Реферат на тему:
ПОВРЕЖДЕНИЕ КЛЕТКИ
ПОВРЕЖДЕНИЕ КЛЕТКИ
Причины повреждения клетки: экзо- и эндогенные; физические, биологические, химические.
Повреждение клетки
это изменение функционирования клетки, которое сохраняется после удаления повреждающего агента.
Повреждение клетки может быть частичным или полным, обратимым или необратимым. Необратимое повреждение может привести к деструкции и гибели клетки.
Повреждение клетки может быть первичным и вторичным.
Первичное повреждение клетки
— это результат непосредственного действия повреждающего фактора.
Различают первичные повреждения:
а) механические,
б) термические,
в) химические,
г) радиационные.
Вторичные повреждения клетки
— это такие, когда результат первичного воздействия сам становится повреждающим фактором и вторично повреждает здоровые до этого момента структуры.
Первичные повреждающие клетку факторы
вызывают специфические, присущие только им эффекты. Эти эффекты связаны с характером первичного повреждающего фактора:
а) механические — вызывают нарушение целостности структуры ткани, клеток, межклеточных и субклеточных структур.
Ь) термические — связаны с денатурацией белков. белково-липидных комплексов и изменением вторичной структуры нуклеиновых кислот
с) химические - угнетают активность ферментов, блокируют клеточные рецепторы, вызывают перестройку молекул за счет гидролиза, переаминирования и т.п.
с) радиационные — приводят к разрушению молекул с образованием свободных радикалов.
Независимо от природы первичного повреждающего фактора, ответная реакция поврежденной клетки стандартна и называется неспецифической реакцией клетки на повреждение.
Причина такого стандартного ответа заключается в том, что при любом повреждении обязательно:
1) нарушаются барьерные функции мембран клеточной и внутриклеточной;
2) выключаются ионные насосы.
Реакция клеток на повреждение проявляется в структурных и функциональных изменениях клетки.
Основные структурные изменения следующие:
а) повышение проницаемости мембраны пострадавшей клетки;
Ь) уменьшение дисперсности коллоидов цитоплазмы и ядра
с) увеличение вязкости цитоплазмы, которому иногда предшествует уменьшение вязкости
1) увеличение сродства цитоплазмы и ядра к ряду красителей.
Степень выраженности зависит от силы и продолжительности повреждающего агента.
По степени выраженности различают:
а) паранекроз — обратимые нарушения структуры и функции клетки
Ь) некробиоз — необратимые повреждения (гибель) части клеток в ткани.
с) некроз — массовая гибель клеток с активацией лизосомальных ферментов и разрушением других клеточных структур. Этот процесс называется аутолизом. Значение аутолиза — удаление мертвых клеток и замена их новыми клетками или элементами соединительной ткани.
ПРОЯВЛЕНИЯ ПОВРЕЖДЕНИЯ КЛЕТОК
1. Увеличение проницаемости цитоплазматической мембраны:
1) белкам и коллоидным краскам (макромолекулы);
2) к аминокислотам и глюкозе (вещества с низкой молекулярной массой);
3) к ионам.
2. Уменьшение электрического сопротивления ткани.
Электрическое сопротивление ткани называется импеданс
. Он состоит из омической и емкостной составляющей. Емкостная составляющая обусловлена тем, что клеточные мембраны, по сути, представляют собой конденсаторы. Омическая составляющая зависит от омического сопротивления цитоплазмы и мембран.
3. Увеличение сродства к красителям цитоплазмы и ядра клетки.
Это явление связано с тем, на фоне повышенной проницаемости мембраны при окраске клетки красителя в нее поступает значительно больше.
4. Изменение мембранного потенциала.
Это явление чрезвычайно характерно для неспецифического ответа клетки на повреждение. Причины:
1) прямое повреждение мембраны;
2) нарушение работы мембранных ионных насосов за счет снижения содержания в клетке АТФ. Снижение мембранного потенциала наблюдается при холодовом, радиационном, аллергическом повреждениях клеток и их органелл.
5. Выход ионов К+
из клеток.
В норме внутри клетки содержится больше ионов К+
, чем вне ее. Такое соотношение обеспечивается:
1) работой Nа+
-К+
-АТФ-азы, которая постоянно накачивает К+
внутрь клетки;
2) спонтанным выходом К+
из клетки за счет диффузии в область с более низкой концентрацией. Причина потери ионов К+
- нарушение работы Nа+
-К+
-АТФ-азы в результате угнетения окислительного фосфорилирования в митохондриях.
6. Накопление ионов Са2+
в гиалоплазме.
В норме поступающий в клетку Са2+
аккумулируется в митохондриях, поэтому в гиалоплазме концентрация ионов Са2+
примерно в 10 000 раз ниже, чем вне клетки. При повреждении накопление в митохондриях угнетается и содержание ионов Са2+
в гиалоплазме нарастает. Причина: нарушение окислительного фосфорилирования в митохондриях и уменьшение мембранного потенциала митохондрий.
7. Набухание клеток.
Форма и объем клеток зависят от:
1) состояния цитоскелета клетки;
2) разницы между онкотическим и осмотическим давлением внутри и вне клетки (онкотическое п осмотическое давление определяется количеством белков и ионов в единице объема. Другое название этой величины «коллоидно-осмотическое давление».
Увеличение объема клеток происходит при
1) накоплении белков и ионов внутри клетки;
2) снижении их концентрации вне клетки. В результате коллоидно-осмотическое давление в клетке становится больше, чем вне ее и молекулы воды переходят в клетку с целью выравнивания концентраций.
Последствия: сдавление микрососудов и нарушение микроциркуляции.
8. Нарушение структуры и функции митохондрий.
Всего 4 нарушения:
1) снижение потребления кислорода — связано с уменьшением скорости переноса электронов по дыхательной цепи.
2) увеличение проницаемости внутренней митохондриальной мембраны может привести к разобщению окислительного фосфорилирования в митохондриях и изменению показателей работы митохондрий. Существует 2 (два) показателя работы митохондрий: коэффициент Р/О и коэффициент дыхательного контроля ДК. Коэффициент Р/О - это отношение количества синтезированной АТФ к количеству поглощенного кислорода. Коэффициент дыхательного контроля — это отношение скорости дыхания митохондрий в присутствии субстратов окисления, АДФ и ортофосфата к скорости дыхания митохондрий в отсутствии АДФ. Снижение ДК до единицы и Р/О до 0 говорит о разобщении окислительного фосфорилирования в митохондриях.;
3) снижение способности накапливать кальций — приводит к увеличению его концентрации в гиалоплазме. Развивается в результате снижения мембранного потенциала и разобщения окислительного фосфорилирования в митохондриях;
4) набухание митохондрий — связано с поступление воды внутрь митохондрий и приводит к их разрыву. Различают активное и пассивное набухание митохондрий. Пассивное набухание митохондрий - происходит за счет движения молекул воды в митохондрию при увеличении коллоидно осмотического давления внутри нее и не требует затрат энергии. Активное набухание митохондрий — это движение молекул воды в митохондрию исключительно вслед за фосфатом К+
. Фосфат К+
поступает в митохондрии при уменьшении мембранного потенциала ниже 170-180 мВ со знаком «минус».
9. Активация лизосомальных ферментов и ацидоз.
Увеличение проницаемости клеточных и внутриклеточных мембран касается и мембран лизосом. Из них выбрасываются активные липазы, протеазы, нуклеазы и другие ферменты. Немедленно начинается распад белков, жиров, пуриновых и пиримидиновых оснований. Образуются кислоты: амино-, жирные и нуклеиновые. Они диссоциируют на водород и кислотный остаток и среда закисляется. РН падает до 6,0 и ниже.
10. Апоптоз
— это запрограммированная гибель клетки, которая необходима для удаления старых клеток или замены одних клеток другими. Стадии апоптоза:
1) поступление сигнала на поверхность клетки. Сигнал — поступление или непоступление определенных веществ;
2) связывание сигнальной молекулы с рецептором на поверхности клетки;
3) запуск каскада реакций внутриклеточной сигнализации;
4) активация синтеза деструктивных ферментов, в частности эндонуклеаз;
5) аутолиз.
11. Повреждение генетического аппарата клетки
— это разрушение нуклеиновых кислот ядра и рибосом.
12. Последовательность нарушений в клетке при гипоксии
—
Общий вывод:
1) необратимые повреждения наступают только через 1-1,5 часа после прекращения поступления кислорода. В более ранние сроки возможно восстановление функций клетки;
2) при проведении лечебных мероприятий врач должен ориентироваться на указанные сроки.
13. Порочный круг клеточной патологии.
Неспецифичес
1) повреждение клеточной и внутриклеточных мембран;
2) снижение уровня АТФ;
3) увеличение содержания Са2+
в цитоплазме;
4) активация деструктивных ферментов - мембранных фосфолипаз, эндонуклеаз;
5) разрушение фосфолипидов мембраны и усугубление ее повреждения. На 4-м и 5-м этапах наблюдаем смену причинно-следственных отношений, когда следствие (активация деструктивных ферментов) становится источником новых повреждений мембраны.
МЕХАНИЗМЫ НАРУШЕНИЯ БАРЬЕРНОЙ ФУНКЦИИ БИОЛОГИЧЕСКИХ МЕМБРАН
Нарушение целостности липидного слоя приводит к нарушению барьерной функции мембран. В основе лежит явление электрического пробоя мембран
.
К электрическому пробою мембран приводят всего 4 (четыре) основных механизма:
1) перекисное окисление липидов;
2) действие мембранных фосфолипаз;
3) механическое (осмотическое) растяжение мембран;
4) адсорбция на бислое полиэлектролитов, включая некоторые белки и пептиды.
ПЕРЕКИСНОЕ ОКИСЛЕНИЕ ЛИПИДОВ
Реакции ПОЛ инициируются так называемыми «свободными радикалами». Свободные радикалы — это атомарные группы, которые имеют на внешней орбите неспаренный электрон. Такие атомарные группы очень реактогенны, т.к. стремятся восстановить свое электрическое равновесие. Стремясь к электронейтральности, свободные радикалы активно захватывают электроны у соседних молекул. При этом пострадавшие молекулы сами лишаются электрической стабильности и меняют свои свойства.
К свободным радикалам относятся:
1) супероксидный анион-радикал О2
;
2) гидроксильный радикал ОН-
;
З) перекись водорода. Общее название всех перечисленных соединений — активные формы кислорода.
Они образуются в фагоцитах, к которым относятся тканевые макрофаги, моноциты, гранулоциты.
Активные формы кислорода повреждают здоровые клетки. В организме существуют системы защиты:
1) ферменты супероксиддисмутаза (СОД) и каталаза
— обезвреживает супероксидный анион-радикал. На первом этапе под влиянием СОД
супероксидный анион-радикал присоединяют молекулу кислорода и два атома водорода. Образуется перекись водорода и молекулярный кислород. На втором этапе перекись водорода под влиянием каталазы
переводится в воду и молекулярный кислород;
2) фермент миелопероксидаза (МП)
— катализирует обезвреживание перекиси водорода. Для этого переводит перекись водорода в гипохлорит с образованием воды.
В условиях патологии система защиты может быть повреждена. Тогда супероксидный анион-радикал и перекись водорода вступает в альтернативные реакции:
1) сначала супероксидный анион радикал реагирует с трехвалентным железом и образуется двухвалентное железо и молекулярный кислород:
2) затем двухвалентное железо реагирует с перекисью водорода и образуется железо трехвалентное и гидрооксильный радикал.
Именно образование гидрооксильного радикала в случае несрабатывания системы защиты приводит к запуску перекисного окисления липидов и повреждению липидного слоя мембран.
Схема реакции перекисного окисления липидов
1) Гидрооксильный радикал проникает в толщу липидного слоя и вступает в реакцию с молекулой жирной кислоты. Он отнимает у нее атом водорода и восстанавливает свою электронейтральность, образуя воду. У молекулы жирной кислоты на внешней орбите остается неспаренный электрон, т.е. образуется липидный радикал: НО-
+ LН→Н2
О + L-
2) Липидный радикал вступает в реакцию с растворенным кислородом.
Образуется новый свободный радикал – радикал липоперекиси:
L-
+ О2
→ LОО-
3) Радикал липоперекиси реагирует с соседней молекулой жирной
кислоты. Образуется новый липидный радикал:
LОО-
+ LН → LООН + L-
4) Липидный радикал вновь реагирует с растворенным О2
и с
неповрежденной молекулой жирной кислоты и образуется новый радикал липоперекиси и новый липидный радикал.
Таким образом, в реакции перекисного окисления липидов постоянно, чередуя друг друга, образуются липидный радикал и радикал липоперекиси. Процесс захватывает все новые и новые молекулы жирных кислот и повреждает липидный слой
Последствия перекисного окисления липидов
заключаются в нарушении свойств и функций клеточных и внутриклеточных мембран. Наиболее изучены 3(три) из них:
1) Окисление тиоловых групп мембранных белков. Приводит к появлению пор в мембранах клеток и митохондрий и увеличению проницаемости мембран.
2) Увеличение ионной проницаемости липидного бислоя. Приводит к разобщению окислительного фосфорилирования и снижению образования АТФ.
3) Снижение стабильности липидного слоя и создание условий для электрического пробоя мембран.
Клеточные системы защиты от перекисного окисления липидов.
В норме на скорость и выраженность процесса перекисного окисления липидов влияют специальные защитные системы. В составе этих систем различные химические вещества. Их делят на 2(две) группы: 1) прооксиданты, которые усиливают процессы перекисного окисления; 2) антиоксиданты, которые тормозят процесс перекисного окисления.
Прооксиданты:
высокие концентрации кислорода (напр., при гипербарической оксигенации), некоторые ферменты, ионы двухвалентного железа.
Антиоксиданты:
делятся на 4 группы:
1) СОД, каталаза, глютатионредуктаза
. Нейтрализуют супероксидный анион-радикал и перекись водорода. Предотвращают образование гидроксильного радикала.
2) Фосфолипаза и глютатионпероксидаза.
Разрушают гидроперекиси липидов.
3) Система окисления и связывания ионов железа.
Снижает концентрацию двухвалентного железа в крови. С участием двухвалентного железа происходит образование гидроксил-радикала.
В крови имеется фермент церрулоплазмин и трансферрин.
Церрулоплазмин переводит двухвалентное железо в трехвалентное, а трансферрин связывает и переносит трехвалентное железо в клетки. В клетках железо депонируется в форме ферритина.
4) Жирорастворимые антиоксиданты
или перехватчики свободных радикалов, или <ловушки». Обрывают цепи перекисного окисления за счет захвата липидных радикалов и радикалов липоперекисей. По химической природе это производные фенола. Это: витамин Е, убихинон, тироксин, ионол (входит в состав лекарства дибунола).
ДЕЙСТВИЕ МЕМБРАННЫХ ФОСФОЛИПАЗ
Фосфолипазы — это ферменты, которые гидролизуют мембранные фосфолипиды. Фосфолипазы имеются практически во всех клетках и во всех клеточных структурах. В мембранах в норме фосфолипазы малоактивны. Причины малоактивности фосфолипаз:
1) фосфолипазы плохо гидролизуют именно фосфолипиды липидного бислоя мембран;
2) фосфолипазы активируются ионами Са и ингибируются ионами Мg, а в цитоплазме здоровой клетки как раз мало кальция и много магния.
Чрезмерное увеличение содержания ионов кальция в цитоплазме при повреждении приводит к активации фосфолипаз. Фосфолипиды липидного слоя гидролизуются. Мембрана теряет барьерные свойства и становится возможным электрический пробой мембраны.
МЕХАНИЧЕСКОЕ (ОСМОТИЧЕСКОЕ) РАСТЯЖЕНИЕ МЕМБРАН И АДСОРБЦИЯ БЕЛКОВ
Механическое растяжение мембран
наблюдается при нарушении осмотического равновесия в клетках, а именно увеличении внутриклеточного коллоидно-осмотического давления. В этом случае в клетку поступает вода, объем клетки увеличивается, и создаются условия для электрического пробоя мембран.
Адсорбция белков на мембранах
также приводит к снижению электрической стабильности мембран.
Перекисное окисление липидов, активация фосфолипаз. адсорбция белков на мембранах и механическое их растяжение приводят к снижению электрической прочности липидного слоя мембран и электрическому пробою мембран.
ЯВЛЕНИЕ ЭЛЕКТРИЧЕСКОГО ПРОБОЯ МЕМБРАН
В норме между внутренней и наружной сторонами мембраной существует небольшая разность потенциалов, а через мембрану проходит электрический ток. Его величина зависит от:
1) разности потенциалов на наружной и внутренней сторонах мембраны или напряжения на мембране V;
2) омического сопротивления мембраны этому току R.
I = V/R
Величина тока через мембрану прямо пропорциональна разности потенциалов на мембране и обратно пропорциональна сопротивлению мембраны току.
Если разность потенциалов на мембране превысит критическое значение, то произойдет резкое возрастание тока. Критическая разность потенциалов, выше которой происходит резкое возрастание тока, называется потенциалом пробоя
. Если разность потенциалов превышает критическое значение, то ток через мембрану будет самопроизвольно нарастать во времени до полного разрушения мембраны. Это явление называется электрическим пробоем мембраны.