РефератыМатематикаОсОсновы научного исследования и планирование экспериментов на транспорте

Основы научного исследования и планирование экспериментов на транспорте

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ


ЗАДАНИЕ


ПОДГОТОВКА ПЛАНА ПРОВЕДЕНИЯ ОДНОФАКТОРНОГО ЭКСПЕРИМЕНТА


ПЛАН ЭКСПЕРИМЕНТА И РЕЗУЛЬТАТЫ ОПЫТОВ


УРАВНЕНИЕ РЕГРЕССИИ


РЕЗУЛЬТАТЫ ОПЫТОВ В ГРАФИЧЕСКОМ ВИДЕ


ПРОВЕРКА АДЕКВАТНОСТИ И РАБОТОСПОСОБНОСТИ МОДЕЛИ


ВЫВОД


ЛИТЕРАТУРА


ВВЕДЕНИЕ

Современный этап научных исследований характеризуется тем, что наряду с классическим натурным экспериментом все шире применяется вычислительный эксперимент, проводимый на математической модели с помощью ЭВМ. Проведение вычислительного эксперимента значительно дешевле и мобильнее, чем проведение аналогичного натурного, и в ряде случаев вычислительный эксперимент является единственным возможным инструментом исследователя.


Математический аппарат теории планирования и обработки результатов экспериментов в полной мере может быть применен как к натурным, так и к вычислительным экспериментам. В данной контрольно-курсовой работе под проводимым экспериментом будем понимать эксперимент на математической модели, выполненный при помощи ЭВМ.


Основная задача теории планирования и обработки результатов экспериментов – это построение статистической модели изучаемого процесса в виде Y = f(X1
, X2
,…Xk
), где X – факторы, Y – функция отклика. Полученную функцию отклика можно использовать для оптимизации изучаемых процессов, то есть определять значения факторов, при которых явление или процесс будет протекать наиболее эффективно.


Объект исследования – одноцилиндровый четырехтактный дизельный двигатель ТМЗ-450Д.


Предмет исследования– процесс функционирования двигателя.


Цель исследования – анализ влияния одного из параметров двигателя на показатели его работы и получение соответствующей функциональнойзависимости


ЗАДАНИЕ

Область планирования фактора X: Xmin
= 0,012 м, Xmax
= 0,055 м.


План проведения эксперимента:






































№ опыта xj
1 -1
2 -0,8
3 -0,6
4 -0,4
5 -0,2
6 0
7 0,2
8 0,4
9 0,6
10 0,8
11 1

Используя приведенные исходные данные и программу расчета функционирования двигателя, проанализировать влияние радиуса кривошипа (X) на величину максимальной температуры (Y) рабочего тела в цилиндре двигателя. Получить функциональные зависимости между указанными величинами.


ПОДГОТОВКА ПЛАНА ПРОВЕДЕНИЯ ОДНОФАКТОРНОГО ЭКСПЕРИМЕНТА

Используя указанный в задании план проведения эксперимента в кодовом виде, а также область планирования фактора Х (Хmin
, Хmax
), подготовим план проведения данного однофакторного эксперимента.


; ;


; ;


; ;


; ;


; ;


; ;


; ;


; ;


.


где - интервал (шаг) варьирования фактора;



-натуральное значение основного уровня фактора;


- кодированное значение фактора x;


- натуральное значение фактора в j-ом опыте, где j = 1, 2,…, N; N – число опытов.


В дальнейших расчетах будем использовать только натуральные значения факторов и функции отклика.


ПЛАН ЭКСПЕРИМЕНТА И РЕЗУЛЬТАТЫ ОПЫТОВ

Используя выданную преподавателем программу расчета (математическую модель) проведем на ЭВМ необходимое количество опытов N. Полученные результаты представим в виде таблицы 1.


Табл. 1


















































№ опыта Xj
Yj
1 0,012 3601,8348
2 0,0163 2712,4310
3 0,0206 2195,4343
4 0,0249 1855,3637
5 0,0292 1626,8644
6 0,0335 1461,2450
7 0,0378 1339,577
8 0,0421 1250,5135
9 0,0464 1173,9877
10 0,0507 1126,4606
11 0,055 1092,5573

УРАВНЕНИЕ РЕГРЕССИИ

Получим функциональную зависимость Y = f(X) (уравнение регрессии) с помощью метода наименьших квадратов (МНК). В качестве аппроксимирующих функций использовать линейную (Y = a0
+ a1
X) и квадратичную зависимости (Y = a0
+ a1
X + a2
X2
). Посредством МНК значения a0
, a1
и a2
найдем из условия минимизации суммы квадратов отклонений измеренных значений отклика Yj
от получаемых с помощью регрессионной модели, т. е. путем минимизации суммы:


.


Проведем минимизацию суммы квадратов с помощью дифференциального исчисления, путем приравнивания к 0 первых частных производных по a0
, a1
и a2
.


Рассмотрим реализацию метода наименьших квадратов применительно к уравнению вида Y = a0
+ a1
X. Получим:


;


.


Выполнив ряд преобразований, получим систему нормальных уравнений метода наименьших квадратов:



Решая эту систему, найдем коэффициенты a1
и a0
:


; .


Для квадратичной зависимости Y = a0
+ a1
X + a2
X2
система нормальных уравнений имеет вид:



Вычислим из N опытов необходимые суммы и данные представим в виде таблицы 2.


Табл. 2























































































































№ опыта Xj
Yj
Xj
2
Xj
Yj
Xj
2
Yj
Xj
3
Xj
4
1 0,012 3601,8348 0,000144 43,222017 0,5186642 0,0000017 0,000000020736
2 0,0163 2712,4310 0,0002656 44,212625 0,7204216 0,0000043 0,0000000705433
3 0,0206 2195,4343 0,0004243 45,225946 0,9315227 0,0000087 0,0000001800304
4 0,0249 1855,3637 0,00062 46,198556 1,1503254 0,0000154 0,0000003844
5 0,0292 1626,8644 0,0008526 47,50444 1,3870645 0,0000248 0,0000007269267
6 0,0335 1461,2450 0,0011222 48,951707 1,6398091 0,0000375 0,0000012593328
7 0,0378 1339,577 0,0014288 50,63601 1,9139876 0,000054 0,0000020414694
8 0,0421 1250,5135 0,0017724 52,646618 2,2164101 0,0000746 0,0000031414017
9 0,0464 1173,9877 0,0021529 54,473029 2,52747781 0,0000998 0,0000046349784
10 0,0507 1126,4606 0,0025704 57,111552
2,8954543 0,0001303 0,0000066069561
11 0,055 1092,5573 0,003025 60,090651 3,3049858 0,0001663 0,000009150625
Σ 0,3685 19436,266 0,0143782 550,27311 19,206122 0,0006174 0,0000282173998

Для уравнения регрессии вида Y = a0
+ a1
X найдем коэффициенты a1
иa0
:


.


.


Для уравнения регрессии вида
Y =
a0
+ a1
X + a2
X2
найдем коэффициенты a1
, a2
иa0
:


Решим систему нормальных уравнений способом Крамера:





.




.




.


Найдем определитель (
det) матрицы:


.



;
;
.


; ; .


РЕЗУЛЬТАТЫ ОПЫТОВ В ГРАФИЧЕСКОМ ВИДЕ

Построим графики функций Y = a0
+ a1
X ; Y = a0
+ a1
X + a2
X2
:










































X 0,012 0,0163 0,0206 0,0249 0,0292 0,0335 0,0378 0,0421 0,0464 0,0507 0,055
Y=ao
+a1
X

2833,143
2619,9 2406,658 2193,415 1980,172 1766,929 1553,686 1340,443 1127,2 913,9573 700,7144
Y=a0
+a1
X+a2
X2
3215,923 2748,207 2330,714 1963,444 1646,397 1379,574 1162,973 996,5962 880,4424 814,5117 798,8043

ПРОВЕРКА АДЕКВАТНОСТИ И РАБОТОСПОСОБНОСТИ МОДЕЛИ

Для проверки адекватности модели определим абсолютные DYj
и относительные погрешности в каждом из опытов.


DYj
= - Yj
; ,


где – расчетное значение функции (отклика) в j-ой точке.


Данные представим в виде таблицы 3.


Табл. 3













































































j Y = a0
+ a1
X
Y = a0
+ a1
X + a2
X2
DYj
DYj
1 -768,6918 -0,21342 -385,9118 -0,10714
2 -92,531 -0,03411 35,776 0,01319
3 211,2237 0,09621 135,2797 0,06162
4 338,0513 0,1822 108,0803 0,05825
5 353,3076 0,21717 19,5326 0,012
6 305,684 0,20919 -81,671 -0,05589
7 214,109 0,15983 -176,604 -0,13183
8 89,9295 0,07191 -253,9173 -0,20305
9 -46,7877 -0,0398 -293,5453 -0,25004
10 -212,5033 -0,1886 -311,9489 -0,27693
11 -391,8429 -0,35865 -293,753 -0,26887

Просматривая значения этих погрешностей, исследователь может легко понять, какова погрешность предсказания в точках, где проводились опыты, устраивают его или нет подобные ошибки. Таким образом, путем сопоставления фактических значений отклика с предсказанными по уравнению регрессии можно получить достаточно надежное свидетельство о точностных характеристиках модели.


С помощью анализа работоспособности регрессионной модели выясним практическую возможность ее использования для решения какой-либо задачи. Это анализ будем проводить, вычисляя коэффициент детерминации (квадрат корреляционного отношения). Коэффициент детерминации R2
вычисляется по формуле:



где – общее среднее значение функции отклика.


.


Вычислим из N опытов необходимые суммы и данные представим в виде таблицы 4.


Табл. 4






































































Y = a0
+ a1
X
Y = a0
+ a1
X + a2
X2
j
1 3366863,62479 1136803,18835 1952571,23764
2 893965,95743 727552,24249 853898,13319
3 183613,13271 409247,73017 312848,71152
4 7819,94095 181886,66602 37616,467
5 19619,28834 45470,75597 14328,99238
6 93445,31841 0,00002 147047,20405
7 182633,3815 45474,39816 359786,00774
8 266689,37885 181893,9504 589419,20142
9 351584,44898 409258,65674 602866,06259
10 410205,24101 727568,0054 801506,847
11 454782,94891 1136822,67874 759273,70255
Σ 6231222,66188 5001978,27246 5732724,84892

Для уравнения регрессии Y = a0
+ a1
X:



Для уравнения регрессии Y = a0
+ a1
X + a2
X2
:



Т.к. в уравнениях регрессии оба уравнения принято считать работоспособными. В уравнении регрессии вида Y = a0
+ a1
X + a2
X2


, а в уравнении регрессии вида Y = a0
+ a1
X. Из этого следует, что в уравнении вида Y = a0
+ a1
X + a2
X2
найденное значение регрессии лучше объясняет вариацию в значениях Y (N >> (d+1)), чем в уравнении вида Y = a0
+ a1
X.



ВЫВОД


В процессе выполнения контрольно-курсовой работы мы научились:


-
разрабатывать план проведения вычислительного эксперимента;


-
проводить вычислительный эксперимент на ЭВМ и накапливать статистическую информацию;


-
обрабатывать полученные статистические данные с помощью регрессионного анализа и получать формульные зависимости, связывающие значение выходной переменной (отклика) объекта с входными переменными (факторами);


-
графически представлять и анализировать полученные результаты (проверять адекватность и работоспособность регрессионной модели);


-
вычислять коэффициент детерминации (квадрат корреляционного отношения) и анализировать полученные результаты.


ЛИТЕРАТУРА

1. Гурман В.Е. Теория вероятностей и математическая статистика. – М.: Высшая школа, 1972.


2.Красовский Г.И., Филаретов Г.Ф. Планирование эксперимента. – Минск, 1982.


3.Румшинский Л.З. Математическая обработка результатов эксперимента. Справочное руководство. – М.: Наука, 1971.

Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Основы научного исследования и планирование экспериментов на транспорте

Слов:1444
Символов:17415
Размер:34.01 Кб.