РефератыМатематикаТаТаблица производных Дифференцирование сложных функций

Таблица производных Дифференцирование сложных функций

Контрольная работа


Дисциплина: Высшая математика


Тема: Таблица производных. Дифференцирование сложных функций


1. Таблица производных


Как известно, большинство функций можно представить в виде какой-то комбинации элементарных функций. Зная, как дифференцируются элементарные функции, можно продифференцировать и их различные комбинации. Поэтому рассмотрим таблицу производных элементарных функций.


1. .


Найдем производную, когда .


Зададим приращение аргументу , что даст . Так как


, а , то



Отсюда и ,


то есть . Если , результат тот же.


2. .


Зададим приращение аргументу , что даст . Так как , а , то


.


Отсюда и , то есть .


3. .


Зададим приращение аргументу , что даст . Так как , а , то


.


Отсюда и , то есть .


4. .


По определению . Будем дифференцировать как частное:


, то есть .


5. .


По определению . Будем дифференцировать как частное:


, то есть .


6. .


Зададим приращение аргументу , что даст . Так как , а , то


.


Отсюда и


,


то есть . Здесь была использована формула для второго замечательного предела.


7. .


Для вычисления производной воспользуемся предыдущей формулой, в которой положим : . Значит, .


8. .


Зададим приращение аргументу , что даст . Так как , а , то . Отсюда


и , то есть .


Здесь была использована формула для одного из следствий из второго замечательного предела.


9. .


Для вычисления производной воспользуемся предыдущей формулой, в которой положим : . Значит, .


Прежде чем перейти к вычислению производных от обратных тригонометрических функций, рассмотрим вопрос о дифференцировании обратных функций вообще. Как было сказано в п. 8.2, для каждого взаимно однозначного отображения существует обратное отображение, то есть если , то .


Теорема
. Если для некоторой функции существует обратная ей , которая в точке имеет производную не равную нулю, то в точке функция имеет производную равную , то есть .


Доказательство. Рассмотрим отношение приращения функции к приращению аргумента: . Так как функция имеет производную, то согласно теореме 11.2.2 она непрерывна, то есть , откуда . Значит, .


Воспользуемся данной теоремой для вычисления производных обратных тригонометрических функций.


10. .


В данном случае обратной функцией будет . Для нее . Отсюда


,


то есть .


11. .


Так как


, то . .


В данном случае обратной функцией будет . Для нее


.


Отсюда , то есть .


13. .


Так как


, то .


2. Производная сложной функции


Пусть дана функция и при этом . Тогда исходную функцию можно представить в виде . Функции такого типа называются сложными. Например, .


В выражении аргумент называется промежуточным аргументом. Установим правило дифференцирования сложных функций, так как они охватывают практически все виды существующих функций.


Теорема
. Пусть функция имеет производную в точке , а функция имеет производную в соответствующей точке . Тогда сложная функция в точке также будет иметь производную равную производной функции по промежуточному аргументу умноженной на производную промежуточного аргумента по , то есть .


Для доказательства дадим приращение аргументу , то есть от перейдем к . Это вызовет приращение промежуточного аргумента , который от перейдет к . Но это, в свою очередь, приведет к изменению , который от перейдет к . Так как согласно условию теоремы функции и имеют производные, то в соответствии с теоремой о связи дифференцируемости и непрерывности функции (теорема 11.2.2) они непрерывны. Значит, если , то и , что, в свою очередь, вызовет стремление к нулю.


Составим . Отсюда,



и, следовательно, .


Если функция имеет не один, а два промежуточных аргумента, то есть ее можно представить в виде , гд

е , а , или , то, соответственно, и так далее.


3. Дифференцирование параметрически заданной функции


Выше были рассмотрены производные элементарных функций и указано правило дифференцирования сложных функций, составленных из элементарных. Но существуют и другие способы задания функций, которые также необходимо дифференцировать. Одним из таких способов является параметрическое задание функции, с которым мы уже сталкивались при изучении уравнения прямой линии.


При обычном задании функции уравнение связывало между собой две переменных: аргумент и функцию. Задавая , получаем значение , то есть пару чисел, являющихся координатами точки . При изменении меняется , точка начинает перемещаться и описывать некоторую линию. Однако при задании линии часто бывает удобно переменные и связывать не между собой, а выражать их через третью переменную величину.


Пусть даны две функции: где . Для каждого значения из данного промежутка будет своя пара чисел и , которой будет соответствовать точка . Пробегая все значения, заставляет меняться и , то есть точка движется и описывает некоторую кривую. Указанные уравнения называются параметрическим заданием функции, а переменная – параметром.


Если функция взаимно однозначная и имеет обратную себе, то можно найти . Подставляя в , получим , то есть обычную функцию. Указанная операция называется исключением параметра. Однако при параметрическом задании функции эту операцию не всегда делать удобно, а иногда и просто невозможно.


Так, в механике принят способ изображения траектории точки в виде изменения ее проекций по осям и в зависимости от времени , то есть в виде параметрически заданной функции Такой способ значительно удобнее при решении целого ряда задач. В трехмерном случае сюда добавляется еще и уравнение .


В качестве примера рассмотрим несколько параметрически заданных кривых.


1. Окружность.


Возьмем точку на окружности с радиусом . Выражая и через гипотенузу прямоугольного треугольника, получаем:



Это и есть уравнение окружности в параметрической форме (рис. 3.1). Возводя каждое уравнение в квадрат, отсюда легко получить обычное уравнение окружности .



Рис. 3.1


2. Эллипс.


Известно, что уравнение эллипса – . Отсюда . Возьмем две точки и на окружности и эллипсе, имеющие одинаковую абсциссу (рис. 3.2). Тогда из уравнения окружности следует, что . Подставим это выражение в : . Значит, уравнение эллипса в параметрической форме имеет вид




Рис. 3.2


3. Циклоида.


Пусть по ровной горизонтальной поверхности катится без скольжения окружность с радиусом . Зафиксируем точку O
ее соприкосновения с поверхностью в начальный момент. Когда окружность повернется на угол t
, точка O
перейдет в точку C
(рис. 3.3). Найдем ее координаты:



Значит, параметрическое уравнение циклоиды имеет вид:




Рис. 3.3


4. Астроида.


Пусть внутри окружности радиуса без скольжения катится другая окружность радиуса . Тогда точка меньшей окружности, которая в начальный момент времени была точкой соприкосновения с большей, в процессе движения опишет астроиду (рис. 3.4), параметрическое уравнение которой имеет вид:




Рис. 3.4


Рассмотрев ряд примеров, перейдем теперь к вопросу о дифференцировании параметрически заданных функций.


Пусть функция от задана параметрически: где . Пусть на этом отрезке обе функции имеют производные и при этом . Найдем .


Составим отношение . Тогда


.


Следовательно, . Это и есть правило дифференцирования параметрически заданных функций.


Литература


1. Бугров Я.С., Никольский С.М. ВЫСШАЯ МАТЕМАТИКА В 3-х томах Т. 1 Элементы линейной алгебры и аналитической геометрии 8-е изд. Изд-во: ДРОФА, 2006. – 284с.


2. Мироненко Е.С. Высшая математика. М: Высшая школа, 2002. – 109с.


3. Никольский С.М., Бугров Я.С. ВЫСШАЯ МАТЕМАТИКА В 3-Х ТОМАХ Т. 2 Дифференциальное и интегральное исчисление 8-е изд. Изд-во: ДРОФА, 2007. – 509с.


4. Черненко В.Д. Высшая математика в примерах и задачах. В трех томах. ПОЛИТЕХНИКА, 2003.

Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Таблица производных Дифференцирование сложных функций

Слов:1239
Символов:9287
Размер:18.14 Кб.