Эту красивую теорему приписывают известному великому полководцу и государственному деятелю Наполеону Бонапарту. С учетом того, что Наполеон был артиллеристом, неудивительно, что он увлекался геометрией. Бонапарт считается также автором задачи о делении на четыре равные части окружности с помощью одного лишь циркуля.
Тем не менее, впервые опубликовал эту теорему У. Резерфорд в публикации в “The Ladies’ Diary” в 1825 году, спустя 4 года после смерти Наполеона, так что возможно, что ее автором является и не полководец.
В различных источниках приводятся разные доказательства теоремы Наполеона. Чаще всего можно встретить доказательства, основанные на свойствах поворота или использующие комплексные числа. Привожу здесь доказательство, которое кажется мне наиболее простым и доступным для школьников. Все, что нужно для понимания его — знание теоремы косинусов.
Теорема Наполеона. На сторонах произвольного треугольника во внешнюю сторону построены равносторонние треугольники. Центры этих треугольников являются вершинами еще одного равностороннего треугольника.
Доказательст
.
Центры построенных равносторонних треугольников обозначим через и (см. рис.).
Найдем из треугольника . Имеем
(здесь пользуемся тем, что медианы треугольника в точке пересечения делятся в отношении 2:1, считая от вершины, кроме того, в равностороннем треугольнике медиана является и высотой)
и
.
Кроме того,
По теореме косинусов для
.
Из формулы для площади треугольника
.
Находим :
.
Поскольку выражение для симметрично относительно и (а можно еще два раза проделать выкладки), получаем
,
то все стороны треугольника равны, что и требовалось доказать.
Нужно отметить, что теорема Наполеона остается справедливой, если строить равносторонние треугольники не вовне, а вовнутрь (см. рис.). Доказывается она аналогично. Для стороны треугольника получается выражение