МОСКОВСКАЯ МЕДИЦИНСКАЯ АКАДЕМИЯ им И.М. СЕЧЕНОВА
ТЕМА:
МЕХАНИЗМЫ АНТИБИОТИКОРЕЗИСТЕНТНОСТИ
Выполнил: ПЛЕТНЕР Павел
Кафедра «Общей Хирургии»
МОСКВА
2002
Механизмы антибиотикорезистентности
ОБЩИЕ ЗАКОНОМЕРНОСТИ
Основой терапевтического действия антибактериальных препаратов является подавление жизнедеятельности возбудителя инфекционной болезни в результате угнетения более или менее специфичного для микроорганизмов (прокариот) метаболического процесса. Угнетение происходит в результате связывания антибиотика с мишенью, в качестве которой может выступать либо фермент, либо структурная молекула микроорганизма.
Резистентность микроорганизмов к антибиотикам может быть природной и приобретенной.
Истинная природная устойчивость характеризуется отсутствием у микроорганизмов мишени действия антибиотика или недоступности мишени вследствие первично низкой проницаемости или ферментативной инактивации. При наличии у бактерий природной устойчивости антибиотики клинически неэффективны. Природная резистентность является постоянным видовым признаком микроорганизмов и легко прогнозируется.
Под приобретенной устойчивостью понимают свойство отдельных штаммов бактерий сохранять жизнеспособность при тех концентрациях антибиотиков, которые подавляют основную часть микробной популяции. Возможны ситуации, когда большая часть микробной популяции проявляет приобретенную устойчивость. Появление у бактерий приобретенной резистентности не обязательно сопровождается снижением клинической эффективности антибиотика. Формирование резистентности во всех случаях обусловлено генетически: приобретением новой генетической информации или изменением уровня экспрессии собственных генов.
Известны следующие биохимические механизмы устойчивости бактерий к антибиотикам:
Модификация мишени действия антибактериальных препаратов. Инактивация антибактериальных препаратов. Активное выведение антибактериальных препаратов из микробной клетки (эффлюкс). Нарушение проницаемости внешних структур микробной клетки. Формирование метаболического "шунта". МЕХАНИЗМЫ УСТОЙЧИВОСТИ К АНТИБАКТЕРИАЛЬНЫМ ПРЕПАРАТАМ ОТДЕЛЬНЫХ ГРУПП b-лактамные антибиотики
Ферментативная инактивация
. Наиболее распространенным механизмом устойчивости микроорганизмов к b-лактамам является их ферментативная инактивация в результате гидролиза одной из связей b-лактамного кольца ферментами b-лактамазами. К настоящему времени описано более 200 ферментов, различающихся по следующим практически важным свойствам:
Субстратный профиль
(способность к преимущественному гидролизу тех или иных b-лактамов, например пенициллинов или цефалоспоринов, или тех и других в равной степени).
Локализация кодирующих генов
(плазмидная или хромосомная). Эта характеристика определяет эпидемиологию резистентности. При плазмидной локализации генов происходит быстрое внутри- и межвидовое распространение резистентности, при хромосомной - наблюдают распространение резистентного клона.
Чувствительность к применяющимся в медицинской практике ингибиторам
: клавулановой кислоте, сульбактаму и тазобактаму.
b-лактамазы встречаются у подавляющего большинства клинически значимых микроорганизмов, важным исключением являются микроорганизмы рода Streptococcus. Наиболее важные ферменты и их свойства приведены в табл. 1.
Таблица 1. Наиболее распространенные b-лактамазы и их свойства
Ферменты
|
Характеристика
|
Плазмидные b-лактамазы класса А стафилококков |
Гидролизуют природные и полусинтетические пенициллины кроме метициллина и оксациллина. Чувствительны к ингибиторам. |
Плазмидные b-лактамазы широкого спектра класса А грамотрицательных бактерий |
Гидролизуют природные и полусинтетические пенициллины, цефалоспорины I поколения. Чувствительны к ингибиторам. |
Плазмидные b-лактамазы расширенного спектра класса А грамотрицательных бактерий |
Гидролизуют природные и полусинтетические пенициллины, цефалоспорины I-IV поколения. Чувствительны к ингибиторам. |
Хромосомные b-лактамазы класса С грамотрицательных бактерий |
Гидролизуют природные и полусинтетические пенициллины, цефалоспорины I-III поколения. Не чувствительны к ингибиторам. |
Хромосомные b-лактамазы класса А грамотрицательных бактерий |
Гидролизуют природные и полусинтетические пенициллины, цефалоспорины I-II поколения. Чувствительны к ингибиторам. |
Хромосомные b-лактамазы класса В грамотрицательных бактерий |
Эффективно гидролизуют практически все b-лактамы, включая карбапенемы. Не чувствительны к ингибиторам. |
Широкое распространение b-лактамаз широкого спектра среди грамотрицательных бактерий не связано c серьезными проблемами в лечении, поскольку имеется достаточное количество высокоактивных b-лактамных антибиотиков (ингибиторозащищенные пенициллины, цефалоспорины II-IV поколений). Аналогичная ситуация складывается и с широким распространением стафилококковых b-лактамаз.
В настоящее время наибольшее значение для клинической практики имеют плазмидные b-лактамазы расширенного спектра грамотрицательных бактерий, поскольку они способны разрушать цефалоспорины III и, в меньшей степени, IV поколения. Рутинные методы оценки антибиотикочувствительности очень часто не выявляют этот механизм устойчивости. Чаще всего b-лактамазы расширенного спектра встречаются у микроорганизмов рода Klebsiella
, достаточно часто у E.coli
и Proteus
spp., реже у других грамотрицательных бактерий. В России в отдельных учреждениях частота распространенности этих ферментов среди клебсиелл достигает 90%.
При тяжелых нозокомиальных инфекциях, вызванных Enterobacter
spp., Citrobacter
spp. и некоторыми другими микроорганизмами, в процессе лечения цефалоспоринами III поколения примерно в 20% случаев формируется резистентность к этим антибиотикам, обусловленная гиперпродукцией хромосомных b-лактамаз класса С. В таких ситуациях эффективность сохраняют цефалоспорины IV поколения и карбапенемы.
Хромосомные b-лактамазы класса В, разрушающие карбапенемные антибиотики, распространены среди редких видов микроорганизмов, например, S.maltophilia
.
Модификация мишени действия
. Мишенями действия b-лактамов являются ферменты - ПСБ, участвующие в синтезе клеточной стенки бактерий. В результате модификации у некоторых ПСБ уменьшается сродство к b-лактамам, что проявляется в повышении МПК этих препаратов и снижении клинической эффективности. Реальное клиническое значение имеет устойчивость среди стафилококков и пневмококков. Гены модифицированных ПСБ локализованы на хромосомах.
Устойчивость стафилококков
( S.aureus
и коагулазонегативных стафилококков) обусловлена появлением у микроорганизмов дополнительного ПСБ (ПСБ2а).
· Маркером наличия ПСБ2а является устойчивость к метициллину или оксациллину.
· Независимо от результатов оценки in vitro
при инфекциях, вызываемых метициллинорезистентными стафилококками, все b-лактамы следует считать клинически неэффективными и не использовать в терапии.
· Частота распространения метициллинорезистентных стафилококков в некоторых отделениях реанимации, онкологии и гематологии в России превышает 50-60%, что создает крайне серьезные проблемы для терапии.
Устойчивость пневмококков
обусловлена появлением в генах, кодирующих ПСБ, чужеродной ДНК, происхождение которой связывают с зеленящими стрептококками. При этом перекрестная устойчивость между отдельными b-лактамами неполная. Значительная часть штаммов, устойчивых к пенициллину, сохраняет чувствительность к цефалоспоринам III поколения и карбапенемам. Данные о частоте распространения в России пенициллинорезистентных пневмококков ограничены, скорее всего, этот показатель не превышает 4-5%.
Среди грамотрицательных бактерий
устойчивость, связанная с модификацией ПСБ встречается редко. Определенное значение этот механизм устойчивости имеет у H.influenzae
и N.gonorrhoeae
. Микроорганизмы, проявляют устойчивость не только к природным и полусинтетическим пенициллинам, но и к ингибиторозащищенным препаратам.
Активное выведение b-лактамов из микробной клетки
. Ранее считалось, что b-лактамы активно не выводятся из микробной клетки, однако, в последние годы появились сообщения о наличии у P.aeruginosa
транспортных систем, осуществляющих активное выведение карбапенемов.
Аминогликозиды
Ферментативная инактивация
.
Основным механизмом устойчивости к аминогликозидам является их ферментативная инактивация путем модификации. Модифицированные молекулы аминогликозидов теряют способность связываться с рибосомами и подавлять биосинтез белка. Описаны три группы АМФ, осуществляющих инактивацию аминогликозидов, путем их связывания с различными молекулами: ААС - присоединяющие молекулу уксусной кислоты, АРН - присоединяющие молекулу фосфорной кислоты, нуклеотидил- или ANT - присоединяющие молекулу нуклеотида аденина.
Общее число описанных АМФ превышает 50, каждый из них характеризуется более или менее уникальным субстратным профилем. Гены ферментов локализуются, как правило, на плазмидах, что приводит к быстрому внутри- и межвидовому распространению устойчивости. Среди грамположительных и грамотрицательных бактерий распространены различные ферменты (табл. 2).
Таблица 2. Характеристика наиболее распространенных АМФ
Ферменты
|
Устойчивость к антибиотикам
|
Грамположительные микроорганизмы
|
|
APH (3')-III |
КАН, НЕО, АМК |
ANT (4')-I |
ТОБ, АМК |
ANT (6)-I |
СТР |
ААС (6')-APH (2'') |
ГЕН, ТОБ, НТЛ, АМК |
Грамотрицательные микроорганизмы
|
|
ANT (2'') |
КАН, ГЕН, ТОБ |
ААС (2') |
ГЕН, ТОБ, НТЛ |
AAC (3)-V |
ГЕН, ТОБ, НТЛ |
AAC (3)-I |
ГЕН |
AAC (6')-I |
ТОБ, НТЛ, АМК |
APH (3')-I |
КАН, НЕО |
APH (3')-II |
КАН, НЕО |
APH (3')-VI |
КАН, АМК |
КАН - канамицин; НЕО - неомицин; СТР - стрептомицин; ГЕН - гентамицин; ТОБ - тобрамицин; НТЛ - нетилмицин; АМК - амикацин.
На практике среди грамотрицательных бактерий могут встречаться практически все комбинации устойчивости к отдельным аминогликозидам. Это связано с разнообразием субстратных профилей отдельных ферментов и возможностью наличия у бактерии одновременно нескольких генов АМФ.
Для России характерна высокая частота распространения устойчивости среди грамотрицательных бактерий к гентамицину и тобрамицину, что, вероятно, связано с необоснованно широким применением гентамицина. Частота устойчивости к нетилмицину, как правило, несколько ниже. Устойчивость к амикацину встречается достаточно редко.
Число АМФ, встречающихся у грамположительных бактерий, не столь велико. Определенное клиническое значение имеет распространение среди грамположительных бактерий бифункционального фермента ААС (6')-APH (2''), разрушающего большинство клинически значимых аминогликозидов, кроме стрептомицина и спектиномицина. Как следует из табл. 2, маркером наличия этого фермента является устойчивость к гентамицину, другие ферменты, распространенные среди грамположительных бактерий, не инактивируют этот антибиотик.
Снижение проницаемости внешних структур
. Проникновение аминогликозидов через внешнюю и цитоплазматическую мембраны бактерий является сложным процессом. Низкая природная чувствительность к аминогликозидам некоторых микроорганизмов (например, B.cepacia
) связана именно с недостаточной проницаемостью для антибиотиков внешней мембраны этих микроорганизмов. Мутации, приводящие к изменению структуры липополисахарида у E.coli
, могут обусловить значительное повышение устойчивости к аминогликозидам.
Природная устойчивость к аминогликозидам анаэробов объясняется тем, что транспорт этих антибиотиков через цитоплазматическую мембрану связан с системами переноса электронов, которые у анаэробов отсутствуют. По этой же причине факультативные анаэробы в условиях анаэробиоза, становятся значительно более устойчивыми к аминогликозидам, чем в аэробных условиях.
Практически важным фактом является природная устойчивость к аминогликозидам стрептококков и энтерококков, связанная с преимущественно анаэробным метаболизмом этих бактерий и, соответственно, невозможностью транспорта антибиотиков к чувствительным мишеням. При совместном воздействии на микробную клетку аминогликозидов и b-лактамов последние нарушают структуру цитоплазматической мембраны бактерий и облегчают транспорт аминогликозидов. В результате этого между b-лактамами и аминогликозидами проявляется выраженный синергизм.
Появляются данные о том, что аминогликозиды могут подвергаться активному выведению из микробной клетки.
Модификация мишени действия
. Основной мишенью действия аминогликозидных антибиотиков является 30S субъединица бактериальной рибосомы, в некоторых случаях устойчивость может быть связана с ее модификацией. Распространение и клиническое значение устойчивости, связанной с модификацией мишени незначительно.
Хинолоны/Фторхинолоны
Модификация мишени действия
.
Ведущим механизмом устойчивости к хинолонам/фторхинолонам является модификация мишеней - двух бактериальных ферментов ДНК-гиразы и топоизомеразы IV, опосредующих конформационные изменения в молекуле бактериальной ДНК, необходимые для ее нормальной репликации. Каждый из ферментов состоит из четырех субъединиц. ДНК-гираза состоит из двух gyrА
и двух gyrB
субъединиц (соответствующие гены gyrА
и gyrB
). Топоизомераза IV - из субъединиц parC
и parE
(соответствующие гены parC
и parE
). Гены обоих ферментов локализованы на бактериальной хромосоме.
Основой формирования резистентности к хинолонам являются мутации в генах gyrA
и parC
.
Принципиальным моментом является то, что мутации в одном или двух генах могут накапливаться, что сопровождается ступенчатым снижением сродства ферментов к хинолонам и повышением МПК. Единичные мутации приводят к развитию устойчивости только к нефторированным хинолонам (налидиксовой кислоте и др.) и сопровождаются незначительным с клинической точки зрения повышением МПК (в 2-4 раза) фторхинолонов. Высокий уровень устойчивости грамотрицательных микроорганизмов к фторхинолонам (МПК > 64,0 мг/л) обычно связан с двумя и более мутациями в одном или обоих чувствительных ферментах.
Активное выведение
.
В последние годы накапливаются данные о широком распространении среди грамположительных и грамотрицательных микроорганизмов устойчивости, связанной с активным выведением хинолонов. У штаммов с высоким уровнем устойчивости к фторхинолонам этот механизм часто сочетается с модификацией мишеней.
В России устойчивость к фторхинолонам (ципрофлоксацину и офлоксацину) является реальной проблемой при лечении нозокомиальных инфекций. Быстрее всего резистентность формируется у штаммов P.aeruginosa
. Появляются данные о росте устойчивости к фторхинолонам среди пневмококков.
Макролиды и линкосамиды
Модификация мишени действия
.
Основной мишенью действия макролидных и линкосамидных антибиотиков является 50S субъединица бактериальной рибосомы. Несмотря на различия в структуре, все эти антибиотики имеют общий участок связывания с рибосомой. У большинства бактерий устойчивость возникает в результате метилирования 23S-субъединицы рРНК. Известно около 20 генов ( erm
- erythromycin ribosome methylation), кодирующих фермент метилазу, они ассоциированы с транспозонами и могут локализоваться как на плазмидах, так и на хромосомах. Метилазы широко распространены среди многих аэробных и анаэробных грамположительных и грамотрицательных бактерий.
Описано два варианта синтеза метилазы: конститутивный и индуцибельный. При конститутивном типе синтез фермента не зависит от внешних условий. Соответственно, бактерии проявляют устойчивость ко всем макролидам и линкосамидам. При индуцибельном типе синтеза фермента для его начала необходима индукция. Синтез стрептококковых метилаз индуцируется всеми макролидами и линкосамидами, соответственно микроорганизмы проявляют устойчивость ко всем перечисленным антибиотикам. В отличие от этого, синтез стафилококковых метилаз способен индуцировать только 14- и 15-членные макролиды, соответственно микроорганизмы проявляют устойчивость к перечисленным антибиотикам, но сохраняют чувствительность к 16-членным макролидам и линкосамидам. Таким образом, в клинической практике могут встречаться стафилококки устойчивые как ко всем макролидам и линкосамидам, так и только к 14- и 15-членным макролидам.
У ряда микроорганизмов ( H.pylori
, M.avium
, M.intracellulare
, Propionibacterium
spp.) известен и другой механизм модификации мишени для макролидов и линкосамидов - в результате мутаций в 23S-субъединицы рРНК снижается сродство к антибиотикам и формируется клинически значимая устойчивость. При этом механизме наблюдают перекрестную резистентность ко всем макролидам и линкосамидам.
Активное выведение
.
Активное выведение макролидов и линкосамидов осуществляют несколько транспортных систем. Основное клиническое значение имеет система выведения, кодируемая mef
-геном, распространенная среди S.pneumoniae
, S.pyogenes
и многих других грамположительных бактерий. Соответствующий белок-транспортер выводит 14- и 15-членные макролиды и обеспечивает невысокий уровень резистентности. Значение этого механизма резистентности окончательно не установлено. Линкосамиды и 16-членые макролиды сохраняют активность.
Гены mef
локализованы на хромосомах в составе конъюгативных элементов, что обеспечивает достаточно эффективное внутри- и межвидовое распространение.
Ферментативная инактивация
.
Ферменты, инактивирующие макролиды и линкосамиды, описаны среди грамположительных и грамотрицательных микроорганизмов. Некоторые из них обладают широким субстратным профилем (макролидфосфотрансферазы E.coli
и Staphylococcus
spp.), другие инактивируют только отдельные антибиотики (эритромицинэстеразы, распространенные среди семейства Enterobacteriaceae
, линкомицинацетилтрансферазы стафилококков и энтерококков). Распространение и клиническое значение ферментов, инактивирующих макролидные антибиотики, невелико.
В России устойчивость к макролидам и линкосамидам закономерно распространена среди метициллинорезистентных стафилококков. Среди метициллиночувствительных стафилококков частота устойчивости, как правило, не превышает 10%.
В Европе в последние годы наблюдается тенденция к росту устойчивости к макролидам среди S.pyogenes
, S.pneumoniae
, что связывают со значительным увеличением объема применения современных макролидов (азитромицина, кларитромицина, рокситромицина) в качестве препаратов первого выбора. Целесообразность такого расширения показаний вызывает дискуссии.
Надежных данных о многолетней динамике устойчивости S.pneumoniae
и S.pyogenes
к макролидам в России нет. Однако фиксируемый в последние годы уровень частоты устойчивости 8-12%, должен вызывать настороженность.
Тетрациклины
Активное выведение
.
Этот механизм является наиболее распространенным среди грамотрицательных и грамположительных микроорганизмов. Детерминанты резистентности обычно локализованы на плазмидах, что обеспечивает их быстрое внутри- и межвидовое распространение. Часть генов и соответствующие белки (TetA - TetE) распространены среди грамотрицательных бактерий, другие (TetK, TetL) среди грамположительных.
Защита рибосомы
.
Известно семейство защитных белков, которые позволяют бактерии синтезировать белок, несмотря на связывание с рибосомой молекулы тетрациклина. Механизм подобной защиты неизвестен. Описано, по меньшей мере, 5 генов, кодирующих защитные белки, они распространены среди грамотрицательных и грамположительных бактерий и детерминируют устойчивость ко всем тетрациклинам.
Частота устойчивости к тетрациклинам среди клинически наиболее значимых микроорганизмов достаточно высока, что не позволяет рассматривать их как средства выбора для лечения большинства инфекций.
Гликопептиды
Модификация мишени действия
. Механизм действия гликопептидов заключается в блокировании завершающей стадии синтеза пептидогликана путем связывания молекулы антибиотика с концевыми аминокислотами в боковой пептидной цепочке (D-аланин-D-аланин).
Механизм устойчивости к гликопептидам наиболее детально изучен у энтерококков, он связан с синтезом бактериями модифицированной боковой полипептидной цепи.
Известны три фенотипа устойчивости: VanA, VanB и VanC. Детерминанты устойчивости фенотипа VanA локализуются на плазмидах, а фенотипа VanB - в основном на хромосомах. Для фенотипа VanA характерен высокий уровень устойчивости к ванкомицину и тейкопланину, для VanB - вариабельная резистентность к ванкомицину и чувствительность к тейкопланину. Фенотип VanC характерен для E.gallinarum
, E.casseliflavus
и E.flavescens
, проявляющих природно низкий уровень устойчивости к ванкомицину.
Устойчивость энтерококков к гликопептидам является серьезной проблемой в отделениях интенсивной терапии в США и Западной Европе. Чаще всего устойчивость отмечают у штаммов E.faecium
, ее частота может достигать 15-20%. Достоверных данных о выделении ванкомицинорезистентных энтерококков в России нет.
Сообщения о выделении единичных штаммов метициллинорезистентных и метициллиночувствительных S.aureus
со сниженной чувствительностью к ванкомицину (GISA) появились в Японии и США только в последние годы. Для штаммов со сниженной чувствительностью характерно утолщение клеточной стенки, уменьшение аутолитической активности. Обсуждается возможность избыточной продукции мишеней действия гликопептидов. Снижение чувствительности к гликопептидам было описано ранее среди коагулазонегативных стафилококков.
На практике при выделении ванкомицинорезистентных энтерококков и стафилококков необходимо проявлять настороженность, тщательно проверять чистоту исследуемой культуры и точность ее идентификации. Так, необходимо иметь в виду, что некоторые грамположительные бактерии обладают природной устойчивостью к гликопептидам: Lactobacillus
spp., Leuconostoc
spp., Pediococcus
spp.
Сульфаниламиды и ко-тримоксазол
Сульфаниламиды и триметоприм блокируют различные этапы одного метаболического пути бактерий - синтез фолиевой кислоты, благодаря чему между ними отмечается выраженный синергизм. Сульфаниламиды, являющиеся структурным аналогом парааминобензойной кислоты, являются конкурентными ингибиторами дигидроптеоратсинтетазы. Триметоприм подавляет активность дигидрофолатредуктазы.
Формирование метаболического шунта
.
Устойчивость к триметоприму может являться результатом приобретения генов дигидрофолатредуктазы, нечувствительной (или малочувствительной) к ингибиции, а устойчивость к сульфаниламидам - генов дигидроптеоратсинтетазы. Известно несколько типов каждого из устойчивых ферментов, но их происхождение не совсем ясно.
Гены ферментов, устойчивых к ингибированию, часто находятся в составе подвижных генетических элементов (транспозонов) в ассоциации с генами, детерминирующими устойчивость к другим антибиотикам.
Модификация мишени действия.
Устойчивость может также сформироваться в результате мутаций в генах указанных ферментов.
Хлорамфеникол
Ферментативная инактивация (ацетилирование) является основным механизмом устойчивости к хлорамфениколу. Гены ферментов - хлорамфениколацетилтрасфераз, как правило, локализуются на плазмидах и входят в состав транспозонов в ассоциации с генами устойчивости к другим антибиотикам.
Полимиксины
Полимиксины оказывают бактерицидное действие на грамотрицательные бактерии, нарушая целостность цитоплазматической мембраны, действуя подобно поверхностно активным веществам. Приобретенная устойчивость отмечается редко.
Нитрофураны
Механизм действия нитрофуранов изучен недостаточно полно. Считается, что приобретенная устойчивость к этим препаратам встречается крайне редко, о ее механизмах можно судить лишь предположительно.
Нитроимидазолы
Нитроимидазолы активируются в микробной клетке ферментом нитроредуктазой, возникающие при этом свободные радикалы, повреждают ДНК бактерий. Устойчивость у подавляющего большинства анаэробных бактерий отмечается крайне редко и не имеет практического значения.
Реальные клинические проблемы возникают при развитии устойчивости у H.pylori
, обусловленной инактивацией нитроредуктазы в результате мутаций в соответствующих генах.
МНОЖЕСТВЕННАЯ УСТОЙЧИВОСТЬ, СВЯЗАННАЯ СО СНИЖЕНИЕМ ПРОНИЦАЕМОСТИ
Снижение проницаемости внешних структур бактериальной клетки является наименее специфичным механизмом устойчивости и, обычно, приводит к формированию устойчивости одновременно к нескольким группам антибиотиков.
Чаще всего причиной этого явления становится полная или частичная утрата пориновых белков. Кроме этого, относительно хорошо изучена система MAR (multiple antibiotic resistance - множественная устойчивость к антибиотикам). На фоне применения тетрациклинов или хлорамфеникола формируется устойчивость не только к этим антибиотикам, но и к b-лактамам и хинолонам. Активация MAR системы приводит к одновременному снижению количества одного из пориновых белков (OmpF) и повышению активности одной из систем активного выведения.
Снижение проницаемости за счет утраты или снижения количества пориновых белков встречается в ассоциации с продукцией b-лактамаз расширенного спектра. Утрата одного из пориновых белков (D2) P.aeruginosa
приводит к избирательному снижению чувствительности микроорганизма к имипенему.
ЗАКЛЮЧЕНИЕ
В заключение целесообразно коротко суммировать данные о наиболее распространенных механизмах резистентности среди основных клинически значимых микроорганизмов.
Возбудители внебольничных инфекций
Staphylococcus
spp. - устойчивость к природным и полусинтетическим пенициллинам, связанная с продукцией b-лактамаз.
S.pneumoniae
- устойчивость различного уровня к пенициллину (часть штаммов устойчива к цефалоспоринам III поколения), связанная с модификацией ПСБ; высокая частота ассоциированной устойчивости к макролидам, тетрациклинам, ко-тримоксазолу.
H.influenzae
, M.catarrhalis
- устойчивость к полусинтетическим пенициллинам, связанная с продукцией b-лактамаз.
N.gonorrhoeae
- устойчивость к пенициллинам, связанная с продукцией b-лактамаз, устойчивость к тетрациклинам, фторхинолонам.
Shigella
spp. - устойчивость к ампициллину, тетрациклинам, ко-тримоксазолу, хлорамфениколу.
Salmonella
spp. - устойчивость к ампициллину, ко-тримоксазолу, хлорамфениколу. Появление устойчивости к цефалоспоринам III поколения и фторхинолонам.
E.coli
- при внебольничных инфекциях МВП - возможна устойчивость к ампициллину, ко-тримоксазолу, гентамицину.
Возбудители нозокомиальных инфекций
Enterobacteriaceae
- продукция b-лактамаз расширенного спектра (чаще всего среди Klebsiella
spp.), обуславливающая клиническую неэффективность всех цефалоспоринов; очень высокая частота ассоциированной устойчивости к гентамицину - тобрамицину; в некоторых учреждениях тенденция к росту ассоциированной резистентности к фторхинолонам, амикацину.
Pseudomonas
spp., Acinetobacter
spp., S.maltophilia
- ассоциированная устойчивость к цефалоспоринам, аминогликозидам, фторхинолонам, иногда карбапенемам.
Enterococcus
spp. - ассоциация устойчивости к пенициллинам, высокого уровня устойчивости к аминогликозидам, фторхинолонам и гликопептидам.
Staphylococcus
spp. (метициллинорезистентные) - ассоциированная устойчивость к макролидам, аминогликозидам, тетрациклинам, ко-тримоксазолу, фторхинолонам.
антимикробная терапия, антибактериальная терапия