A x 
= b,
 A m 
{Ab
}
{Ab
} A m
 {Ab
} A
m 
= 2
a
11x
1 + a
12x
2 = b
1 a
21x
1 + a
22x
2 = b
2
5x
1 
+ 7x
2 
= 12,
7x
1 
+ 10x
2 
= 17,
x
1 
= 1 x
2 
= 1 F
t 
= 2 β 
= 10 t
F β F
 x
1 
= 2.
4 x
2 
= 0 12 16.
8
 0 0.
2 1.
4 −1
 F x
1 
= 2.
4 x
2 
= 0
F
 x 
∈ R
m 
A m 
× m
,
kA
k
 kA
k > 
0 A 
6= 0 kA
k = 0 ⇔ A 
= 0
  m 
× m
 kA
k
kA
kα
 kx
kα 
kA
kβ 
kx
kα 
= kx
kβ
E
E
Ax 
= b
∆A
b
 A A 
+ ∆A
x
∗
.
, 
.
(A 
+ ∆A
)−1 
− A
−1 
= A
−1 
A 
(A 
+ ∆A
)−1 
− A
−1 
(A 
+ ∆A
) (A 
+ ∆A
)−1 
= = A
−1 
(A 
− (A 
+ ∆A
)) (A 
+ ∆A
)−1 
= −A
−1 
∆A 
(A 
+ ∆A
)−1
.
 δ
(x
) 6 cond(A
)k∆A
k/
kA
k δ
(x
) 6 cond(,
 cond(A
) = kA
−1
k kA
k 
k∆A
k → 0
cond(A
) = kA
−1
k kA
k
t t
O
(2−t
)
 O
(2t/
2) O
(2−t/
2)
cond(A
) = kA
−1
k kA
k
cond(A
) ≥ 1 A A
−1 
= E 
⇒ 1 = kE
k = kA A
−1
k > kA
k kA
−1
k = cond(A
) cond(c A
) = cond(A
) c 
cond(A B
) 6 cond(A
) cond(B
) cond(A
−1
) = cond(A
)
max dii
 cond( D D 
= diag(dii
)
16i
6m
cond(A
) = kA
k2 kA
−1
k2
cond(A
)
A 
= A
∗ > 
0
i 
= 1,...,m 
R
m
,
 .
b
.
  εi 
 λl
A−1
 A
−1
ε 
“
δ
A x 
= b,
 x 
a
ij
 aij 
= 0 i > j 
(i < j
)
U
 U
T 
U
−1
U
T
U 
= UU
T 
= E
 |det(U
)| = 1 1 = det(E
) = det(UU
T
) =
det(U
) det(U
T
) = det2
(U
)
1
Pij
 i j
i j P
24 
5 × 5
0 0 0 1 0
|    0 A
  | 
  0  | 
 
 | 
  A
  | 
|   i
  | 
  j
  | 
  A
  | 
24  1 0 0 0 0 
 P 
=0 0 1 0 0
0 1 0 0 0
Pij
Qij
(ϕ
)
 i j
 Q
24
(ϕ
) 5 × 5
 24
1 0 0 0 0 
 0 cosϕ 
0 −sinϕ 
0
 Q 
(ϕ
) =0 0 1 0 0
 0 sinϕ 
0 cosϕ 
0
0 0 0 0 1
Qij
 P 
m
v
1 
> 0,
e 
= (1,
0,...,
0)T
v
1 
< 
0.
,
 u 
= v
−σ
kv
ke P
.
  u
1 
u
P
 y 
= αu 
+ βs
 Aij aij 
= 0 i > j 
+ 1(i < j 
− 1)
“
“
,
α 
= 1.
2.
3
x
1 
+ 0.
99 x
2 
= 1.
99,
0.
99 x
1 
+ 0.
98x
2 
= 1.
97,
 x
1 
= 1 x
2 
= 1
 x
1 
= 3 x
2 
= −1.
0203
|   A 
  | 
  L U
  | 
L Ux 
= b.
, .
LU
Ly 
= b
 l
11y
1 = b
1
,
 l
21y
1+ l
22y
2 = b
2
,
 ... ... ... ... ... ... ...,
 l
m
−1,
1y
1+ l
m
−1,
2y
2+ ...
+ ...
+ l
m
−1,m
−1y
m
−1 = b
m
−1,
 l
m
1y
1+ l
m
2y
2+ ...
+ ...
+ l
m,m
−
1y
m
−
1+ l
mm
y
m 
= bm
.
y
1 = b
1/l
11
yi
Ux 
= y
u
11x
1+ u
12x
2+ u
13x
3+ ...
+ ...
+ u
1m
x
m 
= y
1, u
21x
2+ u
23x
3+ ...
+ ...
+ u
2m
x
m 
= y
2,
 ... ... ... ...,
u
m
−1,m
−1x
m
−1+ u
mm
x
m 
= y
m
−1
u
mm
x
m 
= y
m
.
x
m 
= y
m
/u
mm
.
 Q R QR
A
QRx 
= b,
Rx 
= Q
T
b.
  m 
× m
,
Am
 .
 l
mm 
u
mm
Am
LDU
U
|    l
  | 
  A 
  | 
|   A 
 uii 
  | 
  lii 
  A 
  | 
|   L
  | 
  U
  | 
|   U
  | 
  D
  | 
 U
1 U
2
U
1U
2−1 = D 
= E 
⇒ U
1 = U
2
D
1−1L
−1 1L
2D
2 = E L
−1 1L
2 = D
1D
2−1
 L
1 L
2 L
−1 1L
2 = E 
⇒ L
1 = L
2
D
1 = D
2 
  a
11 a
12 ... ... ... ... a
1m 
a
21 a
22 ... ... ... ... a
2m 
A... ... ... ... ... ... ...
  ... ... ... ... ... ... ...
=  a
m
−1,
1 a
m
−1,
2 ... ... ... ... a
m
−1,m 
  am
1 
am
2 
... ... ... ... amm
 
 1 a
(1)
1222 ... ... ... ... a
1(1)
2mm 
 0 a
(1) 
... ... ... ... a
(1)
 A
(1) = L
1
D
1
A 
=... ... ... ... ... ... ... ,
 ... ... ... ... ... ... ...
  
0 a
(1)m
−1,
2 
... ... ... ... a
(1)m
−
1,m 
  0 a
m
(1)
2 ... ... ... ... ...a
mm
(1)
 1/a
11 
0 0 ... 
0 1 0 0 ... 
0
 D
1 
=  0 1 0 ... 
0  L
1 
k
= 1 −a
21 1 0 A...
(k 
0 .
 ... ... ... ... ... ... ... ... ... ...
  0 0 0 ... 
1 
−am
1 
0 0 ... 
1
 k 
− −1)
|   1  ...
 0 A
  | 
  a
 ...
 1 0  | 
  ...
 ...
 0 1  | 
  ...
 ...
 a
 a
  | 
  ...
 ...
 ...
 ...
  | 
  ...
 ...
 ...
 ...
  | 
  k
 ... 
 − a
  | 
|    ...
  | 
  ...
 0  | 
  ...
 0  | 
  ...
 a
  | 
  ... ...
  | 
  ... ... 
 ... a
  | 
|   A
  | 
  Dk
  | 
 k
−1 k
−1 1 1 
 k
(kkk
+11),k k
(k,mk
+11) 
 0 0 0 a 
− 
... ... a 
−
,m
Dk 
= diag(1,
Lk
 ... ... ... ... ... ...
 0 ... 
1 0 ... 
0
 k 
1 ... ...
k
(mk
(kk
+11)1),k 
... ... 
0 
L 
=.
 0 ... 
−a 
− 
1 ... 
0
 ... ... ... ... ... ...
 0 ... 
−a 
− 
0 ... 
1
A
(k
) = L
k
D
k
L
k
−1D
k
−1 ...L
1D
1A 
=
 − − ,m
  1 ... a
11,k 
1 a
11,k 
... a
11,m 
1 a
1
11,m 
  ... ... ... 
k
(...
k 
11),k 
... 
k
(k
(
k,m
...k
1)1)
,m
11 
(k
...
k
 0 ... 
1 a 
− 
... a 
− 
a 
−1)
− − − − 
 0 ... 
0 0 m
(k
) 
1,m 
1 
m 
= 0 ... 
0 1 ... a a
(k
) − k,m
  ... ... ... ... ... ... ...
 0 ... 
0 0 ... a 
a
(k
)
  − − −1,m
m
−1
U
U 
= Dm
Lm
−1Dm
−1 ...L
1
D
1
A 
=
  − − 1,m
 ... ... ... ... ... ... ...
 0 ... 
1 a 
− 
... a 
− 
a 
−
1)
 
 1 ... a
11,k 
1 a
(kk
11,k
11),k 
... a
(kk
(k,m
11k,m
1)1),m
111 m
(a
k
(mk
111 
 − − − − ,m
=
0 ... 
0 1 ... a a
(k
) 
− k,m
 ... ... ... ... ... ... ...
 0 ... 
0 0 ... 
1 a 
−
1)
− ,m
  0 ... 
0 0 ... 
0 1
 L
−1 
= Dm
Lm
−1Dm
−1 ...L
1
D
1
A L
−1
A 
= LU.
U
cond(U) = cond(L
−
1
A
) = cond(Dm
Lm
−1Dm
−1 ...L
1
D
1
A
) 6
cond(cond(Li
) cond(A
)
=1
m
cond(Li
) > 1
 cond(U
) D
  i 
, 
|a
(iii
)| < 
1
cond(
  |aii 
, 
|a
(iii
)| > 
1
cond(Di
) cond(U
)
cond(A
)
L
i 
D
i
“
a
11x
1 + a
12x
2 + ... 
+ a
1m
x
m 
= b
1 a
21x
1 + a
22x
2 + ... 
+ a
2m
x
m 
= b
2
..............................
a
m
1x
1 + a
m
2x
2 + ... 
+ a
mm
x
m 
= b
m
U
xk
A
a
i,n
+1 = b
i
 k 
1 m 
− 1
 i k 
+ 1 m 
+ 1
r 
:= a
ik
/a
kk
j 
k 
+ 1 m 
+ 1
a
ij 
:= a
ij 
− r a
kj
j
i
k
x
n 
:= a
n,n
+1/a
n,n
k 
n 
− 1 1
x
k 
:= a
k,n
+1 − P a
kj
x
j
!/a
kk
n
j
=k
+1
k
Ux 
= y
cond(A
)
 Ux 
= y U
A
 k xk
 |a
ln
|(k
) = 6max6 |a
ij
|(k
) k l k n
 k i,j m
 k n
x
∗
x
(1)
 kr
(1)k 6 ε x
(1)
ε
A
A 
= QR,
 Q R
A
a
25 a
35 a
45 a
55
a
15 
12 12  cosϕ
1212 −sinϕ
1212 0 0 0  sinϕ 
cosϕ 
0 0 0
 Q 
(ϕ 
) =0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
A
12 = Q
12A
12 
 a
1111 cosϕ
1212 −514131a
2121 sinϕ
1212 ·524232 · · a
1515 cosϕ
1212 − a
2525 sinϕ
12  a 
sinϕ 
+ a 
cosϕ 
· · · a 
cosϕ 
+ a 
sinϕ
12
A 
=a a 
· · ·  a a 
· · · a a 
· · ·
 ϕ
12  A
12
a
11 sinϕ
12 + a
21 cosϕ
12 = 0.
 A
1 
 Q
3 Q
4
A
4 
= Q
4 
· Q
3 
· Q
2 
· Q
1
A
 A m 
× m
Am
−
1 = Qm
−
1 · ... 
· Q
1 
· A 
= Q
e · A,
e
 Q A
m
−1
 A 
= QR Q 
= Q
e−1 
R 
= Am
−1
 QR A 
  v 
=
 m 
A
v
1 = (a
11,a
21,...,a
m
1)T
 P
1 
m 
× m 
a
(1)12mm 
a
(1)
mm
· 
·
a
(1)
 m 
− 1 v
2
 ,
A
m
−1
Q
 Pi
T 
i 
= 1,...,m 
− 1 Q
 A 
= QR Q
R
Ax 
= b
Rx 
= Q
T
b
cond(A
) = cond(R
)
 A Qij 
i
j
b
(1)ik 
= b
ik 
cosϕ
ij 
− a
jk 
sinϕ
ij
k 
= 1,...,m.
(1)
b
jk 
= b
ik 
sinϕ
ij 
+ a
jk 
cosϕ
ij
Q 
Am
−1 = R
QR
A
QR
  i k
i
i
R 
= Am
−
1  A 
= Q R
i
A
m
−1
A
m
−1
QR
Qij
O
(2m
3
)
QR
Pi 
m 
× m
A 
= A
∗
A 
= L U.
A 
= L U 
= A
∗ 
= U
∗ 
L
∗ 
⇒ L U 
= U
∗ 
L
∗ 
⇒ U 
(L
∗
)−
1 
= L
−
1 
U
∗
.
U 
(L
∗
)−
1 
= L
−
1 
U
∗ 
= D 
⇒ U 
= D L
∗ 
⇒ A 
= L D L
∗
.
 ,
D 
= diag(
A
L
k > i
i 
= 1
a
1j 
= a
j
1 = l
11d
11l
j
1,
LU
 LU 
 QR A
l
QR
x
(0) x
∗
A x 
= b
 “ “ x
(n
)
kx
(n
) − x
∗
k
O
(m
2
)
 B 
  b, n 
= 1,
2,...
x
(n
)
x
∗  n 
→ ∞
x
(n
)
τn 
= τ
 τn 
n 
= 1,
2,... B
B
−1
  x
(n
)
ε
n 
= n
(ε
)
.
ε
 τn 
n 
= 1,
2,...
 r
(n
) n
τn 
= τ 
r
(n
) = Sr
(n
−1) = S Sr
(n
−2) ... 
= S
n
r
(0).
S
S
  kS
k 6 1
kr
(n
)k → 0 n 
→ ∞ 
S S
n 
→ ∞ |µ
k
| < 
1 ,
.
 kr
(n
)k = kG
−1J
n
G r
(0)k 6 kG
−1k kJ
n
k kG
k kr
(0)k → 0 n 
→ ∞.
 S 
ε
n 
→ ∞
B 
= E
S 
= E 
− τA
S 
max|µk
| τ 
max|µk
| k k
τ A 
= A
∗ > 
0 A 
0 < γ
1 
6 λk 
6 γ
2 
k 
=
 λk 
S
µk 
= 1 − τλk
 0 < τ < 
2/γ
2 
|µk
| = |1−τλk
| < 
1
 0 < τ < 
2/γ
2 
τ 
= τ
∗
|µ
∗| = 0<τ<
min2/γ
2 1max6k
6m 
|1 − τλ
k
|
τ
 γ
1 
< λ < γ
2 
gλ
(τ
) = 1−τλ
 τ 
= τ
∗ |gλ
(τ
∗)| 6 |gλ
(τ
)| γ
1 
< λ < γ
2 
0 < τ <
2/γ
2 
0 < τ < 
1/γ
2
 |gγ
2
(τ
)| 6 |gγ
1
(τ
)| τ > 
1/γ
1 
|gγ
1
(τ
)| 6 |gγ
2
(τ
)|
 1/γ
2 
6 τ 
6 1/γ
1 
τ
0
|gγ
2
(τ
0
)| = |gγ
1
(τ
0
)|, τ
0
cond(A
)
1
 kS
k → 1 ζ 
→ ∞
 aii 
=6 0 i 
= 1,...,m
(n
+1)
B 
= diag(a
11
,...,amm
)
 = b 
⇒ x
(n
+1) = (E 
− B
−1A
)x
(n
) + B
−1b, A
 ,
 .
x
(0)
n 
:= 0
x
(1)
 Ax 
= b ε
n
N
n > N
 A Ax 
= b a
ii 
=6 0
  (n 
+ 1)
i
|  
 | 
  + ...
  | 
 
 | 
  = b
  | 
|  
 | 
  + ...
  | 
  + a
  | 
  = b
  | 
...................................................
 .
m 
= 2 (x
1
,x
2
)
,
 I 
,
 II 
x
(0)
n 
:= 0
 i 
1 m 
n 
:= n 
+ 1
Ax 
= b
x
∗
 A 
= A
∗ > 
0 
.
 Φ(x
) = (Ax 
− b,Ax 
− b
) x 
∈ Rm
  x
∗
F
(x
) = F
(x
1
,x
2
,...,xm
).
F
(x
)
x
1
ϕ
1(x
1) = F
(x
1,x
2(n
),...,x
m
(n
)),
x
(1
n
+1)
.
x
2
.
(n 
+ 1)
  A 
= A
∗ > 
0
C 
= 0
a
1
A
1
(x
(1)1 
,x
(1)2 
)
C
Ax 
= b
 Ax = b A = A∗ 
> 0
k
 k k n 
+ 1
x
(k
n
+1)
.
.
.
 Xk
−1 
a
ik
x
(in
+1) + a
kk
x
k
(n
+1) + Xm 
a
ik
x
ni 
= b
k
.
 i
=1 i
=k
+1
A 
= A
∗ > 
0
 F
(x
) x
grad x
(n
+1)
x
(n
+1) = x
(n
) − α
n 
gradF
(x
(n
)), αn
  x
(n
+1)
 gradF
(xn
) αn 
:= αn
/
2
x
(n
+1)
αn
αn 
N
x
(n
+1)
ε ε
“
  ,
“
  ,
 αn 
|ϕ
(αn
)|
ϕ
(α
n
) = F
(x
(n
+1)) = F
(x
(n
) − α
n 
gradF
(x
(n
))).
 αn 
A 
= A
∗ > 
0
grad
.
αn
 Ax = b A = A∗ 
> 0
A
0 = (x
01,x
02)
 gradF
(x
0
) A
0A
1
A
0A
1
(x
11,x
12) A
1
A
0A
1
A 
= A
∗ > 
0
 n
,
n
,
.
.
.
,
x
(n
+1)
,
 i 
0 < ω < 
1 1 < ω < 
2
ω 
= 1
x
(n
) = Sx
(n
−1) + c,
  c
|   ε
  | 
  kr
 kr
  | 
  x
  | 
v
(n
)
.
R
m
 µi 
S
1 > 
|µ
1
| > 
|µ
2
| > |µ
3
| > ... 
> |µm
|,
 µi 
, .
  kw
(n
)k = O
(
|µ
1|n
)
,
.
, 
.
 ,
n
.
 kx
(n
) − x
(n
−1)k µ
1
,
kv
(n
)
k 6 ε
1,
 α β x
(k
+1) = S x
(k
) + c
?
 ,
S 
= E 
− τA
0 < τ < 
0.
4
 α β
 α β
 α β
n 
= 2 
m 
× m
 A
∗ A
A
A
∗
a
ji
AA A
−1
 b 
=6 0 
 A m
 λ ϕ 
6= 0
A
m det
(A 
− λE
) = 0.
A
ρ
(A
) = max|λi
|
i
A
trA
A
A
A
A
ajj 
ej 
= (0,...,
0, 
1 ,
0,...,
0) j
|{z}
 λ
k 
λ
j 
A λ
k 
=6 λ
j
 λk 
ϕk 
k 
= 1,...,m
R
m
R
m
R
m
A
∗ ψk 
k 
= 1,...,m
 (ϕk
,ψj
) = 0, k 
=6 j.
A
 A B
 P B 
=
P
−1
AP
 P B 
= P
∗AP A B
 , 
.
grad
 α 
gradF y
  F
(x
)
x
F
(x
) = c
 F
(x
) = c x
0 
=
 .
max |a
ij
|
16i,j
6m
 E 
S
(A
) = √trAA
∗
.
|β/α
| <
Название реферата: Вычислительные методы линейной алгебры
| Слов: | 4663 | 
| Символов: | 41029 | 
| Размер: | 80.13 Кб. | 
Вам также могут понравиться эти работы:
- Теорема Пифагора
 - Исследование задачи оптимизации кооперации разработчиков
 - Использование критерия ДарбинаУотсона и оценка качества эконометрической модели с использованием
 - Задачи Циолковского
 - Анализ экономических задач оптимизации
 - Использование измерений и решение задач на местности при изучении некоторых тем школьного курса геометрии
 - Геометрия 10 класс Бевз профиль