делителей натурального числа , а через - множество всех простых делителей порядка группы , т.е. . Полагают также, что . Натуральное число называется -числом
, если . Группа называется -группой
, если ее порядок есть -число.
Определение.Формация - это класс групп, замкнутый относительно гомоморфных образов и конечных подпрямых произведений, т.е. - формация, если
1) и следует, что ;
2) и следует, что .
Напомним, что если - произвольный непустой класс групп, то через обозначают пересечение всех формаций, содержащих .
Определение.Пусть - непустое множество простых чисел. Всякую функцию вида
называют -локальным спутником
. При этом запись означает множество .
Для произвольного класса групп символом обозначают пересечение всех таких нормальных подгрупп , что , а символом обозначают произведение всех нормальных -подгрупп группы .
Пусть - класс всех тех групп, у которых каждый композиционный фактор является -группой.
Полагают, , .
Через обозначают наибольшую нормальную -подгруппу группы .
Лемма. Пусть - нормальная подгруппа группы .
1. Если - -группа, то .
2. Если , то .
Для произвольного -локального спутника
Лемма. Пусть , где и . Тогда либо , либо найдется такое число , что .
Доказательство.
Пусть и для всех . Первое соотношение влечет . Пусть . Тогда и . Значит, для всех имеет место включение . Следовательно, . Полученное противоречие доказывает лемму.
Определение.Если формация такова, что , то говорят, что является -локальной
, а - ее -локальный спутник
. Если при этом все значения таковы, что для любого , то называется внутренним -локальным спутником
.
Пример.
Пусть - формация, содержащаяся в , и - такой -локальный спутник, что и для любого . Тогда, очевидно, . Таким образом, всякая подформация формации является -локальной. Отсюда, в частности, следует, что пустая формация и формация единичных групп являются -локальными для всех .
Определение.Насыщенной называют такую формацию , что для любой группы с всегда следует .
Определение.Формацию называют -, если ей принадлежит всякая группа , для которой , где . В частности, если , то -насыщенные формации называют -насыщенными
.
Определение.Пусть - произвольная совокупность групп, - некоторое простое число. Полагают
Пусть и - некоторые -насыщенные формации. Тогда через обозначают класс групп, равный .
Вместо пишут .
Следующая теорема для -локальных формаций является аналогом известной теоремы Гашюца--Любезедер--Шмида , , .
Теорема.
Пусть - формация. Тогда следующие утверждения эквивалентны:
Формация -насыщенная;
для всех ;
, где и для всех ;
Формация -локальна.
Доказательство.
Импликация доказана в работе . Пусть выполняется условие 2) и Включение очевидно. Предположим, что обратное включение неверно и - группа минимального порядка из с минимальной нормальной подгруппой . Если - -группа, то . Значит
противоречие. Следовательно, . Пусть . Если - неабелева группа, то Поэтому
что противоречит выбору группы . Значит, - -группа. Ввиду теоремы работы формация является -насыщенной, откуда вытекает, что , т.е. . Тогда и, следовательно,
Полученное противоречие показывает, что . Таким образом, .
Предположим теперь выполнимость условия и допустим, что формация не является -насыщенной. Тогда найдется такое число и такая группа с нормальной подгруппой , что , но . Поскольку для простых и , получаем и для всех . Следовательно, . Полученное противоречие завершает доказательство теоремы.
Пусть - произвольный набор -локальных спутников. Через обозначают такой -локальный спутник , что для всех .
Если для всех , то полагают, что .
Лемма. Пусть , где . Тогда , где .
Доказательство.
Пусть выполнены условия леммы, т.е. , где и пусть . Тогда по условию . Следовательно, для любого . Но, так как для всех имеет место , то для всех и . Тогда всех и . Таким образом получаем, что . Лемма доказана.
Определение.Пусть такая совокупность формаций, что либо , либо , где , . Такую совокупность формаций называют цепью формаций.
Определение.Цепью -локальных спутников называют такую совокупность -локальных спутников , что либо , либо , где , .
Лемма. Пусть - цепь формаций, - такая цепь -локальных спутников, что и для всех имеет место в точности тогда, когда для всех . Тогда , где для каждого .
Доказательство.
Пусть - цепь формаций и - такая цепь -локальных спутников, что , причем для всех выполнено в точности тогда, когда для любого .
Пусть .Т. е. существует номер такой, что . Следовательно, для любого и . Тогда для любого и Это означает, что . Пусть теперь . Следовательно, для любого и
Тогда существует такой номер , что для любого и . Тогда получаем, что . Следовательно, . Лемма доказана.
Лемма. Если = и , для некоторого , то .
Доказательство.
Прежде заметим, что поскольку , то . А поскольку и для всех имеет место то и . Значит, . Лемма доказана.
Определение.Непустое множество формаций называют полурешеткой формаций, если пересечение любого множества из снова принадлежит .
Определение.Пусть - формация, имеющая -локальный спутник . Если является минимальным (максимальным) элементом множества всех -локальных спутников формации , то называют минимальным (соответственно максимальным) -локальным спутником формации .
Пусть - полурешетка формаций. Если формация обладает -локальным спутником , то формация обладает -локальным спутником . Значит, множество всех тех формаций, которые имеют хотя бы один -локальный спутник, является полурешеткой формаций.
Пусть - некоторый класс групп. Через обозначают пересечение всех тех -насыщенных формаций, которые содержат , т.е. - наименьшая -насыщенная формация, содержащая формацию . В частности, если , то пишут form.
Теорема.
Если и - минимальный -локальный спутник формации , то справедливы следующие утверждения:
1) ;
2) для всех ;
3) и - некоторый фиксированный элемент из , то , где для всех ,
и, кроме того, ;
4) , где и для всех
Из теоремы и леммы непосредственно вытекает
Следствие.
Пусть и - минимальные -локальные спутники формаций и соответственно. Тогда в том и только в том случае, когда .
Определение.Пусть - -насыщенная формация. -Локальный спутник формации называется каноническим, если и для всех .
Замечание 1. Согласно теореме всякая -локальная формация имеет -локальный спутник , который является каноническим. Такие спутники обозначают большими латинскими буквами.
Ясно, что если и - произвольный внутренний -локальный спутник формации , то ввиду леммы .
Если формация , то для всех .
Из следствия теоремы следует
Лемма. Пусть и . Тогда в том и только в том случае, когда .
Определение.Через , обозначают такие -локальные спутники и соответственно, что и для любого .
Лемма. Пусть - минимальный -локальный спутник формации , где . Тогда - минимальный -локальный спутник формации
Доказательство.
Пусть .
И пусть , а - минимальный -локальный спутник формации . Тогда, если , то для любого имеет место . Значит, . Понятно также, что . Пусть . Тогда найдется такое , что . Значит, согласно теореме , имеет место
Лемма доказана.
Решетка -насыщенных формаций.
Результаты и методы общей теории решеток широко используются в различных областях современной математики. Наиболее широк диапазон применения этой теории в общей алгебре. Применение решеточных подходов в теории классов групп было впервые осуществлено в рамках теории многообразий групп. Позднее А.Н. Скибой было показано , что привлечение решеточных конструкций весьма полезно и при изучении формаций групп. Следует отметить, что существенную роль играет тот факт, что решетки всех формаций и всех насыщенных формаций модулярны . Эти результаты позволили широко использовать элементы общей теории решеток в вопросах изучения и классификации формаций групп. Широкий спектр применений решеточных конструкций при исследовании формаций представлен в монографии А.Н. Скибы , где, в частности, показано, что привлечение общей теории решеток при исследовании классов групп позволяет не только с успехом решать открытые вопросы, но и значительно упрощать доказательства многих уже известных теорем. Таким образом, дальнейшее развитие решеточных методов в теории классов алгебраических систем является актуальной задачей.
Напомним, что решеткой
называется частично упорядоченное множество, в котором для любых двух элементов существует как наибольший, так и наименьший элементы.
Через обозначают множество всех -насыщенных формаций.
Если две -насыщенные формации и такие, что , то полагают, что . Относительно вхождения формаций друг в друга множество -насыщенных формаций является частично упорядоченным.
Для любых двух -насыщенных формаций и полагают
Определение.Непустую совокупность формаций называют полной решеткой формаций
, если пересечение любой совокупности формаций из снова принадлежит и во множестве имеется такая формация , что для любой формации .
Лемма. Частично упорядоченное множество с наибольшим элементом является полной решеткой, если в нем любая непустая совокупность элементов обладает нижней гранью.
Лемма. Множество всех -насыщенных формаций образует полную решетку.
Доказательство.
Частичным порядком на является вхождение формаций друг в друга. Множество всех -насыщенных формаций замкнуто относительно операций и , так как объединение и пересечение -насыщенных формаций снова является -насыщенной формацией. Таким образом, является решеткой.
В качестве наибольшего элемента в выступает - формация всех групп. Так как пересечение любой совокупности -насыщенных формаций снова будет -насыщенной формацией, то по лемме - полная решетка. Лемма доказана.
Лемма. Пусть - монолитическая группа с неабелевым монолитом, - некоторая полуформация и . Тогда .
Лемма. Пусть - полуформация и . Тогда если , то , где
Лемма. Пусть - такой внутренний -локальный спутник формации , что , где . Тогда где .
Определение.Пусть L - полная решетка и . Элемент называют компактным в , если из условия следует, что для некоторого конечного подмножества , т.е., иначе - компактный элемент в , если из любого его покрытия можно выделить конечное подпокрытие.
Определение.Полная решетка называется алгебраической, если любой ее элемент является решеточным объединением компактных элементов.
Определение.Атомом решетки называют наименьший ненулевой элемент, т.е. , то в не существует такого, что .
Определение.Пусть - произвольный -локальный спутник. Символом обозначают класс групп
Если для формации выполнено равенство , то говорят, что - -локальный -спутник формации .
Минимальным -локальным -спутником формации называют ее -локальный -спутник со следующими значениями:
Лемма. Пусть - минимальный -локальный -спутник формации , . Тогда включение имеет место в том и только том случае, когда .
Лемма. Пусть - минимальный -локальный -спутник формации , . Тогда - минимальный -локальный -спутник формации .
Теорема.
Решетка всех -насыщенных формаций является алгебраической.
Доказательство.
По лемме является полной решеткой. Поскольку каждая -насыщенная формация, очевидно, является решеточным объединением своих однопорожденных -насыщенных формаций, то для доказательства теоремы достаточно показать, что каждая однопорожденная -насыщенная формация является компактным элементом в .
Пусть - некоторая однопорожденная -насыщенная формация, - -насыщенная формация, содержащая , где - -насыщенная формация, .
Пусть - минимальный -локальный -спутник формации , - минимальный -локальный -спутник формации , - минимальный -локальный -спутник формации . Согласно определению минимального -локального -спутника формации для всех и
Ввиду леммы . Согласно лемме
Ввиду алгебраичности решетки всех формаций (см. ) для каждого фиксированного существует конечное число индексов () таких, что
И существует набор индексов ,..., таких, что
Тогда . Таким образом
Итак, решетка всех -насыщенных формаций алгебраична, и ее компактными элементами являются однопорожденные -насыщенные формации. Теорема доказана.
Следствие 1.
Решетка всех -насыщенных формаций является алгебраической.
Следствие 2.
Решетка всех насыщенных формаций является алгебраической.
Определение.Решетка называется модулярной, если для любых элементов , , решетки таких, что выполняется .
Теорема.
Решетка всех -насыщенных формаций модулярна.
Доказательство.
Пусть , , - -насыщенные формации и кроме этого . Покажем, что
Рассмотрим такие -локальные спутники , что и при всех , где . Ввиду теоремы справедливо равенство . Пусть . По лемме имеем
Из леммы вытекает, что - внутренний -локальный спутник формации .
Понятно, что при всех . Значит, при всех имеет место равенство
Следовательно, . Но - внутренний -локальный спутник формации . Значит, согласно теореме , получаем откуда следует требуемое равенство. Теорема доказана.
Следствие 1.
всех -насыщенных формаций модулярна.
Следствие 2.
всех насыщенных формаций модулярна.
Лемма. Подрешетка модулярной решетки модулярна.
Решетка внутренних
-локальных спутников формации
Пусть - некоторая -насыщенная формация. Обозначим через - множество всех внутренних -локальных спутников формации .
Теорема.
Пусть непустая -насыщенная формация. Тогда имеют место следующие утверждения:
1) множество c операциями и образует полную решетку;
2) решетка является модулярной.
Д о к а з а т е л ь с т в о.1
) Относительно операции множество является частично упорядоченным. Кроме этого для любых двух -локальных спутников и по лемме существуют такие -локальные спутники и , что и , т.е. для любых двух -локальных спутников из существует как наибольший, так и наименьший элементы. Следовательно, является решеткой.
Покажем, что является полной решеткой. Так как формация -насыщена, то по теореме у формации имеется такой -локальный спутник , что и для всех . Этот -локальный спутник является каноническим. По определению канонического спутника получаем, что для любого выполнено включение .
Применяя лемму , получаем, что для любой непустой совокупности внутренних -локальных спутников формации из существует наименьший элемент, равный пересечению этих -локальных спутников. При этом этот элемент является точной нижней гранью. По лемме получаем, что является полной решеткой.
2) Пусть - внутренние -локальные спутники формации , причем , т.е. для любого .
Покажем, что выполнено Возьмем произвольное из . Тогда , и - являются некоторыми формациями, причем все эти формации содержатся в формации . По теореме и лемме получаем, что для любого , в силу модулярности решетки всех формаций, выполнено равенство
Но тогда
Таким образом, является модулярной решеткой. Теорема доказана.
2.
-Насыщенные формации с ограниченным -дефектом
Пусть и - некоторые -насыщенные формации, причем формация хорошо изучена. Тогда у нас имеется некоторая информация и относительно формации , поскольку в ней содержится часть формации , а именно . Так, например, при изучении насыщенной формации часто используют ее подформацию , где - некоторая формация классического типа. Напомним, что формация называется формацией классического типа, если она имеет такой локальный спутник, все неабелевы значения которого насыщены. Однако, в общем случае без дополнительных ограничений на "хорошо известную часть" формации что-либо сказать о самой формации трудно. В качестве одного из возможных ограничений на можно, например, рассматривать ограничения, накладываемые на решетку -насыщенных формаций , заключенных между и (-насыщенная формация принадлежит тогда и только тогда, когда ). Очевидно, что - это наименьший, а - наибольший элементы -насыщенной решетки
Понятие
-дефекта
Определение.Для любых двух -насыщенных формаций и , где , через обозначают длину решетки -насыщенных формаций, заключенных между и .
Определение.Пусть и - произвольные -насыщенные формации. Тогда, если решетка имеет конечную длину , то говорят, что -дефект формации конечен и равен . Если же длина этой решетки бесконечна, то говорят, что -дефект формации - бесконечен и пишут .
О
Пример.
Пусть -насыщенная формация не имеет максимальных -насыщенной подформаций. Тогда для любой -насыщенная подформации , не содержащей , -дефект формации бесконечен.
Лемма. Пусть и - -насыщенная формации и . Тогда .
Доказательство.
Поскольку в силу модулярности решетки -насыщенных формаций имеет место решеточный изоморфизм
и в модулярной решетке длина любой ее подрешетки не превосходит длину самой решетки, то . Лемма доказана.
Лемма. Пусть и - -насыщенные формаций, причем . Тогда если , и - соответственно -дефекты формаций и и , то .
Лемма. Пусть и - -насыщенные формации, причем . Тогда в том и только в том случае имеет конечный -дефект , когда в имеется максимальная -насыщенная подформация с и в нет ни одной максимальной -насыщенной подформации с
Доказательство.
Достаточность. Предположим, что . Тогда, поскольку имеет место решеточный изоморфизм, и, согласно условию, , получаем . Значит, если - такая максимальная подформация в , что , то . Противоречие. Значит, . Поэтому . Следовательно, .
Необходимость. Если - такая максимальная подформация формации , что , то очевидно, . Предположим, что в имеется максимальная подформация такая, что
Тогда . Следовательно,
Поэтому, согласно лемме ,
Полученное противоречие завершает доказательство леммы.
Насыщенные формации с -нильпотентным дефектом 1.
Проблема классификации формаций того или иного вида является одной из основных задач теории формаций. Как известно, существенную роль в реализации задачи классификации насыщенных формаций играют так называемые минимальные насыщенные не -формации (или иначе -критические формации). Впервые особая роль минимальных насыщенных не -формаций была отмечена Л.А. Шеметковы в его докладе на VI симпозиуме по теории групп . Там же им была поставлена задача изучения такого рода формаций.
Стремительно развивающаяся в последние годы теория частично насыщенных формаций, наряду с разработкой новых специфических методов исследования, активно использует методы и конструкции, развитые в теории насыщенных формаций. Одним из таких методов является метод критических формаций. Благодаря которому, результаты о минимальных насыщенных не -формациях широко использовались при решении различных вопросов теории насыщенных формаций.
Пусть - холловская -подгруппа группы . Группу называют -нильпотентной, если нормальная подгруппа в группе .
Группу называют -нильпотентной, если она -нильпотентна для любого .
Обозначим через - формацию всех -нильпотентных групп.
Определение.Пусть - некоторая -насыщенная формация. -Дефект формации называют -нильпотентным дефектом.
Определение.-Насыщенная формация называется минимальной -насыщенной не -нильпотентной формацией, если , но все собственные -насыщенные подформации из содержатся в .
Лемма. Пусть - формация классического типа, - непустая -насыщенная формация. Тогда если , то в имеется по крайней мере одна минимальная -насыщенная не -подформация.
Следствием леммы является следующая
Лемма. Пусть - произвольная -насыщенная не -нильпотентная формация. Тогда в имеется по крайней мере одна минимальная -насыщенная не -нильпотентная подформация.
Лемма. Тогда и только тогда является минимальной -насыщенной не -нильпотентной формацией, когда , где - такая монолитическая группа с минимальной нормальной подгруппой , что , и либо и P - -нильпотентный корадикал группы , либо , и выполняется одно из следующих условий:
1) группа неабелева, причем, если , то - -группа, если же , то - простая неабелева группа;
2) , где - -группа, а такая монолитическая группа с минимальной нормальной подгруппой , что , , - -группа, и либо , либо - группа порядка q, где .
Лемма. Пусть - произвольная непустая формация и пусть у каждой группы -корадикал не имеет фраттиниевых -главных факторов. Тогда, если - монолитическая группа из , то .
Лемма. В любой модулярной решетке если и оба элемента и покрывают , то покрывает и , и ; двойственно, если и покрывает оба элемента и , то и оба покрывают .
Теорема.
Пусть - формация всех -нильпотентных групп, и пусть - некоторая -насыщенная формация. Тогда в том и только в том случае -нильпотентный дефект формации равен 1, когда , где - -насыщенная -нильпотентная подформация формации , - минимальная -насыщенная не -нильпотентная подформация формации , при этом:
1) всякая -нильпотентная подформация из входит в ;
2) всякая -насыщенная не -нильпотентная подформация из имеет вид .
Доказательство.
Необходимость. Пусть -нильпотентный дефект формации равен 1. Так как формация - не -нильпотентна, то по лемме в формацию входит некоторая минимальная -насыщенная не -нильпотентная подформация . По условию - максимальная -насыщенная подформация в . Значит, .
Достаточность. Пусть -насыщенная не -нильпотентная формация, удовлетворяющая требованиям теоремы, т.е. - -насыщенная -нильпотентная подформация формации , - минимальная -насыщенная не -нильпотентная подформация формации . Понятно, что . Пусть -дефекты формаций , и равны соответственно , и . Поскольку - -насыщенная -нильпотентная формация, то ее -дефект равен 0. Так как - минимальная -насыщенная не -нильпотентная формация, то ее -дефект равен 1.Т. е., в силу леммы , получаем, что -дефект формации равен
Если , то отсюда следует -нильпотентность формации , что противоречит условию . Таким образом получаем, что -дефект формации равен 1. Докажем теперь справедливость утверждения 1) второй части теоремы. Так как - максимальная -насыщенная подформация в , то, в силу теоремы , имеет место решеточный изоморфизм
Следовательно, - максимальная -насыщенная подформация в . Следовательно, поскольку , то всякая -нильпотентная подформация из входит в .
Для доказательства утверждения 2) прежде покажем, что в нет минимальных -насыщенных не -нильпотентных подформаций, отличных от . Предположим, что в существует - минимальная -насыщенная не -нильпотентная подформация, отличная от . Тогда, поскольку , то .
Пусть - внутренний -локальный спутник формации , такой, что
где . И пусть - внутренний -локальный спутник формации такой, что
По теореме такие спутники существуют. Тогда по лемме получаем, что формация имеет такой -локальный спутник , что
, если ,
.
По лемме имеем, что , где монолитическая группа с минимальной нормальной подгруппой , что , и либо и - -нильпотентный корадикал группы , либо , и выполняется одно из следующих условий:
(1) группа неабелева, причем, если , то - -группа, если же , то - простая неабелева группа;
(2) , где - -группа, а такая монолитическая группа с минимальной нормальной подгруппой , что , , - -группа, и либо , либо - группа порядка q, где .
Поскольку , то .
Пусть удовлетворяет условию (1), т.е. - неабелева -группа. Поскольку, очевидно, - -насыщенная формация, то . Но - единственная минимальная нормальная подгруппа.
Следовательно, . Но по лемме . Тогда, так как , то получаем . Поэтому
Поскольку - минимальная -насыщенная не -формация, то имеем, что . Противоречие.
Пусть теперь для группы выполняется условие (2), т.е. . Так как , то
Поскольку и , то . Поэтому
Но тогда . Снова получили противоречие.
Пусть теперь - -группа. Заметим, что если - неабелева, то этот случай аналогичен (1). Значит, - абелева -группа, где .
Покажем, что . Поскольку , то по лемме -дефект формации . С другой стороны, -дефект формации , так как . Значит, -дефект равен 1. Поэтому в существует максимальная -насыщенная -нильпотентная подформация . Следовательно,
Поскольку, в силу теоремы ,
где , то получаем, что - максимальная -насыщенная формация в .
С другой стороны,
Но тогда максимальна в .
А, значит, по лемме формация максимальна в и . Так как в и имеется единственная максимальная подформация, то
Поскольку , то
Но . Поэтому . Таким образом .
Так как - абелева -группа, где и , то где - группа порядка .
Понятно, что . Значит,
В силу теоремы заключаем, что
Заметим, что
Действительно, пусть
где - группа минимально порядка и - минимальная нормальная подгруппа в . Если не является -группой, то, так как , имеем . Значит . Противоречие.
Поэтому - -группа. Так как при этом и , то - группа порядка . Но тогда . Противоречие.
Таким образом,
Значит,
Но . Следовательно . Таким образом,
По лемме - гомоморфный образ группы из . Следовательно . Последнее влечет . Противоречие. Таким образом, в формации нет минимальных -насыщенных не -нильпотентных подформаций, отличных от . Пусть теперь - произвольная не -нильпотентная -насыщенная подформация из . Тогда в силу уже доказанного и леммы получаем, что . Следовательно, применяя лемму и модулярность решетки -насыщенных формаций, получаем
Теорема доказана.
Если , а - множество всех простых чисел, то из теоремы вытекает
1. Пусть - некоторая -насыщенная формация. Тогда в том и только в том случае нильпотентный дефект формации равен 1, когда , где - -насыщенная нильпотентная подформация формации , - минимальная -насыщенная ненильпотентная подформация формации , при этом:
1) всякая нильпотентная подформация из входит в ;
2) всякая -насыщенная ненильпотентная подформация из имеет вид .
Если и равны , то из теоремы вытекает
2. Пусть - некоторая насыщенная формация. Тогда в том и только в том случае нильпотентный дефект формации равен 1, когда , где - насыщенная нильпотентная подформация формации , - минимальная насыщенная ненильпотентная подформация формации , при этом:
1) всякая нильпотентная подформация из входит в ;
2) всякая насыщенная ненильпотентная подформация из имеет вид . Если , то вытекает
3. Пусть - некоторая насыщенная формация. Тогда в том и только в том случае -нильпотентный дефект формации равен 1, когда , где - насыщенная -нильпотентная подформация формации , - минимальная насыщенная не -нильпотентная подформация формации , при этом:
1) всякая -нильпотентная подформация из входит в ;
2) всякая насыщенная не -нильпотентная подформация из имеет вид .
3. Решетка
- насыщенных формаций с дополнениями
-Насыщенные формации, у которых решетка является решеткой с дополнениями
Изучение -насыщенных формаций, имеющих заданную подрешетку с дополнениями, начато в работах --.
В этом разделе устанавливается тот факт, что тогда и только тогда - решетка с дополнениями, когда формация представима ввиде объединения всех своих минимальных -насыщенных неразрешимых подформаций и .
Напомним, что группа называется, если она обладает нормальным рядом с абелевыми факторами.
Пусть - некоторая -насыщенная формация. Тогда через обозначим следующее пересечение , где - формация всех разрешимых групп.
Определение.Пусть - решетка с и , . Тогда элемент называется дополнением элемента в , если и . Решетку с нулем и единицей называют решеткой с дополнениями, если каждый ее элемент имеет дополнение.
Определение.Решетка с и называется решеткой с относительными дополнениями, если каждый ее интервал является решеткой с дополнениями.
Лемма. Любая модулярная решетка с дополнениями является решеткой с относительными дополнениями.
Лемма. Любая модулярная решетка с дополнениями, имеющая конечное число атомов, является решеткой конечной длины.
Лемма. В решетке конечной длины с относительными дополнениями каждый элемент является объединением содержащихся в нем атомов.
Определение.Пусть - некоторая -насыщенная формация. -Дефект формации называют разрешимым дефектом.
Лемма. Пусть - -насыщенная формация. Тогда и только тогда разрешимый дефект формации равен , когда , где - разрешимая -насыщенная формация, - минимальная -насыщенная неразрешимая формация, при этом:
1) всякая разрешимая подформация из входит в ;
2) всякая неразрешимая -насыщенная подформация из имеет вид
Следующее утверждение является следствием леммы .
Лемма. Пусть - произвольная -насыщенная неразрешимая формация. Тогда в имеется по крайней мере одна минимальная -насыщенная неразрешимая подформация.
Лемма. Тогда и только тогда - минимальная -насыщенная неразрешимая формация, когда , где - такая монолитическая группа с неабелевой минимальной нормальной подгруппой , что группа разрешима.
Лемма. Пусть - некоторый набор минимальных -насыщенных неразрешимых формаций, - -насыщенная разрешимая формация. Тогда если - некоторая минимальная неразрешимая подформация из то .
Доказательство.
Пусть выполняются условия леммы и , - некоторая минимальная -насыщенная неразрешимая подформация формации . Покажем, что тогда .
Ввиду леммы , где - такая монолитическая группа с неабелевой минимальной нормальной подгруппой , что группа разрешима.
Тогда
Поскольку - неабелева группа, то . Но тогда по лемме имеем . Так как , то найдется такое , что . Значит, . Поскольку - минимальная -насыщенная неразрешимая формация, то . Лемма доказана.
Лемма. Пусть - произвольная неразрешимая -насыщенная формация. Тогда и только тогда формация - атом решетки , когда , где - некоторая минимальная -насыщенная неразрешимая формация из .
Доказательство.
Необходимость. По условию леммы длина решетки равна . Следовательно, формация обладает разрешимой максимальной -насыщенной подформацией. Применяя лемму , имеем , где - некоторая минимальная -насыщенная неразрешимая подформация из .
Достаточность. Предположим противное. Пусть найдется такая -насыщенная формация , что
Так как не содержится в , то по лемме формация обладает минимальной -насыщенной неразрешимой формацией . Тогда
Следовательно, ввиду леммы имеем . Значит,
Противоречие. Таким образом, - атом решетки . Лемма доказана.
Лемма. Пусть - произвольная -насыщенная формация и пусть - некоторый набор -насыщенных неразрешимых подформаций из , у которых - максимальная -насыщенная подформация. Пусть
где . Тогда если - произвольная -насыщенная неразрешимая подформация из c максимальной подформацией , то .
Доказательство.
По лемме каждая формация имеет вид где - минимальная -насыщенная неразрешимая формация. Следовательно, формация имеет вид
Ввиду леммы формация имеет вид , где - минимальная -насыщенная неразрешимая формация. Следовательно, по лемме имеет место т.е. для некоторого . Значит
Лемма доказана.
Лемма. В однопорожденной -насыщенной формации содержится лишь конечное число разрешимых -насыщенных подформаций.
Лемма. В каждой однопорожденной -насыщенной неразрешимой формации содержится лишь конечное множество -насыщенных подформаций с разрешимым дефектом .
Доказательство.
Пусть для некоторой группы . Ввиду леммы каждая минимальная -насыщенная неразрешимая подформация из имеет вид , где - такая монолитическая группа с неабелевой минимальной нормальной подгруппой , что группа разрешима. Тогда
Поскольку - неабелевая минимальная нормальная подгруппа группы , то . В силу леммы , - гомоморфный образ группы . Но - конечная группа. Значит, в имеется лишь конечное множество минимальных -насыщенных неразрешимых подформаций. В силу леммы , формация содержит лишь конечное множество разрешимых -насыщенных подформаций.
Пусть теперь произвольная неразрешимая -насыщенная подформация формации , имеющая разрешимую максимальную -насыщенную подформацию. По лемме имеем где - некоторая разрешимая -насыщенная формация, а - минимальная -насыщенная неразрешимая формация. Из доказанного выше следует, что в имеется лишь конечное множество -насыщенных формаций с разрешимым дефектом . Лемма доказана.
Лемма. Пусть - однопорожденная -насыщенная формация и - решетка с дополнениями. Тогда каждый элемент решетки представим в виде где - набор всех минимальных -насыщенных неразрешимых формаций, содержащихся в .
Доказательство.
Ввиду теоремы и леммы решетка -насыщенных подформаций формации модулярна. Следовательно, модулярной является и ее подрешетка . В силу леммы - модулярная решетка с относительными дополнениями. Ввиду лемм и решетка имеет конечное число атомов. Значит, по лемме имеет конечную длину. Но тогда, по лемме и лемме , каждый элемент решетки представим в виде где - набор всех минимальных -насыщенных неразрешимых формаций, содержащихся в . Лемма доказана.
Теорема.
Пусть - некоторая -насыщенная неразрешимая формация и - множество всех минимальных -насыщенных неразрешимых подформаций из . Тогда и только тогда - решетка с дополнениями, когда
Доказательство.
Необходимость. Пусть - решетка с дополнениями. И пусть - произвольная неразрешимая группа, принадлежащая . Обозначим через .
Пусть - множество всех неразрешимых формаций из .
Из теоремы и леммы следует, что является модулярной решеткой.
Очевидно, что - подрешетка решетки . Следовательно, по лемме получаем, что - решетка с дополнениями.
Ввиду леммы , имеем, что - модулярная решетка. Поэтому имеет место решеточный изоморфизм
Таким образом, - решетка с дополнениями. Тогда, применяя лемму , получаем
Так как то, в силу произвольности выбора группы , получаем
Достаточность. Пусть теперь . Пусть - произвольная -насыщенная формация, принадлежащая решетке , т.е. .
Обозначим через множество всех минимальных -насыщенных неразрешимых подформаций, содержащихся в , а через - множество всех минимальных -насыщенных неразрешимых подформаций, не содержащихся в . Очевидно, что множество является дополнением к множеству во множестве всех -насыщенных неразрешимых подформаций, содержащихся в . Пусть - -насыщенныя формация, порожденная множеством , а - -насыщенная формация, порожденная множеством . Поскольку и , то ввиду леммы имеют место равенства
Допустим, что не содержится в , то есть . Тогда по лемме в имеется минимальная -насыщенная неразрешимая формация . По лемме для некоторого . Следовательно, . Но . Противоречие. т.е. . Но в таком случае . Ввиду леммы и произвольности выбора формации , каждый элемент решетки представим в виде объединения содержащихся в нем атомов.
Покажем теперь, что в решетке дополняема каждая -насыщенная формация. Если , то дополнением к в решетке является формация . Итак, можем считать, что . Обозначим через множества всех атомов решетки , через - множества всех атомов решетки , которые содержатся в . Тогда , иначе, ввиду доказанного выше,
Пусть - дополнение к в и
Так как по условию то ввиду леммы имеет место равенство Рассмотрим формацию . Так как и являются элементами решетки , то . Допустим, что не содержится в , т.е. . Тогда по лемме формация содержит минимальную -насыщенную неразрешимую подформацию . Следовательно, содержит формацию . По лемме формация - атом решетки , содержащийся в . Так как содержится в , то, применяя теперь лемму , имеем
Полученное противоречие показывает, что . Таким образом, формация - дополнение к в решетке . А, следовательно, - решетка с дополнениями. Теорема доказана.
Если , то из теоремы вытекает
Пусть - некоторая насыщенная неразрешимая формация и - множество всех минимальных насыщенных неразрешимых подформаций из . Тогда и только тогда - решетка с дополнениями, когда
Заключение
В дипломной работе изучены ключевые свойства частично насыщенных формаций с заданной структурой подформаций.
В работе установлено, что совокупность всех внутренних -локальных спутников -насыщенной формации образуют полную и модулярную решетку. В теореме дано описание -насыщенного -нильпотентного дефекта 1. В теореме рассматриваются -насыщенные формации, у которых решетка -насыщенных формаций, заключенных между и , является решеткой с дополнениями.
Результаты настоящего диплома являются новыми имогут быть использованы в учебном процессе при чтении спецкурсов на математических специальностях в высших учебных заведениях.
Список использованных источников
GaschutzW. ZurTheoriederendlichenauflosbarenGruppen // Math. Z. - 1963. - Bd.80, №4. - S.300--305
Libeseder U. Formationsbildungen in endlichen auflosbaren Gruppen, 1963.
Schmid P. Every saturated formation is a local formation // J. Algebra. 1978. Vol.51, N 1. P.144--148.
Шеметков Л.А. Формации конечных групп. - М.: Наука, 1978. - 272 с.
Биркгоф Г. Теория решеток. М.: Наука, 1984. - 568 с.
Скиба А.Н. Алгебра формаций. - Мн.: Белорусская наука, 1997. - 240 c.
Скиба А.Н. О локальных формациях длины 5 // Арифметическое и подгрупповое строение конечных групп. - Минск: Наука и техника 1986. - С.135--149.
Шеметков Л.А., Скиба А.Н. Формации алгебраических систем. - М.: Наука, 1989. - 253 с.
Ballester-Bolinches A., Shemetkov L. A. On lattices of -local formations of finite groups // Math. Nachr. - 1997. - V.186. - P.57--65.
Скиба А.Н., Шеметков Л.А., Кратно -локальные формации и классы Фитинга конечных групп // Матем. Труды, Т.2., № 2 (1999). - С.144--147.
Шаблина И.П. Модулярные и алгебраические решетки -кратно -насыщенных формаций конечных групп: Кан. дис." Модулярные и алгебраические решетки -кратно -насыщенных формаций конечных групп" // Гом. гос. ун-т им.Ф. Скорины. - Гомель, 2003. - 92с.
Л.А. Шеметков, Экраны ступенчатых формаций // Тр. VI Всесоюз. симпозиум по теории групп, Киев: Навуковая думка, 1980, с.37--50.
Сафонова И.Н. О существовании -критических формаций // Вопросы алгебры. Гомель: Изд-во Гомельского ун-та. - 1999. - Вып.15. С.121--129.
Сафонова И.Н. К теории -критических формаций конечных групп // Вопросы алгебры. Гомель: Изд-во Гомельского ун-та. - 2001. - Вып.17. С.124--133.
Джарадин Джехад Классификация -локальных формаций длины : Автореф. дис. "Классификация -локальных формаций длины " к-та физ. - мат. наук: Д 02.12.01 // Гом. гос. ун-т им.Ф. Скорины. - Гомель, 1996. - --15 с.
Скиба А.Н., Таргонский Е.А. Классификация локальных формаций конечных групп с нильпотентным дефектом 2 // Матю заметки. - 1987. - Т.41. - Вып.4. - С.490--499.
Жевнова Н.Г. -локальные формации с дополняемыми подформациями: Автореф. дис. "-локальные формации с дополняемыми подформациями" к-та физ. - маи. наук: Д 02.12.01 // Гом. гос. ун-т им.Ф. Скорины. - Гомель, 1997. - 17 с.
Сафонова И.Н. О частично насыщенных формациях с заданной системой подформаций // IX Бел. мат. конф. Гродно. - 2004. - С.47--48.
Рыжик В.Н., О критических -локальных формациях, Препринт // Гомельский госуниверситет. Гомель, 1997. №58.12 с.
Скиба А.Н. Характеризация конечных разрешимых групп заданной нильпотентной длины // Вопросы алгебры. Минск: Изд-во"Университетское". - 1987. - Вып.3. С.21--31.
Джарадин Джехад О формациях с системами наследственных подформаций // Изв. вузов. Математика. - 1997. - Вып.1. - С.1--5.
Джарадин Джехад Минимальные -насыщенные ненильпотентные формации // Вопросы алгебры. Гомель: Изд-во Гом. гос. ун-т. 1995. Вып.8. С.59--64.
Джарадин Джехад Элементы высоты 3 решетки -насыщенных формаций // Вопросы алгебры. Гомель: Изд-во Гом. гос. ун-т. 1996. Вып.9. С.45--59.
Жевнова Н.Г. -Локальные формации с дополняемыми подформациями с булевой решеткой -локльных подформаций // Докл. АН Беларуси. - 1997. - Т.41. - №5. - С.15--19.
Монахов В.С. Введение в теорию конечных групп и их классов. - Гомель: Гом. гос. ун-т им.Ф. Скорины, 2003. - 319 с.
Рыжик В.Н., Скиба А.Н. Факторизации -локальных формаций // Вопросы алгебры. Гомель: Изд-во Гом. гос. ун-т. 1997. Вып.11. С.76--89.
Сафонова И.Н. О минимальных -локальных формациях конечных групп // Вопросы алгебры. Гомель: Изд-во Гомельского ун-та. - 1998. - Вып.12. С.123--130.
Сафонова И.Н. О критических -локальных формациях конечных групп. - Препринт // Изд-во Гомельского ун-та. Гомель, 1998. № 76.12 с.
Скиба А.Н., Шеметков Л.А. О частично локальных формациях // Док. АН Беларуси. - 1995. - Т.39, №3. С.9--11.
Шаблина И.П. Формации с максимальной -кратно -насыщенной нильпотентной подформацией // Изввестия Гом. гос. ун-та им.Ф. Скорины. Вопросы алгебры. - 2001. - №3 (6). - С. 194. - -197.
Шаблина И.П. Формации групп с максимальной -насыщенной нильпотентной подформацией // Весн. Вiцебс. джярж. ун-та. - --2001. №4 (22). - С.78--83.
Шаблина И.П. Формации групп с максимальной -локальной нильпотентной подформацией. - Гомель, 2002. - 17 с. - -- (Препринт/ УО"ГГУ им.Ф. Скорины", №25).
Шаблина И.П. Об алгебраичности решетки всех -заскнутых -кратно -насыщенных формаций // Некоторые вопросы алгебры и прикладной математики: Сб. науч. тр. Бел. гос. ун-та трансп.; Под ред. Т.И. Васильевой. - Гомель, 2003. - С.34--37.
Шаблина И.П. Алгебраичность решетки всех -заскнутых -кратно -насыщенных формаций // Изввестия Гом. гос. ун-та им.Ф. Скорины. Вопросы алгебры. - 2002. - №5 (14). - С.59. - -67.
Шаблина И.П. О замкнутых -локальных формациях , у которых решетка является решеткой с дополнениями. - Препринт // Изд-во Гомельского ун-та. Гомель, 2003. № 40.10 с.
Doerk K., Hawkes T. Finite soluble groups. - Berlin--New York: Walter de Gruyter, 1992. - 889 p.
Gaschutz W.
Lectures of subgroups of Sylow type in finite soluble groups // Notes on pure mathematics; № 11. - Canberra: Australian National University. - 1979. - 100 p.