РефератыБиологияПрПространство и время 3

Пространство и время 3

Содержание


1.Понимание пространства и времени в специальной


теории относительности. 3


2.Сущность понимания пространства и времени в


общей теории относительности. 9


3.Физический смысл (новизна) идей А.Энштейна. 12


4.Сообщение по качеству жизни, экологическим


рискам, влиянию экологических факторов на


здоровье человека и продолжительность его жизни.14


5.Список используемой литературы 19


1.Понимание пространства и времени в специальной теории относительности.


Сначала рассмотрим понятие пространства и понятие времени.


Понятие пространства опирается на понятие протяженности. Протяженность объекта выражает его структурность, взаимоотношение его частей. Обнаруживается протяженность благодаря конечности скорости распространения взаимодействий - для “движения” с бесконечной скоростью любые расстояния одинаковы, а именно точечны. Протяженность, следовательно, обусловлена системной природой материи, выражая ее многокачественность и многокомпонентность.


Понятие времени базируется на понятии длительности. Длительность выражает несотворимость и неуничтожимость системно организованной материи, последовательное пребывание материальных объектов и явлений в определенных состояниях.


Опираясь на сказанное и материалистически интерпретируя известные положения Г.Лейбница, можно дать следующие определения:


• пространство - это отношения взаимоположения объектов, сосуществующих в некоторый момент времени (при измерении пространственных размеров, обратим внимание, измеряемый объект совмещается с эталоном);


• время - это отношения последовательности объектов, сосуществующих в некоторой точке пространства (сравнение временных параметров разноместных событий, обратим внимание, требует синхронизации часов, что связано с комплексом не столь уж тривиальных допущений и процедур).


Для пояснения определения пространства рассмотрим вопрос: о каких свойствах запечатленных на ней объектов позволяет судить фотография? Ответ очевиден: она отражает структуру, а потому и протяженность (относительные размеры) этих объектов, их расположение относительно друг друга. Фотография, следовательно, фиксирует пространственные свойства объектов, причем объектов (в данном случае это важно), сосуществующих в некоторый момент времени.


Для пояснения определения времени рассмотрим вопрос: почему мы имеем возможность, глядя на киноэкран, судить о временных характеристиках запечатленных на киноленте событий? Ответ очевиден: потому, что кадры сменяют друг друга на одном и том же экране, сосуществуя в этой “точке” пространства. Если же каждый кадр поместить на свой экран, то мы получим просто совокупность фотографий...


Пространство и время определены, отметим, через противопоставление, соотнесение с противоположным: момент времени, фигурирующий в определении пространства, не обладает длительностью, будучи отрицанием времени; точка пространства, фигурирующая в определении времени, не обладает протяженностью, будучи отрицанием пространства.


Выделим два следствия из определений пространства и времени.


Во-первых, пространство и время объективны.


Во-вторых, пространство и время неразрывно связаны друг с другом и с движением материи. Более того, пространство и время - это стороны движения. В самом деле: поскольку пространство - это отношения сосуществующих в некоторый момент времени объектов, постольку оно есть то, что остается от движения, когда мы отвлекаемся от времени; поскольку время - это отношения объектов, сосуществующих в некоторой точке пространства, постольку оно есть то, что остается от движения, когда мы отвлекаемся от пространства. Таким образом, пространство и время не существуют вне движения материи, как и оно - вне пространства и времени. Это и дало основание Ф.Энгельсу утверждать: “...Основные формы всякого бытия суть пространство и время...”. Данный тезис, однако, еще нуждается в обосновании, как это станет ясным после рассмотрения основных подходов к пониманию природы пространства и времени, сложившихся в ходе развития науки.


Еще в XVIII в. ученые пытались ответить на вопросы о том, как передается гравитационное взаимодействие и как распространяется свет (позже вообще любые электромагнитные волны). Поиски ответов на эти вопросы и явились причиной разработки теории относительности.


Принцип относительности Галилея – это принцип физического равноправия инерциальных систем отсчёта в классической механике, проявляющегося в том, что законы механики во всех таких системах одинаковы.


Отсюда следует, что никакими механическими опытами, проводящимися в какой-либо инерциальной системе, нельзя определить, покоится ли данная система или движется равномерно и прямолинейно. Это положение было впервые установлено Г. Галилеем в 1636г.


По теории относительности А. Эйнштейна, что описание любого физического события или явления зависит от системы отсчета, в которой находится наблюдатель. Если пассажирка трамвая, например, уронит очки, то для нее они упадут вертикально вниз, а для пешехода, стоящего на улице, очки будут падать по параболе, поскольку трамвай движется, в то время как очки падают. У каждого своя система отсчета.


В XIX в. физики были убеждены, что существует так называемый эфир (мировой эфир, светоносный эфир). По представлениям прошлых столетий, это некая всепроникающая всезаполняющая среда. Развитие физики во второй половине XIX в. требовало от ученых максимально конкретизировать представления об эфире. Если предположить, что эфир подобен газу, то в нем могли бы распространяться только продольные волны, а электромагнитные волны – поперечные. Непонятно, как в таком эфире могли бы двигаться небесные тела. Имелись и другие серьезные возражения против эфира. В то же время шотландский физик Джеймс Максвелл (1831–1879) создал теорию электромагнитного поля, из которой, в частности, следовала величина конечной скорости распространения этого поля в пространстве – 300 000 км/с. Немецкий физик Генрих Герц (1857–1894) доказал опытным путем идентичность света, тепловых лучей и электромагнитного «волнового движения». Он определил, что электромагнитная сила действует со скоростью 300 000 км/с. Больше того, Герц установил, что «электрические силы могут отделяться от весомых тел и существовать далее самостоятельно как состояние или изменение пространства». Однако ситуация с эфиром ставила много вопросов, и для отмены этого понятия требовался прямой эксперимент. Идею его сформулировал еще Максвелл, предложивший использовать в качестве движущегося тела Землю, которая перемещается по орбите со скоростью 30 км/с. Такой опыт требовал крайне высокой точности измерений. Эту труднейшую задачу в 1881 г. решили американские физики А. Майкельсон и Э. Морли. Согласно гипотезе «неподвижного эфира», можно наблюдать «эфирный ветер» при движении Земли сквозь «эфир», а скорость света по отношению к Земле должна зависеть от направления светового луча относительно направления движения Земли в эфире (то есть свет направляется по движению Земли и против). Скорости при наличии эфира должны были быть различными. Но они оказались неизменными. Это показывало, что эфира нет. Этот отрицательный результат стал подтверждением теории относительности. Опыт Майкельсона и Морли по определению скорости света неоднократно повторялся позднее, в 1885–1887 гг., с тем же результатом.


В 1904 г. на научном конгрессе французский математик Анри Пуанкаре (1854–1912) высказал мнение, что в природе не может быть скоростей, больших скорости света. Тогда же А. Пуанкаре сформулировал принцип относительности как всеобщий закон природы. В 1905 г. он писал: «Невозможность доказать путем опытов абсолютное движение Земли является, очевидно, общим законом природы». Здесь же он указывает на преобразования Лоренца и на общую связь пространственных и временных координат.


Альберт Эйнштейн (1879–1955), создавая специальную теорию относительности, о результатах Пуанкаре еще не знал. Позже Эйнштейн напишет: «Я совершенно не понимаю, почему меня превозносят как создателя теории относительности. Не будь меня, через год это бы сделал Пуанкаре, через два года сделал бы Минковский, в конце концов, более половины в этом деле принадлежит Лоренцу. Мои заслуги преувеличены». Однако Лоренц со своей стороны в 1912 г. писал: «Заслуга Эйнштейна состоит в том, что он первым выразил принцип относительности в виде всеобщего, строгого закона».[1]


2.Сущность понимания пространства и времени в общей теории относительности.


После опубликования специальной теории относительности в 1905 г. А. Эйнштейн обратился к современному представлению тяготения. В 1916 г. он опубликовал общую теорию относительности (ОТО), которая с современных позиций объясняет теорию тяготения. Она основывается на двух постулатах специальной теории относительности и формулирует третий постулат – принцип эквивалентности инертной и гравитационной масс. Важнейшим выводом ОТО является положение об изменении геометрических (пространственных) и временных характеристик в гравитационных полях (а не только при движении с большими скоростями). Этот вывод связывает ОТО с геометрией, то есть в ОТО наблюдается геометризация тяготения. Классическая геометрия Евклида для этого не годилась. Новая геометрия появилась еще в XIX в. в трудах русского математика Н. И. Лобачевского, немецкого – Б. Римана, венгерского – Я. Больяйя.


Геометрия нашего пространства оказалась неевклидовой.


ОТО – физическая теория, в основе которой лежит ряд экспериментальных фактов. Рассмотрим некоторые из них. Гравитационное поле влияет на движение не только массивных тел, но и света. Луч света отклоняется в поле Солнца. Измерения, проведенные в 1922 г. английским астрономом А. Эддингтоном во время солнечного затмения, подтвердили это предсказание Эйнштейна.


В ОТО орбиты планет незамкнуты. Небольшой эффект такого рода можно описывать как вращение перигелия эллиптической орбиты. Перигелий – это ближайшая к Солнцу точка орбиты небесного тела, которое движется вокруг Солнца по эллипсу, параболе или гиперболе. Астрономам известно, что перигелий орбиты Меркурия поворачивается за столетие примерно на 6000. Это объясняется гравитационными возмущениями со стороны других планет. При этом оставался неустранимый остаток около 40» за столетие. В 1915 г. Эйнштейн объяснил это расхождение в рамках ОТО.


Существуют объекты, в которых эффекты ОТО играют определяющую роль. К ним относятся «черные дыры». «Черная дыра» возникает тогда, когда звезда сжимается настолько сильно, что существующее гравитационное поле не выпускает во внешнее пространство даже свет. Поэтому из такой звезды не исходит никакой информации. Многочисленные астрономические наблюдения указывают на реальное существование таких объектов. ОТО дает четкое объяснение этому факту.


В 1918 г. Эйнштейн предсказал на основе ОТО существование гравитационных волн: массивные тела, двигаясь с ускорением, излучают гравитационные волны. Гравитационные волны должны распространяться с той же скоростью, что электромагнитные, то есть со скоростью света. По аналогии с квантами электромагнитного поля принято говорить о гравитонах как о квантах гравитационного поля. В настоящее время формируется новая область науки – гравитационно-волновая астрономия. Есть надежда, что гравитационные эксперименты дадут новые результаты.


На основании уравнений теории относительности отечественный математик-физик А. Фридман в 1922 г. нашел новое космологическое решение уравнений ОТО Это решение указывает на то, что наша Вселенная не стационарна, она непрерывно расширяется. Фридман нашел два варианта решения уравнений Эйнштейна, то есть два варианта возможного развития Вселенной. В зависимости от плотности материи Вселенная или будет и далее расширяться, или через какое-то время начнет сжиматься.


В 1929 г. американский астроном Э. Хаббл экспериментально установил закон, который определяет скорость разлета галактик в зависимости от расстояния до нашей галактики. Чем дальше разбегающаяся галактика, тем больше скорость ее разбегания. Хаббл использовал эффект Доплера, в соответствии с которым у источника света, удаляющегося от наблюдателя, длина волны увеличивается, то есть смещается к красному концу спектра (краснеет).


Таким образом, все известные научные факты подтверждают справедливость общей теории относительности, которая является современной теорией тяготения.[2]


3.Физический смысл (новизна) идей А.Энштейна.


Первая работа А.Эйнштейна в области статистической физики появилась в 1902. В ней Энштейн, не зная о трудах Дж. У. Гиббса, развивает свой вариант статистической физики, определяя вероятность состояния как среднее по времени. Такой взгляд на исходные положения статистической физики приводит Э. к разработке теории броуновского движения (опубл. в 1905), которая легла в основу теории флуктуаций.


В 1924 г., познакомившись со статьей Ш. Бозе по статистике световых квантов и оценив её значение, Энштейн опубликовал статью Бозе со своими примечаниями, в которых указал на непосредственное обобщение теории Бозе на идеальный газ. Вслед за этим появилась работа по квантовой теории идеального газа; так возникла Бозе — Эйнштейна статистика.


Разрабатывая теорию подвижности молекул (1905) и исследуя реальность токов Ампера, порождающих магнитные моменты, Энштей пришёл к предсказанию и экспериментальному обнаружению совместно с нидерландским физиком В. де Хаазом эффекта изменения механического момента тела при его намагничивании (Эйнштейна — де Хааза эффект).


Идеи Энштейна имеют огромное методологическое значение. Они изменили господствовавшие в физике со времён Ньютона механистические взгляды на пространство и время и привели к новой, материалистической картине мира, основанной на глубокой, органические связи этих понятий с материей и её движением, одним из проявлений этой связи оказалось тяготение. Эти идеи стали основной составной частью современной теории динамической, непрерывно расширяющейся Вселенной, позволяющей объяснить необычайно широкий круг наблюдаемых явлений.


Величие сделанного Эйнштейном в науке трудно пересказать. Сейчас нет практически ни одной ветви современной физики, где так или иначе не присутствовали бы фундаментальные понятия квантовой механики или теории относительности. Но, пожалуй, еще важнее уверенность, которую своими трудами вселил в ученых Эйнштейн, что природа познаваема и ее законы красивы. Стремление к этой красоте и составляло смысл жизни великого ученог

о.[3]


4.Сообщение по качеству жизни, экологическим рискам, влиянию экологических факторов на здоровье человека и продолжительность его жизни.


Загрязнением окружающей природной среды считается физико-химическое изменение состава природного вещества (воздуха, воды, почвы), которое угрожает состоянию здоровья и жизни человека, окружающей его естественной среды.


Антропогенное загрязнение окружающей среды подразделяется на несколько видов. Это пылевое, газовое, химическое (в том числе загрязнение почвы химикатами), ароматическое, тепловое (изменение температуры воды), что отрицательно сказывается на жизнедеятельности водных животных. Источником загрязнения окружающей природной среды выступает хозяйственная деятельность человека (промышленность, сельское хозяйство, транспорт). В зависимости от региона доля того или иного источника загрязнения может значительно колебаться. Так, в городах наибольший удельный вес от загрязнения дает транспорт. Его доля в загрязнении окружающей среды составляет 70—80 %. Среди промышленных предприятий наиболее «грязными» считаются металлургические предприятия. Они на 34 % загрязняют окружающую среду. За ними следуют предприятия энергетики, прежде всего тепловые электростанции, которые на 27 % загрязняют окружающую среду. Остальные проценты падают на предприятия химической (9 %), нефтяной (12 %) и газовой (7 %) промышленности.


В последние годы на первое место по загрязнению выдвинулось сельское хозяйство. Это связано с двумя обстоятельствами. Первое — увеличение строительства крупных животноводческих комплексов при отсутствии какой-либо очистки образующихся отходов и их утилизации, и второе — увеличение применения минеральных удобрений и ядохимикатов, которые вместе с дождевыми потоками и подземными водами попадают в реки и озера, нанося серьезный ущерб бассейнам крупных рек, их рыбным запасам и растительности.


Ежегодно на одного жителя Земли приходится свыше 20 т отходов. Основными объектами загрязнения являются атмосферный воздух, водоемы, включая Мировой океан, почвы. Ежедневно в атмосферу выбрасываются тысячи и тысячи тонн угарного газа, окислов азота, серы и других вредных веществ. И только 10 % этого количества поглощается растениями. Окись серы (сернистый газ) — основной загрязнитель, источником которого являются тепловые электростанции, котельные, металлургические заводы.


Кроме химических загрязнителей, в природной среде встречаются и биологические, вызывающие у человека различные заболевания. Это болезнетворные микроорганизмы, вирусы, гельминты, простейшие. Они могут находиться в атмосфере, воде, почве, в теле других живых организмов, в том числе и в самом человеке.


Наиболее опасны возбудители инфекционных заболеваний. Они имеют различную устойчивость в окружающей среде. Одни способны жить вне организма человека всего несколько часов; находясь в воздухе, в воде, на разных предметах, они быстро погибают. Другие могут жить в окружающей среде от нескольких дней до нескольких лет. Для третьих окружающая среда является естественным местом обитания. Для четвертых - другие организмы, например дикие животные, являются местом сохранения и размножения.


Часто источником инфекции является почва, в которой постоянно обитают возбудители столбняка, ботулизма, газовой гангрены, некоторых грибковых заболеваний. В организм человека они могут попасть при повреждении кожных покровов, с немытыми продуктами питания, при нарушении правил гигиены.


Болезнетворные микроорганизмы могут проникнуть в грунтовые воды и стать причиной инфекционных болезней человека. Поэтому воду из артезианских скважин, колодцев, родников необходимо перед питьем кипятить.


Особенно загрязненными бывают открытые источники воды: реки, озера, пруды. Известны многочисленные случаи, когда загрязненные источники воды стали причиной эпидемий холеры, брюшного тифа, дизентерии.


В жарких странах широко распространены такие болезни, как амебиаз, шистоматоз, эхинококкоз и другие, которые вызываются различными паразитами, попадающими в организм человека с водой.


Cтало совершенно очевидной пагубность потребительского отношения человека к природе лишь как к объекту получения определенных богатств и благ. Для человечества становится жизненно необходимым изменение самой философии отношения к природе.


Какие же необходимы меры для решения глобальных экологических проблем? Прежде всего следует перейти от потребительско-технократического подхода к природе к поиску гармонии с нею. Для этого, в частности, необходим целый ряд целенаправленных мер по экологизации производства: природосберегающие технологии, обязательная экологическая экспертиза новых проектов, создание безотходных технологий замкнутого цикла.


Другой мерой, направленной на улучшение взаимоотношений человека и природы, является разумное самоограничение в расходовании природных ресурсов, особенно — энергетических источников (нефть, уголь), имеющих для жизни человечества важнейшее значение. Подсчеты международных экспертов показывают, что если исходить из современного уровня потребления (конец XX в.), то запасов угля хватит еще на 430 лет, нефти — на 35 лет, природного газа — на 50 лет. Срок, особенно по запасам нефти, не такой уж и большой. В связи с этим необходимы разумные структурные изменения в мировом энергобалансе в сторону расширения применения атомной энергии, а также поиск новых, эффективных, безопасных и максимально безвредных для природы источников энергии, включая космическую.


Еще одним направлением для решения экологической проблемы, и может быть в перспективе — самым важным из всех, является формирование в обществе экологического сознания, понимания людьми природы как другого живого существа, над которым нельзя властвовать без ущерба для него и себя. Экологическое обучение и воспитание в обществе должны быть поставлены на государственный уровень, проводиться с раннего детства. При любых озарениях, рождаемых разумом, и стремлениях, неизменным вектором поведения человечества должно оставаться его гармония с природой.[4]


Список используемой литературы


1. Учебник для вузов «Концепции современного естествознания» Л.А.Михайлов Питер, 2008.


http://fictionbook.ru/author/kollektiv_avtorov/koncepcii_sovremennogo_estestvoznaniya/read_online.html?page=6


2. О. Ф. Кабардин “Физика”, справочные материалы, Москва: “Просвещение”, 1991 г.


http://festival.1september.ru/articles/566650/


3.Эйнштейн и современная физика. Сб. памяти А. Эйнштейна, М., 1956.


http://slovari.yandex.ru/~книги/БСЭ/Эйнштейн%20Альберт/


4.Котилко В.В. «Глобальные проблемы современности».- Учебное пособие.- М.: Мысль, 2004г.


http://otherreferatsecology/d00055891.html


Эйнштейн и современная физика. Сб. памяти А. Эйнштейна, М., 1956; Зелиг К., Альберт Эйнштейн, пер. с нем., М., 1964; Кузнецов Б. Г., Эйнштейн. 3 изд., М., 1967.


Это действие не по директорски


x-FAQ.ru/index.php?topic=99.0


1. Определение принципа относительности Галилея


Принцип относительности Галилея – это принцип физического равноправия инерциальных систем отсчёта в классической механике, проявляющегося в том, что законы механики во всех таких системах одинаковы.


Отсюда следует, что никакими механическими опытами, проводящимися в какой-либо инерциальной системе, нельзя определить, покоится ли данная система или движется равномерно и прямолинейно. Это положение было впервые установлено Г. Галилеем в 1636.


По теории относительности А. Эйнштейна, что описание любого физического события или явления зависит от системы отсчета, в которой находится наблюдатель. Если пассажирка трамвая, например, уронит очки, то для нее они упадут вертикально вниз, а для пешехода, стоящего на улице, очки будут падать по параболе, поскольку трамвай движется, в то время как очки падают. У каждого своя система отсчета.


Одинаковость законов механики для инерциальных систем Галилей иллюстрировал на примере явлений, происходящих под палубой корабля, покоящегося или движущегося равномерно и прямолинейно (относительно Земли, которую можно с достаточной степенью точности считать инерциальной системой отсчёта): «Заставьте теперь корабль двигаться с любой скоростью и тогда (если только движение будет равномерным и без качки в ту и другую сторону) во всех названных явлениях вы не обнаружите ни малейшего изменения и ни по одному из них не сможете установить, движется ли корабль или стоит неподвижно... Бросая какую-нибудь вещь товарищу, вы не должны будете бросать ее с большей силой, когда он будет находиться на носу, а вы на корме, чем когда ваше взаимное положение будет обратным; капли, как и ранее, будут падать в нижний сосуд, и ни одна не упадет ближе к корме, хотя, пока капля находится в воздухе, корабль пройдет много пядей»


Движение материальной точки относительно: её положение, скорость, вид траектории зависят от того, по отношению к какой системе отсчёта (телу отсчёта) это движение рассматривается.


В то же время законы классической механики, т. е. соотношения, которые связывают величины, описывающие движение материальных точек и взаимодействие между ними, одинаковы во всех инерциальных системах отсчёта.


Относительность механического движения и одинаковость (безотносительность) законов механики в разных инерциальных системах отсчёта и составляют содержание Галилеева принципа относительности.


Говорят, что прозрение пришло к Альберту Эйнштейну в одно мгновение. Ученый якобы ехал на трамвае по Берну (Швейцария), взглянул на уличные часы и внезапно осознал, что если бы трамвай сейчас разогнался до скорости света, то в его восприятии эти часы остановились бы — и времени бы вокруг не стало. Это и привело его к формулировке одного из центральных постулатов относительности — что различные наблюдатели по-разному воспринимают действительность, включая столь фундаментальные величины, как расстояние и время.


Говоря научным языком, в тот день Эйнштейн осознал, что описание любого физического события или явления зависит от системы отсчета, в которой находится наблюдатель (см. Эффект Кориолиса). Если пассажирка трамвая, например, уронит очки, то для нее они упадут вертикально вниз, а для пешехода, стоящего на улице, очки будут падать по параболе, поскольку трамвай движется, в то время как очки падают. У каждого своя система отсчета.


Но хотя описания событий при переходе из одной системы отсчета в другую меняются, есть и универсальные вещи, остающиеся неизменными. Если вместо описания падения очков задаться вопросом о законе природы, вызывающем их падение, то ответ на него будет один и тот же и для наблюдателя в неподвижной системе координат, и для наблюдателя в движущейся системе координат. Закон распределенного движения в равной мере действует и на улице, и в трамвае. Иными словами, в то время как описание событий зависит от наблюдателя, законы природы от него не зависят, то есть, как принято говорить на научном языке, являются инвариантными. В этом и заключается принцип относительности.


Как любую гипотезу, принцип относительности нужно было проверить путем соотнесения его с реальными природными явлениями. Из принципа относительности Эйнштейн вывел две отдельные (хотя и родственные) теории. Специальная, или частная, теория относительности исходит из положения, что законы природы одни и те же для всех систем отсчета, движущихся с постоянной скоростью. Общая теория относительности распространяет этот принцип на любые системы отсчета, включая те, что движутся с ускорением. Специальная теория относительности была опубликована в 1905 году, а более сложная с точки зрения математического аппарата общая теория относительности была завершена Эйнштейном к 1916 году.http://elementy.ru/trefil/43


ОТНОСИТЕЛЬНОСТИ ТЕОРИЯ


физическая теория, в развитии которой необходимо различать 3 этапа.


1) Принцип относительности классической механики (Галилей, Ньютон) гласит: во всех равномерно и прямолинейно движущихся системах механические процессы протекают точно так же, как и в покоящихся. Следовательно, прямолинейное равномерное движение соответствующей системы не может быть определено, установлено без помощи тел, находящихся вне системы. Так, напр., если в прямолинейно и равномерно движущемся железнодорожном вагоне подбросить вертикально вверх мяч, то он снова упадет вниз по перпендикуляру, точно так же, как если бы вагон стоял. Напротив, наблюдателю, стоящему на железнодорожной насыпи, траектория представляется в виде параболы. Исходя из формы наблюдаемой извне и зафиксированной (сфотографированной) параболы, можно определить скорость движения поезда по отношению к местонахождению наблюдателя. Подобным образом обстоит дело с движением небесных тел во Вселенной. Попытки (Физо в 1849, Майкельсон в 1881, В. Вин и др.) при помощи электромагнитных (оптических) средств создать абсолютную систему отношений в мировом пространстве (нечто сходное с покоящимся «эфиром» как абсолютным, неподвижным пространством – Ньютон) окончились неудачно.


2) В специальной теории относительности Эйнштейна (1905) создано новое для физики понятие времени. Время определяется уже не через вращение Земли, а через распространение света (300 000 км/с). Это время так тесно связано с пространственными измерениями, что вместе они образуют пространство, имеющее четыре измерения. Став координатой, время теряет свой абсолютный характер, становится только «относительной» величиной в системе связей. Было найдено такое понятие пространственного времени, которое соответствует всем физическим фактам. 3) Всеобщая теория относительности (Энштейн, 1916) устанавливает, что сила тяжести и ускорение равноценны, что в соответствии с миром Минковского (1908) трехмерная система координат классической физики дополняется временем как четвертой координатой (см. Континуум). Она расширяет наблюдение, включая рассмотрение равномерно-ускоренных и вращающихся систем, что требует сложного математического аппарата; необходимая для этого геометрия впервые определяется благодаря данной физической теории относительности (см. Метагеометрия). Теория относительности разрешает проблемы, которые возникают из наблюдения за распространением электромагнитных и оптических явлений, специально – за распространением света в движущихся системах. Результаты наблюдений, истолкованных с помощью теории относительности, отклоняются от результатов наблюдений классической механики и электродинамики только там, где речь идет о больших скоростях и огромных расстояниях.http://dic.academic.ru/dic.nsf/enc_philosophy/2920/ОТНОСИТЕЛЬНОСТИ

Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Пространство и время 3

Слов:3700
Символов:29836
Размер:58.27 Кб.