ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ
НОВГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
Имени ЯРОСЛАВА МУДРОГО
ИНСТИТУТ ЭКОНОМИКИ И УПРАВЛЕНИЯ
Кафедра: Статистики и экономико-математических методов
Отчет
По дисциплине статистика
Лабораторная работа по теме:
«Корреляционно регрессионный анализ»
Вариант 2
Выполнила студентка гр.8431
Гарбузова Ю.
Егарева Т. Н
Ерошенко Н.Н
Проверила
Фетисова Г.В
Великий Новгород
2010
Корреляционный анализ изучает стохастические связи между случайными величинами в экономике. Метод корреляции применяется для того, чтобы при сложном взаимодействии посторонних влияний выявить зависимость между результатом и факторами в том случае, если посторонние факторы не изменялись и не искажали основную зависимость. При этом число наблюдений должно быть достаточно велико, так как малое число наблюдений не позволяет обнаружить закономерность связи. Укрупненно можно рекомендовать: число наблюдений равно восьмикратному числу факторов, включенных в модель.
Задание:
1.) Построить корреляционное поле зависимости между y и x1. Сделать вывод относительно формы и направления связи.
2.) Построить уравнение регрессии между у и х1 (линейная, степенная, логарифмическая). Оценить каждую функцию через F-критерий, , ошибку аппроксимации.
3.) Построить корреляционное поле зависимости между y и x2. Сделать вывод относительно формы и направления связи.
4.) Построить двухфакторное уравнение регрессии между y, x1,x2. Оценить показатели тесноты связи.
5.) Оценить модель через F-критерий Фишера.
6.) Оценить параметры через t-критерий Стьюдента.
Исходные данные :
Уравнение регрессии между у и х1 (линейная):
F расч = (0,7451/(1-0,7451))*((25-1-1)/1) = 67,232
Уравнение регрессии между у и х1 (логарифмическая):
F расч = (0,4445/(1-0,4445))*((25-1-1)/1) = 18,404
Уравнение регрессии между у и х1 (степенная):
F расч = (0,4284/(1-0,4284))*((25-1-1)/1) = 0,019
| линейная | F рас
 
		
		ч  | 
67,23146332 | 
| логарифмическая | F расч | 18,40414041 | 
| степенная | F расч | 0,019459742 | 
| Е1 | 53,9 | 
| Е2 | 72,5 | 
| Е3 | 48,2 | 
Уравнение регрессии между у и х2 (линейная):
Уравнение регрессии между у и х2(логарифмическая):
Уравнение регрессии между у и х2(степенная):
| E1 | 2171 | 
| E2 | 166 | 
| E3 | 165 | 
С помощью пакета анализа
| Y=0,148+0,008*x1+0,019*x2 | 
| r yx1 | 0,863 | 
| ryx2 | 0,005 | 
| rx1x2 | 0,395 | 
| r yx1x2 | 0,937 | 
| ryx2x1 | -0,723 | 
| rx1x2y | 0,772 | 
| R yx1x2 | 0,937 | 
| R^2 yx1x2 | 0,878 | 
| сигма ост | 0,003 | 
| Fрасч | 72,08 | 
| Fтабл | 2,086 | 
| стьюдента | 34,40 | 
Линейный коэффициент корреляции может быть определен по формуле:
Или
.
Он изменяется в диапазоне от -1 до +1. положительный коэффициент характеризует прямую связь, отрицательный – обратную. Связь между факторным и результативным признаком можно признать тесной, если r>0,7.
Индекс корреляции может рассчитываться по формуле:
,
Индекс корреляции изменяется от 0 до 1.
оценка существенности связи на основе t – критерия Стьюдента (при оценке параметров) или F – критерия Фишера (при оценке уравнения регрессии).
для линейной формы связи,
для криволинейной формы связи,
где k
– число параметров.
Нахождение аппроксимирующего уравнения, для чего определяется средняя ошибка аппроксимации
.
F
-критерия Фишера: