РефератыМатематикаВыВычислительные методы линейной алгебры

Вычислительные методы линейной алгебры

A x
= b,



A m
{Ab
}





{Ab
} A m

{Ab
} A


m
= 2


a
11x
1 + a
12x
2 = b
1 a
21x
1 + a
22x
2 = b
2



5x
1
+ 7x
2
= 12,


7x
1
+ 10x
2
= 17,


x
1
= 1 x
2
= 1 F


t
= 2 β
= 10 t


F β F


x
1
= 2.
4 x
2
= 0 12 16.
8


0 0.
2 1.
4 −1


F x
1
= 2.
4 x
2
= 0


F



x
∈ R
m
A m
× m




,


kA
k


kA
k >
0 A
6= 0 kA
k = 0 ⇔ A
= 0


m
× m


kA
k



kA


kx

kA

kx

= kx



E



E




Ax
= b



∆A




b


A A
+ ∆A


x



.


,
.




(A
+ ∆A
)−1
− A
−1
= A
−1
A
(A
+ ∆A
)−1
− A
−1
(A
+ ∆A
) (A
+ ∆A
)−1
= = A
−1
(A
− (A
+ ∆A
)) (A
+ ∆A
)−1
= −A
−1
∆A
(A
+ ∆A
)−1
.




δ
(x
) 6 cond(A
)k∆A
k/
kA
k δ
(x
) 6 cond(,


cond(A
) = kA
−1
k kA
k



k∆A
k → 0


cond(A
) = kA
−1
k kA
k


t t


O
(2−t
)


O
(2t/
2) O
(2−t/
2)


cond(A
) = kA
−1
k kA
k


cond(A
) ≥ 1 A A
−1
= E
⇒ 1 = kE
k = kA A
−1
k > kA
k kA
−1
k = cond(A
) cond(c A
) = cond(A
) c
cond(A B
) 6 cond(A
) cond(B
) cond(A
−1
) = cond(A
)


max dii


cond( D D
= diag(dii
)


16i
6m


cond(A
) = kA
k2 kA
−1
k2


cond(A
)


A
= A
∗ >
0


i
= 1,...,m


R
m


,


.



b


.



εi


λl





A−1



A
−1



ε


δ



A x
= b,


x







a
ij


aij
= 0 i > j
(i < j
)



U


U
T
U
−1


U
T
U
= UU
T
= E


|det(U
)| = 1 1 = det(E
) = det(UU
T
) =


det(U
) det(U
T
) = det2
(U
)


1



Pij


i j


i j P
24
5 × 5


0 0 0 1 0











 0


A


0



A


i


j


A



24  1 0 0 0 0 


P
=0 0 1 0 0


0 1 0 0 0


Pij


Qij

)


i j


Q
24

) 5 × 5


24
1 0 0 0 0 


 0 cosϕ
0 −sinϕ
0


Q

) =0 0 1 0 0


0 sinϕ
0 cosϕ
0


0 0 0 0 1


Qij


P
m


v
1
> 0,


e
= (1,
0,...,
0)T


v
1
<
0.


,


u
= v
−σ
kv
ke P


.


u
1
u


P



y
= αu
+ βs


Aij aij
= 0 i > j
+ 1(i < j
− 1)






,



α
= 1.
2.
3




x
1
+ 0.
99 x
2
= 1.
99,


0.
99 x
1
+ 0.
98x
2
= 1.
97,


x
1
= 1 x
2
= 1


x
1
= 3 x
2
= −1.
0203





A
= L U


L U




L Ux
= b.


, .


LU



Ly
= b


l
11y
1 = b
1
,


l
21y
1+ l
22y
2 = b
2
,


... ... ... ... ... ... ...,


l
m
−1,
1y
1+ l
m
−1,
2y
2+ ...
+ ...
+ l
m
−1,m
−1y
m
−1 = b
m
−1,


l
m
1y
1+ l
m
2y
2+ ...
+ ...
+ l
m,m

1y
m

1+ l
mm
y
m
= bm
.


y
1 = b
1/l
11


yi



Ux
= y


u
11x
1+ u
12x
2+ u
13x
3+ ...
+ ...
+ u
1m
x
m
= y
1, u
21x
2+ u
23x
3+ ...
+ ...
+ u
2m
x
m
= y
2,


... ... ... ...,


u
m
−1,m
−1x
m
−1+ u
mm
x
m
= y
m
−1


u
mm
x
m
= y
m
.


x
m
= y
m
/u
mm


.


Q R QR


A



QRx
= b,



Rx
= Q
T
b.


m
× m


,


Am



.



l
mm
u
mm


Am



LDU



U














l
ii
= 1 u
ii
= 1 D


A
= LU


A
= LDU


uii
= 1


lii
= 1


A
= L
1D
1U
1 A
= L
2D
2U
2


L
1D
1U
1 = L
2D
2U
2


U
1U
2−1 = D
1−1L
−1 1L
2D
2


U
1U
2−1


D
1−1L
−1 1L
2D
2



U
1 U
2


U
1U
2−1 = D
= E
⇒ U
1 = U
2


D
1−1L
−1 1L
2D
2 = E L
−1 1L
2 = D
1D
2−1


L
1 L
2 L
−1 1L
2 = E
⇒ L
1 = L
2


D
1 = D
2


 a
11 a
12 ... ... ... ... a
1m



a
21 a
22 ... ... ... ... a
2m
A... ... ... ... ... ... ...


... ... ... ... ... ... ...


=  a
m
−1,
1 a
m
−1,
2 ... ... ... ... a
m
−1,m



 am
1
am
2
... ... ... ... amm



 1 a
(1)
1222 ... ... ... ... a
1(1)
2mm




0 a
(1)
... ... ... ... a
(1)


A
(1) = L
1
D
1
A
=... ... ... ... ... ... ... ,


... ... ... ... ... ... ...



0 a
(1)m
−1,
2
... ... ... ... a
(1)m

1,m



 0 a
m
(1)
2 ... ... ... ... ...a
mm
(1)


1/a
11
0 0 ...
0 1 0 0 ...
0


D
1
=  0 1 0 ...
0  L
1
k
= 1 −a
21 1 0 A...
(k
0 .


... ... ... ... ... ... ... ... ... ...


 0 0 0 ...
1
−am
1
0 0 ...
1


k
− −1)










1


 ...


0


A
(k

1)
= L D ...L D A
=  0


a
(1)12


...


1


0


...


...


0


1


...


...


a
(kk
−−11),k


a
(k
−1)


...


...


...


...


...


...


...


...


k
a
(1)1m
1,m



...
a
(k

1)



a
(k

1)













 ...
0


...


0


...


0


...


a
(mk
k
−1)


... ...


... ...



... a
(mmk

1) 


A
(k
−1)


Dk



k
−1 k
−1 1 1 
 k
(kkk
+11),k k
(k,mk
+11)



0 0 0 a

... ... a

,m


Dk
= diag(1,


Lk


... ... ... ... ... ...


0 ...
1 0 ...
0


k


1 ... ...
k
(mk
(kk
+11)1),k
... ...
0 


L
=.


0 ...
−a

1 ...
0


... ... ... ... ... ...


0 ...
−a

0 ...
1


A
(k
) = L
k
D
k
L
k
−1D
k
−1 ...L
1D
1A
=


− − ,m


 1 ... a
11,k
1 a
11,k
... a
11,m
1 a
1
11,m




 ... ... ...
k
(...
k
11),k
...
k
(k
(
k,m
...k
1)1)
,m
11
(k
...
k


0 ...
1 a

... a

a
−1)


− − − −
 0 ...
0 0 m
(k
)
1,m
1
m



= 0 ...
0 1 ... a a
(k
) − k,m


 ... ... ... ... ... ... ...


0 ...
0 0 ... a
a
(k
)


 − − −1,m


m
−1


U


U
= Dm
Lm
−1Dm
−1 ...L
1
D
1
A
=


− − 1,m


... ... ... ... ... ... ...


0 ...
1 a

... a

a

1)



 1 ... a
11,k
1 a
(kk
11,k
11),k
... a
(kk
(k,m
11k,m
1)1),m
111 m
(a
k
(mk
111 



− − − − ,m


=
0 ...
0 1 ... a a
(k
)
− k,m


... ... ... ... ... ... ...


0 ...
0 0 ...
1 a

1)


− ,m


0 ...
0 0 ...
0 1


L
−1
= Dm
Lm
−1Dm
−1 ...L
1
D
1
A L
−1


A
= LU.


U


cond(U) = cond(L

1
A
) = cond(Dm
Lm
−1Dm
−1 ...L
1
D
1
A
) 6


cond(cond(Li
) cond(A
)


=1


m


cond(Li
) > 1


cond(U
) D


 i
,
|a
(iii
)| <
1


cond(


 |aii
,
|a
(iii
)| >
1


cond(Di
) cond(U
)


cond(A
)


L
i
D
i



a
11x
1 + a
12x
2 + ...
+ a
1m
x
m
= b
1 a
21x
1 + a
22x
2 + ...
+ a
2m
x
m
= b
2


..............................


a
m
1x
1 + a
m
2x
2 + ...
+ a
mm
x
m
= b
m


U


xk


A


a
i,n
+1 = b
i


k
1 m
− 1


i k
+ 1 m
+ 1


r
:= a
ik
/a
kk


>

j
k
+ 1 m
+ 1


a
ij
:= a
ij
− r a
kj


j


i


k


x
n
:= a
n,n
+1/a
n,n


k
n
− 1 1


x
k
:= a
k,n
+1 − P a
kj
x
j
!/a
kk


n


j
=k
+1


k


Ux
= y


cond(A
)


Ux
= y U


A


k xk


|a
ln
|(k
) = 6max6 |a
ij
|(k
) k l k n


k i,j m


k n



x


x
(1)



kr
(1)k 6 ε x
(1)


ε





A


A
= QR,


Q R


A


a
25 a
35 a
45 a
55


a
15 


12 12  cosϕ
1212 −sinϕ
1212 0 0 0  sinϕ
cosϕ
0 0 0


Q

) =0 0 1 0 0


0 0 0 1 0


0 0 0 0 1


A
12 = Q
12A


12 
 a
1111 cosϕ
1212 −514131a
2121 sinϕ
1212 ·524232 · · a
1515 cosϕ
1212 − a
2525 sinϕ
12  a
sinϕ
+ a
cosϕ
· · · a
cosϕ
+ a
sinϕ
12


A
=a a
· · · a a
· · · a a
· · ·



ϕ
12 A
12


a
11 sinϕ
12 + a
21 cosϕ
12 = 0.




A
1


Q
3 Q
4


A
4
= Q
4
· Q
3
· Q
2
· Q
1
A


A m
× m


Am

1 = Qm

1 · ...
· Q
1
· A
= Q
e · A,


e


Q A
m
−1


A
= QR Q
= Q
e−1
R
= Am
−1


QR A


v
=


m
A


v
1 = (a
11,a
21,...,a
m
1)T


P
1
m
× m


a
(1)12mm




a
(1)


mm
· 


·


a
(1)


m
− 1 v
2




,



A
m
−1


Q


Pi
T
i
= 1,...,m
− 1 Q


A
= QR Q


R


Ax
= b


Rx
= Q
T
b


cond(A
) = cond(R
)


A Qij
i


j


b
(1)ik
= b
ik
cosϕ
ij
− a
jk
sinϕ
ij


k
= 1,...,m.


(1)


b
jk
= b
ik
sinϕ
ij
+ a
jk
cosϕ
ij


Q
Am
−1 = R


QR


A


QR


i k


i



i


R
= Am

1 A
= Q R


i


A
m
−1


A
m
−1


QR


Qij


O
(2m
3
)


QR


Pi
m
× m



A
= A



A
= L U.


A
= L U
= A

= U

L

⇒ L U
= U

L

⇒ U
(L

)−
1
= L

1
U

.


U
(L

)−
1
= L

1
U

= D
⇒ U
= D L

⇒ A
= L D L

.


,


D
= diag(


A


L



k > i


i
= 1


a
1j
= a
j
1 = l
11d
11l
j
1,






LU


LU



QR A


l


QR


x
(0) x


A x
= b


“ “ x
(n
)



kx
(n
) − x

k


O
(m
2
)


B


b, n
= 1,
2,...


x
(n
)


x
∗ n
→ ∞


x
(n
)


τn
= τ


τn
n
= 1,
2,... B


B
−1


x
(n
)


ε


n
= n

)


.


ε


τn
n
= 1,
2,...


r
(n
) n




τn
= τ


r
(n
) = Sr
(n
−1) = S Sr
(n
−2) ...
= S
n
r
(0).


S


S


kS
k 6 1


kr
(n
)k → 0 n
→ ∞


S S


n
→ ∞ |µ
k
| <
1 ,


.


kr
(n
)k = kG
−1J
n
G r
(0)k 6 kG
−1k kJ
n
k kG
k kr
(0)k → 0 n
→ ∞.


S


ε


n
→ ∞


B
= E


S
= E
− τA


S
max|µk
| τ
max|µk
| k k


τ A
= A
∗ >
0 A
0 < γ
1
6 λk
6 γ
2
k
=


λk
S


µk
= 1 − τλk


0 < τ <
2/γ
2
|µk
| = |1−τλk
| <
1


0 < τ <
2/γ
2
τ
= τ



∗| = 0<τ<
min2/γ
2 1max6k
6m
|1 − τλ
k
|



τ


γ
1
< λ < γ
2


) = 1−τλ


τ
= τ
∗ |gλ

∗)| 6 |gλ

)| γ
1
< λ < γ
2
0 < τ <


2/γ
2
0 < τ <
1/γ
2


|gγ
2

)| 6 |gγ
1

)| τ >
1/γ
1
|gγ
1

)| 6 |gγ
2

)|


1/γ
2
6 τ
6 1/γ
1
τ
0


|gγ
2

0
)| = |gγ
1

0
)|, τ
0



cond(A
)


1


kS
k → 1 ζ
→ ∞



aii
=6 0 i
= 1,...,m


(n
+1)



B
= diag(a
11
,...,amm
)


= b
⇒ x
(n
+1) = (E
− B
−1A
)x
(n
) + B
−1b, A


,


.


x
(0)


n
:= 0



x
(1)


Ax
= b ε


n


N


n > N


A Ax
= b a
ii
=6 0


(n
+ 1)


i














+ ...



= b
1



+ ...


+ a
2m
x
m
(n
)


= b
2



...................................................



.



m
= 2 (x
1
,x
2
)



,


I



,


II



x
(0)


n
:= 0


i
1 m



n
:= n
+ 1


Ax
= b


x


A
= A
∗ >
0


.


Φ(x
) = (Ax
− b,Ax
− b
) x
∈ Rm


x


F
(x
) = F
(x
1
,x
2
,...,xm
).


F
(x
)


x
1


ϕ
1(x
1) = F
(x
1,x
2(n
),...,x
m
(n
)),


x
(1
n
+1)


.


x
2



.


(n
+ 1)


A
= A
∗ >
0



C
= 0


a
1


A
1
(x
(1)1
,x
(1)2
)


C


Ax
= b



Ax = b A = A∗
> 0


k


k k n
+ 1


x
(k
n
+1)


.


.


.



Xk
−1
a
ik
x
(in
+1) + a
kk
x
k
(n
+1) + Xm
a
ik
x
ni
= b
k
.


i
=1 i
=k
+1


A
= A
∗ >
0


F
(x
) x


grad x
(n
+1)


x
(n
+1) = x
(n
) − α
n
gradF
(x
(n
)), αn


x
(n
+1)


gradF
(xn
) αn
:= αn
/
2


x
(n
+1)


αn


αn
N


x
(n
+1)


ε ε



,



,


αn

(αn
)|


ϕ

n
) = F
(x
(n
+1)) = F
(x
(n
) − α
n
gradF
(x
(n
))).


αn
A
= A
∗ >
0


grad




.



αn




Ax = b A = A∗
> 0


A
0 = (x
01,x
02)


gradF
(x
0
) A
0A
1


A
0A
1


(x
11,x
12) A
1


A
0A
1


A
= A
∗ >
0


n


,



n


,


.


.




.




,


x
(n
+1)


,


i



0 < ω <
1 1 < ω <
2


ω
= 1


x
(n
) = Sx
(n
−1) + c,


c






ε


kr
(n
)k = kx
(n
) − x

k 6 ε


kr
(n
)k = kx
(n
) −x

k


x
(n
) x



v
(n
)


.


R
m


µi
S


1 >

1
| >

2
| > |µ
3
| > ...
> |µm
|,


µi


, .


kw
(n
)k = O
(

1|n
)


,


.


,
.



,



n



.


kx
(n
) − x
(n
−1)k µ
1


,


kv
(n
)
k 6 ε
1,


α β x
(k
+1) = S x
(k
) + c


?


,


S
= E
− τA


0 < τ <
0.
4


α β


α β


α β


n
= 2


m
× m


A
∗ A


A


A


a
ji


AA A
−1



b
=6 0


A m


λ ϕ
6= 0


A



m det
(A
− λE
) = 0.


A


ρ
(A
) = max|λi
|


i


A


trA


A


A


A


A


ajj
ej
= (0,...,
0,
1 ,
0,...,
0) j
|{z}


λ
k
λ
j
A λ
k
=6 λ
j


λk
ϕk
k
= 1,...,m


R
m


R
m


R
m


A
∗ ψk
k
= 1,...,m


(ϕk
,ψj
) = 0, k
=6 j.


A


A B


P B
=


P
−1
AP


P B
= P
∗AP A B


,
.



grad



α
gradF y


F
(x
)


x


F
(x
) = c


F
(x
) = c x
0
=


.


max |a
ij
|


16i,j
6m


E





S
(A
) = √trAA






.


|β/α
| <


Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Вычислительные методы линейной алгебры

Слов:4663
Символов:41029
Размер:80.13 Кб.