Пол Парсонс, журнал "Наука в фокусе
Открыты планеты, которые странствуют по Галактике, вместо того чтобы обращаться вокруг звезд.
Древнегреческие астрономы видели объекты, движущиеся по ночному небу, и назвали их планетами, что означает «блуждающие [звезды]». В то время как настоящие звезды выглядели закрепленными на небосводе, планеты от ночи к ночи меняли свое положение. Позднее стало ясно, что они движутся вокруг Солнца.
Одинокие планеты
С середины 1990-х годов астрономы стали находить планеты за пределами Солнечной системы. Теперь нам известно уже более полутысячи так называемых «экзопланет». До недавнего времени все эти миры обнаруживались рядом со звездами, что делало эти системы аналогами нашей Солнечной. Однако новые астрономические наблюдения позволили отыскать и нечто иное: блуждающие планеты, не обращающиеся вокруг звезд, а свободно летящие через Галактику. Оценки, основанные на полученных данных, свидетельствуют, что число планет в межзвездном пространстве может втрое превосходить количество звезд в Галактике, достигая ошеломляющей величины в 600 млрд свободно движущихся планет-изгоев, как их теперь стали называть. Новые исследования позволяют глубже проникнуть в тайну рождения всех планет. Группа под руководством астрофизика профессора Такахиро Суми (Takahiro Sumi) из Осакского университета (Япония) нашла в открытом космосе десять планет, которые, по-видимому, не связаны ни с одной звездой. Планеты были замечены в направлении центра нашей Галактики и все сравнимы по массе с Юпитером, а значит, являются газовыми гигантами (см. врезку «Кто есть кто в Галактике»).
1. КАМЕНИСТЫЕ ПЛАНЕТЫ Похожи на Землю. Формируются вблизи от родительской звезды и имеют твердую поверхность. В Солнечной системе это планеты земной группы — Меркурий, Венера, Земля и Марс. Масса ограничена десятью массами Земли (6*1024 кг). Предполагается, что их численность среди блуждающих планет может быть выше, чем их более крупных родственников.
2. ГАЗОВЫЕ ГИГАНТЫ Рождаются в холодных внешних областях планетных систем, там, где в Солнечной системе находятся Юпитер, Сатурн, Уран и Нептун. Обычно имеют массы в диапазоне от 10 земных до 13 масс Юпитера (1, 8*1027 кг). Сотни планет-гигантов открыты на орбитах вокруг других звезд, а теперь обнаружено, что у некоторых таких планет звезд по соседству нет.
3. КОРИЧНЕВЫЕ КАРЛИКИ Тяжелее 13 масс Юпитера, легче маломассивных звезд (обычно около 80 масс Юпитера). Формируются как звезды в облаках межзвездного газа, но недостаточно массивны, чтобы в их недрах начались реакции термоядерного синтеза с участием водорода. Много общего с планетами-изгоями, но, раз они образуются по типу звезд, их и считают звездами.
4. СУБКОРИЧНЕВЫЕ КАРЛИКИ Свободно движущиеся объекты с массами меньше нижнего предела для коричневых карликов. Похожи на гигантские газовые планеты, но образуются скорее как звезды, подобно коричневым карликам. Термин «субкоричневый карлик» предложен Международным астрономическим союзом в 2001 году. Субкоричневые карлики могут быть похожи на планеты-изгои.
Кто есть кто в галактике
Как засечь планету-изгоя
Поскольку сами по себе планеты света не испускают, их поиск представляет для астрономов непростую задачу. В прошлом экзопланеты регистрировались в основном благодаря гравитационному взаимодействию со своими звездами: оказываясь на разных участках орбиты, планета немного «сдвигает» звезду то в одну, то в другую сторону. Такой способ, естественно, не годится для обнаружения планет-изгоев, у которых нет звезд. Вместо него группа Суми использовала эффект гравитационного микро-линзирования. Он основан на том, что гравитация планеты действует подобно линзе и вызывает кратковременные повышения яркости далеких звезд, когда планета в своем движении оказывается в точности на линии, соединяющей Землю со звездой.
Одинокие планеты
Такие события регистрировались с помощью телескопа MOA-II новозеландской обсерватории Маунт-Джон и с помощью телескопа Варшавского университета обсерватории Лас-Кампанас в Чили. О том, что найденные объекты достаточно малы, чтобы их можно было считать планетами, свидетельствует небольшая длительность события микролинзирования — чем оно короче, тем меньше масса объекта. Причина, ранее затруднявшая подобные наблюдения, — планеты, имея сравнительно небольшую массу, дают лишь кратковременный эффект микролинзирования, длящийся 1-2 дня, — для астрономов это совсем немного.
1. Планета-изгой движется сквозь космос вдали от звезд. Поэтому она не дает отраженного света и не видна. 2. Когда планета проходит перед далекой звездой, ее гравитация фокусирует звездный свет, подобно линзе, вызывая возрастание блеска звезды 3. Вскоре планета проходит дальше, и блеск звезды возвращается к исходной величине. 4. Нарисовав зависимость блеска звезды от времени, астрономы могут вычислить массу и размеры объекта, вызвавшего линзирование. 5. Таким способом группа Суми обнаружила 10 объектов, которые по массам и размерам сравнимы с Юпитером. При этом не было признаков наличия у этих планет звезд.
Возможность гравитационного линзирования следует из теории Альберта Эйнштейна. Его общая теория относительности описывает гравитацию как искривление пространства-времени. Гравитация способна искривлять не только траектории движущихся объектов, но и лучи света. Гравитация массивной галактики может усиливать свет далеких небесных объектов, действуя как гигантская космическая линза. Микролинзирование — проявление тех же эффектов в меньших масштабах, что позволяет астрономам обнаруживать объекты планетной величины, своей гравитацией вызывающие небольшое возрастание яркости фоновых звезд. Группа профессора Такахиро Суми из Осакского университета в Японии использовала это для поиска планет-изгоев. По астрономическим меркам планеты-изгои — относительно небольшие объекты, и вызываемый ими линзовый эффект длится всего 1-2 дня. Это означает, что нужно очень часто, каждые 10-60 минут, делать снимки и следить за изменениями блеска звезд. Наблюдаемые астрономами объекты очень слабые, и для их фотографирования требуются длительные экспозиции, чтобы собрать побольше света. Данное исследование стало возможным бла годаря применению новых высокочувствительных сенсоров, способных быстро получать снимки. Помогло также использование широкоугольных телескопов, поскольку их поле зрения охватывает больше объектов, обеспечивая тем самым максимальный эффект от применения скоростных сенсоров.
Микролинзование. Как засечь планету по искривлению света!
Дополнительное преимущество метода, основанного на микролинзировании: он позволяет астрономам убедиться, что данная планета действительно одинока в космосе. Если бы любая из обнаруженных планет обращалась вокруг звезды по орбите размером до 10 а.е. (астрономических единиц — расстояний от Земли до Солнца), то гравитация звезды искажала бы микролинзовый сигнал. Ничего подобного не наблюдается.
Одинокие планеты
Впрочем, к этим оценкам нужно пока относиться скептически. Как отмечают некоторые астрономы, для газового гиганта совершенно естественно находиться более чем в 10 а.е. от своей звезды. «Взгляните на нашу Солнечную систему. Нептун обращается в 30 а.е. — говорит доктор Саша Куанц (Sascha Р Quanz) из Швейцарского федерального технологического института в Цюрихе. — Я верю, что обнаружены планеты, но не убежден, что все они — свободно летящие». Но сколько бы планет-изгоев ни было обнаружено в действительности, вопрос о том, откуда они могли появиться, остается дискуссионным.
Рождение изгоев
Существование свободно летящих планет давно предсказывалось теоретически, но при этом считалось, что они образуются примерно тем же путем, что и звезды, — из облаков газа в межзвездном пространстве, которые сжимаются под действием собственного гравитационного притяжения. Один из основных аргументов в пользу данного варианта заключался в следующем. Обычные планеты, как в нашей Солнечной системе, формируются, по сути, из мусора, оставшегося при образовании звезды, — газопылевого диска в ее экваториальной плоскости. Однако в ранних компьютерных моделях образования планет ни за что не удавалось объяснить, каким образом эти планеты могут выбрасываться из диска в открытый космос. Было также известно, что космические объекты, называемые «субкоричневыми карликами», которые тяжелее таких планет, как Юпитер, но легче звезд (см. врезку «Кто есть кто в Галактике»), в действительности образуются, как звезды. Нет ничего невозможного в том, чтобы свободно летящие планеты формировались бы тем же способом.
Несколько юпитероподобных планет, которые не обращаются вокруг звезд, обнаружены астрономами по наблюдениям далеких звезд, когда планеты проходили на их фоне. По частоте таких событий в обследованной части космоса подсчитано, сколько межзвездных планет должно быть в нашей Галактике, и астрономы пришли к выводу, что их может быть больше, чем самих звезд, число которых оценивается в 300 млрд. Это означает, что планет, дрейфующих среди звезд, может быть больше, чем обращающихся вокруг них. Исследования планет у других звезд говорят о том, что наша система со своей свитой из восьми планет, вращающихся вокруг Солнца, скорее исключение — у большинства звезд обнаруживается лишь по одной планете. Эти новые открытия грозят перевернуть наши привычные представления о планетах как о телах, обращающихся вокруг звезд. «Со временем классификация планет становится всё более запутанной, — говорит астрофизик Филип Лукас (Philip Lucas) из Хартфордширского университета (Великобритания). — Разнообразие их типов гораздо выше, чем считалось ранее».
НАША ГАЛАКТИКА МОЖЕТ ИЗОБИЛОВАТЬ БЛУЖДАЮЩИМИ МИРАМИ
Но вскоре в усовершенствованных, благодаря более мощным компьютерам, численных моделях стали обнаруживаться сценарии, в которых по ходу формирования планет вокруг звезды между ними случаются тесные сближения, приводящие к тому, что один из молодых миров может быть выброшен из планетарной колыбели, словно пращой, в холодные и темные глубины космоса. Астрономы-наблюдатели тем временем стали находить у звезд экзопланеты
Признаки жизни
Если планеты-изгои проводят свои ранние годы, купаясь в теплых лучах молодой звезды, то не исключено, что на некоторых из них еще до того, как они были выброшены из системы, могла возникнуть жизнь. И если так, то может ли эта жизнь сохраниться до наших дней в ходе путешествия сквозь межзвездную пустоту?
Часть планетологов считает это совершенно невозможным. Вдали от живительного тепла звезды поверхность блуждающей планеты вскоре станет негостеприимной ледяной пустыней. Однако другие ученые полагают, что планета может не остыть окончательно благодаря геотермальной энергии — остаточного тепла от ее образования и энергии, выделяющейся при распаде радиоактивных элементов. «Температура внутри Юпитера очень высока. В центре — 20 000 °С», — говорит профессор Дэвид Стивенсон (David Stevenson) из Калифорнийского технологического института (США). По пути от центра к поверхности температура падает до межпланетной. Но где-то между этими крайностями должна быть умеренная зона. «В атмосфере Юпитера и сейчас есть место, где температура такая же, как на поверхности Земли, и есть жидкая вода, — говорит Стивенсон. — Это несомненно». Проблемой, конечно, является отсутствие твердой поверхности — как на Юпитере, так и на подобных ему газовых гигантах, открытых Суми с коллегами. Однако Стивенсон не считает это непреодолимым препятствием для возникновения жизни. «Жизнь не обязательно должна на чем-то стоять», — говорит он. По словам Стивенсона, микроскопическая жизнь может, например, обитать на аэрозольных частицах в атмосфере газового гиганта. Другая возможность для существования жизни связана со спутниками, обращающимися вокруг юпитероподобной планеты-изгоя. «Блуждающие планеты вполне могут обладать спутниками, состоящими из смеси льда и камней, как у газовых гигантов Солнечной системы», — говорит Лукас. В самом деле, спутник Юпитера Европа сейчас рассматривается в качестве кандидата в обитаемые миры. Поверхность Европы полностью покрыта льдом. Но ее внутренности разогреты приливными деформациями, которые вызывает гравитация Юпитера и других его спутников, и это обеспечивает существование подповерхностного океана жидкой воды. Возможно, то же самое происходит и с лунами, которые обращаются вокруг планет-изгоев (см. «Есть ли жизнь на планетах-изгоях?»).
Возможна ли жизнь на планетах без родительской звезды? Важно различать условия, необходимые для поддержания жизни и для ее возникновения. Мы не знаем, как появилась жизнь на Земле, но благоприятные условия для ее возникновения явно складываются гораздо реже, чем просто для поддержания ее существования. Если планета выброшена из своей системы на раннем этапе своей истории, то она быстро остынет, так что крайне маловероятно, чтобы на ней могла появиться жизнь. Но если у планеты было достаточно времени для зарождения жизни под воздействием звезды, прежде чем произошел ее выброс из системы, то для поддержания жизни энергии может хватить. Где могла бы существовать эта жизнь? После выброса из системы планета быстро остывает и обледеневает. Но мы видим в нашей Солнечной системе, что в таких местах, как спутник Юпитера Европа, под толстым слоем льда может находиться жидкая вода. Вот там и может быть жизнь. О жизни какого типа может идти речь? Проводились исследования — еще в 1970-х годах, когда мы впервые стали задумываться о возможность существования жидкой воды на Европе, — в которых оценивалось, достаточно ли будет энергии для поддержания жизни гигантских кальмаров или рыб. Как выяснилось, ни для чего подобного энергии не хватит. Так что крайне маловероятно, чтобы на планетах-изгоях были какие-то крупные формы жизни, речь может идти фактически только о микробах. Могут ли такие населенные микробами миры сеять жизнь среди бесплодных планет вдоль своего пути? Теоретически это возможно. Точно есть обмен веществом между Марсом и Землей — найдены камни, попавшие к нам с Марса. Если микробы находятся в глубине большого камня (чтобы при падении не сгореть в атмосфере) и если путешествие окажется быстрым по геологическим меркам (что вполне возможно), камень может предохранить микробы от разрушительных космических излучений. Но это в пределах Солнечной системы. Перенести жизнь с планеты, странствующей по межзвездному пространству, куда труднее. Галактика достаточно пустынна, и шансы, что по стечению обстоятельств планета-изгой попадет в окрестности другой планетной системы, чрезвычайно малы. Но они есть.
ЕСТЬ ЛИ ЖИЗНЬ НА ПЛАНЕТАХ-ИЗГОЯХ?
А что можно сказать о землеподобных каменистых планетах в межзвездном пространстве? Ведь если даже планета с массой Юпитера может быть выброшена из молодой планетной системы, это тем более может случиться с менее массивными «Землями». В действительности таких планет, блуждающих по межзвездному пространству, должно быть даже больше, чем огромных газовых гигантов.
Может ли Земля стать планетой-изгоем?
Теория гласит, что планеты-изгои выброшены из молодых планетных систем при гравитационном взаимодействии с другими планетами. Может ли это случиться с Землей? «Если в Солнечной системе возникнет неустойчивость, которая приведет к тесным сближениям планет и изменениям их орбит и если Земля не столкнется с другими планетами или с Солнцем, она покинет систему», — говорит Димитри Верас (Dimitri Veras) из Кембриджского университета (Великобритания). В 2009 году Жак Ласкар (Jacques Laskar) и Микаэль Гастино (Mickael Gastineau) из Парижской обсерватории посчитали, что в 1% случаев Меркурий изменит свою орбиту, возможно также и тесное сближение Марса с Землей. Это именно та цепочка событий, в конце которой планета может быть выброшена из системы. Однако Верас подчеркивает, что «это крайне маловероятно».
Сможет ли человечество выжить на Земле-«изгнаннице»?
Если из-за странного выверта в Солнечной системе Землю выбросит в межзвездное пространство, может ли человечество надеяться на выживание? Когда Земля удалится от Солнца, температура быстро упадет примерно до 30 кельвинов (-243 °С). Одним из решений может быть уход в подземелья, где геотермальная энергия будет использована для обогрева и выработки электричества. Эту энергию можно использовать для питания ультрафиолетовых ламп, что позволит выращивать урожай. Планетолог Дэвид Стивенсон (David Stevenson) из Калифорнийского технологического института рассчитал, что количество доступной геотермальной энергии составляет около 1/10 000 от того количества, которое Земля получает от Солнца, что неплохо. Даже если биоактивность станет в 10 тыс. раз меньше, чем сейчас, это всё равно будет вполне живая планета.
Может ли планета-изгой когда-нибудь влететь в Солнечную систему?
Если межзвездное пространство изобилует планетами, то возможно, что одна из них пройдет вблизи от Солнечной системы или пролетит сквозь нее. Это вызовет возмущения в кометах облака Оорта, заполняющего внешнюю часть Солнечной системы, и приведет к смертоносным столкновениям комет с Землей. В 1999 году появились данные о том, что к нам приближается звезда Глизе 710 (Gliese 710) из созвездия Хвост Змеи (она сейчас на расстоянии 63 световых лет от нас). Через 1, 36 млн лет Глизе 710 пролетит вблизи от Солнечной системы, усилив поток комет. Хорошая новость состоит в том, что хотя число планет сопоставимо с числом звезд, на них приходится не более 1/10000 всей звездной массы. Из-за слабой гравитации планетам придется подходить гораздо ближе к облаку Оорта, чтобы вызвать катастрофический для Земли эффект.
Стивенсон считает, что такие планеты в некоторых случаях, также могут нести жизнь. Согласно его выкладкам, если атмосфера землеподобной планеты богата водородом (газом, который всегда в избытке присутствует в молодых планетных системах), то, возможно, поверхность планеты останется теплой за счет парникового эффекта. Он будет сохранять геотермальное тепло планетных недр. Только в отличие от земного парникового эффекта, который удерживает тепло, полученное поверхностью планеты от Солнца, в этом случае от рассеивания в космическом пространстве будет сохранено внутреннее тепло планетных недр. «Получается, что в этом случае поверхность планеты будет иметь температуру, близкую к земной, — говорит Стивенсон. — Покрывающая планету атмосфера служит изолирующим одеялом, в толще которого температура постепенно понижается с увеличением высоты».
Этот механизм, как полагают ученые, может обогревать планету практически вечно. Температура будет снижаться лишь по мере исчерпания запасов радиоактивных элементов. А это весьма длительный срок. Достаточно сказать, что период полураспада урана-238 составляет 4, 5 млрд лет, а у самого долгоживущего из радионуклидов, тория-232, — 14 млрд лет. Эффект микролинзирования, использованный группой профессора Суми, уже применялся в прошлом для поиска больших, на порядок превосходящих по массе Землю, каменистых планет у других звезд. «Так можно находить и свободно летящие объекты такой же массы, — заверяет Куанц. — Но зарегистрировать их намного труднее (чем объекты с массой Юпитера), поскольку событие микролинзирования становится короче и слабее».
Ситуация может измениться уже в ближайшие десятилетия благодаря созданию Широкоугольного инфракрасного обзорного телескопа NASA (Wide Field Infrared Survey Telescope, WFIRST). Его предполагают подготовить к запуску в космос после 2020 года. Поднявшись над мутной дымкой нашей атмосферы, этот инструмент получит все возможности для наблюдения малозаметных событий микролинзирования, связанных с межзвездными планетами. От этого события можно ожидать невероятных открытий. Кто знает, вдруг небеса просто кишат независимыми землеподобными мирами? И тогда блуждающие в межзвездном пространстве планеты вряд ли можно будет считать такими уж одинокими.