1)Межклеточные соединения(взаимодействия)
I
Структурно-функционально бывают: а) аксосоматические; 6)1 аксодендритические; в) ВКОО-акеональНые. Компоненты синапсаи пресинаптическая (принадлежащая одной клетке) и постсинаптическаЯ (часть плазмолеммы другой клетки) мембраны и синаптическая щель 1 [рослые синапсы характерны для электрических синапсов, с щелыЛ замкнутой плотными контактами В химических. Они специализированы на односторонней передаче возбуждения химическим веществомнейромедиатором. Например, между нейронами, нейроэцителиальные, нейромышечные. 2)ЩЕЛЕВИДНЫЕ
интегральные белки (коннектины), связанные между собой. При участие белковых глобул формируются межцитоплазматические каналы (коннексоны), по которым возможен транспорт низкомолекулярных веществ и ионов из одной клетки в другую. Например: кардиомиоциты, гладкие миоциты. II
1)
интегральных и полу интегральных глобулярных белков мембран соседних клеток. Места такого плотного прилегания образуют на контактирующихповерхностях подобие ячеистой сети (щель -12 Нм). Они обеспечивают надёжное отграничениедвухсред, находящихся по разные стороны от пласта клеток. Например: желчные капилляры печени, кишечный эпителий и другие. III
I
1).
размножения и др. 2) ИНТЕРДИГИТАЦНН
инвагинации).
II
1). ДЕСМОСОМЫ
круговыеучастки((1=0,5мкм! плазмолеммы которых утолщены с
цитоскелета). В эпителии они образованы белком кератином. Пространство между плазмолеммами (30-50 Нм) заполнено утолщённым гликокаликсом, который пронизан сцепляющими белками -десмоглеинами,образующими фибриллоподобныеструктурыи дисковидное утолщение посередине. Например: клетки многослойного эпителия, во вставочных дисках кардиомиоцитов. 2). АДГЕЗИВНЫЙ ПОЯСОК
3) ПОЛУДЕСМОСОМЫ.
|
2) Клетка
Клетка - структурно-функциональная единица живой материи, которая состоит из ядра (обеспечивающего сохранность и передачу генетического материала) и цитоплазмы, отграниченная клеточной оболочкой (цитолеммой) и обладающая всеми свойствами живого. Живые организмы представляют собой системы, которые - открытые (то есть находятся в постоянном обмене с окружающей средой веществами и энергией), самостоятельно регулируются и воспроизводятся, и осуществляют свои функции благодаря белкам и нуклеиновым кислотам, носителям генетической информации. Именно клетка как таковая является наименьшей единицей, обладающей всеми свойствами, отвечающими определению «живое» {способность к воспроизведению, использование и трансформация энергии, метаболизм, движение, раздражительность (таксисы), чувствительность, адаптация, изменчивость и другие).
2. Клетки сходны по общему плачу строения
Все клетки гомологичные (схожие) по основным признакам и различаются по признакам специальным и второстепенным, что обеспечивается их специфическими функциями и закрепляется определённым строением. Клетки могут иметь самую разнообразную внешнюю форму полиморфизм
звёздчатую и (нервные и многогранную (клетки железистого эпителия), рпчнотпленно-отростчатую костные клетки), веретспоиидную (гладкие мышечные клетки, фиброциты), призматическую (клетки эпителия кишечника и другие. уплощенную (мезотелий и эндотелий) Однако, практически все клетки имеют общий план их организации (три основных компонента), что указывает на общность происхождения всех эукариотических (, з. ядроеодержащих организмов): клеточная оболочка (цитолемма
ядро
цитоплазма
исключениесоставляют эритроциты
чешуйки
лишены ядра. Отношение между цитоплазмой и матриксом ядра в разных клетках различно и может варьировать. В связи с этим возникает понятие ядерно-цшпоплизматическое
. В организме клетки функционируют не изолированно, а в тесной связи друг с другом, образуя единое целое
Клетки не существуют в составе органа независимо, а они объединяются в сложные биологические ансамбли - ткани, в которых взаимодействуют друг с другом, влияют друг на друга и каждая выполняет свой набор функций. Многоклеточные организмы представляют собой сложные ансамбли специализированных клеток, объединённых в целостные, интегрированные системы тканей и органов, подчинённые и связанные межклеточными, гуморальными и нервными формами регуляции. Вот почему мы говорим об организме как о целом, а о клетках - как об Элементарных единицах его, специализированных на выполнении строго определённых функций, осуществляющих их в комплексе со всеми Элементами, входящими в состав сложно организованной живой системы многоклеточного единого организма. Поэтому клетки различны: одни Настроены на выполнение одного круга функций, другие - другого. ()тсюда - различия структуры клеток и образуемого ими межклеточного вещества. У"Го есть, имея общий план строения (плазматическая мембрана, ядро, цитоплазма), клетки разных видов в большей или меньшей степени отличаются друг от друга. ^Особое значение и колоссальная роль принадлежит не только самим клеткам, но и их производным: межклеточное вещество
Межклеточное вещество
Симпласт
Синцитий
Гиалоплазма
Цитозол
Внутриклеточных белков, полимеризация и деполимеризация белков, метаболизм жирных кислот, аминокислот, гликолиз) и другие. Эндоплазматический ретикулум
ЭПС была открыта американским учёным К.Р. Портером (Кекп К.. РоПег) на электронной микроскопиив 1945 г. в фибробластах. При световой микроскопии
При электронной микроскопии
Функция.
центральная роль в липидном и белковом синтезе - на её мембране синтезируютсявсетрансмембранные белки и липиды для большинства органелл, включая саму ЭПС, комплекс Гольджи, лизосомы,эндосомы, секреторные везикулы и плазматическую мембрану. ЭПС продуцирует большую часть липидов митохондрий. Она участвует в экскреции продуктов из клетки. Вещества синтезируемые в ЭПС предназначены для клеточных компартментов, а не для цитозоля. В зависимости от того, связана ли обращенная к цитозолю поверхность ЭПС с рибосомами, принято выделять: гранулярную и агранулярную виды ЭПС. Гранулярная (шероховатая) ЭПС
ядра (эргастоплазма). Скопления эндоплазматической сети являются принадлежностью секреторные белки. Так, в клетках клеток, активно синтезирующих Гранулярная ЭПС,
Функции:
гормоны) - предназначены для нужд организма; б) синтез белков - ферментов лизосом; в)' синтез белков и белков -ферментов для пластинчатого комплекса Гольджи, где г) синтез белков - ферментов «доработкасобой систему анастомозирующих происходит их дальнейшая цитозоля. Аграиулярная (гладкая)
Представляет мембранных трубочек и мипицисторп. Гладкая -эндоплазматическая сеть возникает и развиваемся за очс1 гранулярной эндоплазматической сети (при освобождении се ОТ рибосом). Деятельность гладкой эндоплазматической сети связана с метаболизмом липидов и некоторых внутриклеточных полисахаридов Гладкая эндоплазматическая сеть участвует в заключительных папах синтеза липидов. Она сильно развита в клетках, секретирующих такие категории липидов, как стероиды, например, в клетках коркового вещества надпочечников, в суетентоцитахсеменников. Тесная топографическая связь гладкой эндоплазматической сети <. отложениями гликогена (запасной внутриклеточный полисахарид л п потных) в гиалоплазме различных клеток (клетки печени, мышечные Юлокна) указывает на её возможное участие в метаболизме углеводов. Ипоперечнополосатыхмышечныхволокнахгладкая эндоплазматическая сеть способна депонировать ионы кальция, необходимые для функции мышечной ткани. Морфология:
Функции:
Промежуточная ЭПС
Классификация органелл
(мембранные и немембранные) 3)функционально(метаболические системы,и опорно-сократииельный аапарат).Функциональная классификация:1)Энергитическая(митохондрии)2)катоболическая(митохогдрии лизосомы,пероксисомы,агранулярная ЭПС)3)анаболическая(митохондрии агранулярная ЭПС,гранулярная ЭПС,комплекс Гольджи,рибосомы) 4)Опорно-сократительная(микрофиламенты,промежуточные филаменты,микротрубочки,центриол |
15,3)Поверхностный аппарат клетки.
Основу поверхностного аппарата (,з. цитолемма
Она образована бимолекулярным слоем липидов.
• наружный - надмембранный (гликокаликс
• средний - плазмолемма
• внутренний - подмембранный опорно-сократительный аппарат! (субплазмолеммальный кортекс),
Цитолемма
биологические мембуаны
Имеют общий план строения и выполняют определенные функции. Молекулы липидов формируют бимолекулярный слой (впервые это установили методом замораживания эритроцитов). Основными химическими соединениями в этом слое являются: 1. фосфолипиды (ФЛ): 1.1. цефалин, 1.2. кефалин; • 2. холестерин (холестерол); 3. гликолипиды (ГЛ). Фосфолипидные молекулы построены из гидрофильных головок и гидрофобных хвостиков. Головки наружного слоя направлены в межклеточное пространство, а внутреннего слоя обращены в сторону цнтозоля. Хвостики «спрятаны» вглубь мембраны. Подобное расположение фосфолипидов обеспечивает барьерную функцию. Важно постоянное шачение ионов и воды в клетке. Водорастворимые соединения не проникают через фосфолипидный бислой, что характеризует строгую избирательную проницаемость. Молекулы фосфолипидов способны передвигаться, но в плоскости своего слоя, что выражается в текучести биологических мембран; перемещения в другие слои крайне редки. Текучесть имеет колоссальное значение для осуществления других функций (смотрите ниже). Уникальная функция - способность к самосборки. Если молекулы разрушить и поместить в изотонический раствор №С1, то они сольются в мицеллу. Значение молекул холестерина: 1. ингибирование фазового перехода фосфолипидов. В случае его отсутствия, при действии низких температур (7 - 10°С), фосфолипиды переходят в кристаллоидное состояние; 2. участие в регуляции текучести биологических мембран; 3. придают определенную степень жёсткости. В сосредоточении молекул холестерина процессы эндоцитоза или жзоцитоза не возможны, так как мембрана не податлива к инвагинациям. Основная функция гликолипидов - рецепторная. Следующий компонент биологической мембраны - белки.
Нелковые молекулы выполняют следующие функции: • рецепторная; • избирательного транспорта химических соединений. Они встроены мозаично: интегрально в полуинтегрально. Белки являются глобулярными, за исключением ферментных. 1. интегральные - трансмембранные, связывают среду цитозоля со средой межклеточного вещества; 2. полуинтегральные - внешние и внутренние; 3. периферические - связаны с интегральными, внутренними полуинтегральными и элементами цитоскслета. Белки способны транслоцироваться по плоскости слоя и совершать вращательные движения. Белковые молекулы несут в себе такжо генетические свойства, благодаря молекуле гистосовместимости 1-го класса (НЬ-1). Она индивидуальна (сходна она только у монозиготных близнецов) и сложна, образует эпиток - последовательность девяти аминокислот. Если на него оказано мутагенное действие, то он «пожирается» макрофагами. 5. Транспорт веществ.
Избирательный транспорт
Облегчённая диффузия также проходит по градиенту концентрации, но с| участием белков-переносчиков. Активный транспорт
несопряжённым. В первом случае транспортируются два разных вещества! в противоположных направлениях и для его реализации необходима энергия АТФ. При втором виде - идёт одно вещество в одном направлении, и участвуют белки-переносчики. Модели белков-переносчиков и варианты транспорта:
1. подвижные.
2. вращающиеся.
3. «белковые каналы».
Примером белков-транспортёров являются -1-белки. Это универсальные интегральные белки передачи сигнала раздражения с молекулы рецепторного белка на ферменты клеток, обеспечивающих общую биологическую и специальную функции клеток (Например, в плазмолемме - аденилилциклаза, которая связана с целым рядом других ферментов). Транспорт макромолекулярных соединений осуществляется следующими путями: Эндоцитоз и экзоцитоз Органеллы специального назначения (специализированные
Реснички
Проксимальная часть реснички (базальное тело) погружена в
Аксонема в своем составе имеет в отличие от базального тельца или центриоли 9 дублетов микротрубочек с динеиновыми «ручками», образующих стенку цилиндра аксонемы. Кроме периферических дублетов микротрубочек, в центре аксонемы располагается пара центральных микротрубочек. В целом систему микротрубочек реснички описывают как (9 х 2) + 2 в отличие от (9x3) + и системы центриолей и базальных телец. Базальное тельце и аксонема Структурно связаны друг с другом и составляют единое целое: две мпкротрубочки триплетов базального тельца являются микротрубочками нублетов аксонемы. Свободные клетки, имеющие реснички и жгутики, обладают способностью двигаться, а неподвижные клетки движением ресничек могут перемещать жидкость и частицы. Траектория движения ресничек очень разнообразна. В различных клетках это движение может быть маятникообразным, крючкообразным,воронкообразным или ■однообразным. Основной белок ресничек - тубулин
Функция -
Локализация:
Жгутик.
Микроворсинки
|
2,4)Митохондрии
Это самые многочисленные органеллы клетки, занимающие около 25% объёма цитоплазмы. Митохондрии подвижные, пластичные, постоянно изменяют форму, могут ветвиться, сливаться друг с другом, и расходится. Их перемещение связано с активностью микротрубочек. Единая система митохондрий клетки называется - хондриома.
Локализация.
Число митохондрий зависит от потребности клетки в энергии, чем больше потребность, тем больше митохондрий в клетке и тем более они развиты. Сложная форма митохондрий затрудняет их микроскопическое исследование. При световой микроскопии
При электронной микроскопии (ультраструктура)
Наружная мембрана
В межмембранное пространство
Внутренняя мембрана
по строению крист выделяют митохондрии ламинарного и! тубулярного (везикулярного) типа. Ламинарные
Наличие белка - кардиолипина делает внутреннюю мембрану непроницаемой для многих ионов. Центральная часть митохондрий заполнена митохоидриальным матриксом (митоплазма)
ферментов. В матриксе митохондрий выявляются тонкие собранные в клубок нити (около 2-3 нм) и гранулы около 15-20нм. Нити матрикса митохондрий представляют собой молекулы кольцевой ДНК в составе митохондриального нуклеоида,
рибосомы
Митохондрииэтоэнергетические станции клетки, которые занимают промежуточное положение между анаболическими (ассимиляция) и катаболическими (диссимиляция) процессами, то есть являются их связующим звеном. Функции митохондрий:
благодаря наличию автономной системы синтеза белка (ДНК Иободная от гистонов, РНК разных видов, рибосомы), митохондрии Могут самовос-станавливаться. В интерфазу митохондрия реплицируется (репликация не связана с 3-фазой). Она делится надвое один раз, образуя перетяжку (сначала на внутренней мембране), то есть фрагментацией
|
11,1,16) Лизосомы
Лизосомы открыл в 1955 г. бельгийский учёный, лауреат Нобелевской премии по физиологии и медицине (1974 г.) Де Дюв В лизосомах происходит разрушение комплексов лиганд-рецептор, метаболизм холистерола, а её гидролазы разрушают белки, липиды, углеводы, нуклеиновые кислоты При световой микроскопии
Строение первичных лизосом (ультраструктура).
Внутри лизосом поддерживается стационарное значение рН клетки (постоянный рН = 5), обеспечиваемый АТР-зависимой помпой
Ферменты лизосом:
Формы лизосом (зависят от их функционального состояния): первичные—» вторичные, или фаголизосомы (аутофаголизосомы и гетерофаголизосомы)—*
гидролитического расщепления. Функции:
Аутофагия
Гетероцитоз
Цитоплазматические белки могут разрушаться в лизосомах. Разрушаемые белки имеют специфический участок, узнаваемый шаперонами. {Шапероны
В некоторых дифференцированных клетках лизосомы могут выполнять I специфические функции, образуя дополнительные органеллы. Например: | меланосомы; неспецифическис гранулы лейкоцитов (нейтрофилов, эозинофилов, базофилов и лимфоцитов) и тромбоцитов; ламеллярные тельца клеток ацинуса лёгкого (альнеолоциты И-го типа); тельца Вейбеля-Палладе (в эндотелиальных клетках); гранулы остеокласов и другие. Полисома, или
РибосоМы
немембранного принципа строения, входящая в состав метаболической системы клетки. При световой микроскопии не визуализируются, но о его активности - ^ят по базофилии цитоплазмы (за счёт биосинтеза белка). Состоят из малой (зЫе А) и большой (§1с1е В) субъединиц, обе субъединицы «сшиты» ионами магния. Рибосомы содержат рибосомальную РНК, связанную с молекулами белков. Диаметр рибосом около 20 Нм. Выделяют: свободные (полисомы) и несвободные рибосомы. Биосинтез белка
Схема синтеза рибосом 1 -синтез мРНК рибосомных белков РНК полимеразой II; 2 - экспорт мРНК из ядра; 3 - узнавание мРНК рибосомой и 4 - синтез рибосомных белков; 5 - синтез предшественника рРНК (45 S — предшественник) РНК полимеразой I; 6 - синтез 5 S рРНК РНК полимеразой III; 7 - сборка большой рибонуклеопротеидной частицы, включающей 45 S-пред-шественник, импортированные из цитоплазмы рибосомные белки, а также специальные ядрышковые белки и РНК, принимающие участиевсозревании рибосомных субчастиц; 8 -присоединение5 SрРНК, нарезание предшественника и отделение малой рибосомной субчастицы; 9 большой созревание субчастицы, высвобождениеядрышковых белков и РНК; 10 - выход рибосомных субчастиц из ядра; 11 - вовлечение их в трансляцию. |
24,14)цитоплазма
исключениесоставляют эритроциты
чешуйки
лишены ядра. Отношение между цитоплазмой и матриксом ядра в разных клетках различно и может варьировать. В связи с этим возникает понятие ядерно-цшпоплизматическое
Гиалоплазма
Цитозоль -
Внутриклеточных белков, полимеризация и деполимеризация белков, метаболизм жирных кислот, аминокислот, гликолиз) и другие. Органеллы.
Это постоянные морфофункциональные структуры цитоплазмы, ориентированные на выполнение определённых частных функций, обеспечивающих в целом физиологическое состояние любой клетки. Классификация органелл
(мембранные и немембранные) 3)функционально(метаболические системы,и опорно-сократииельный аапарат).Функциональная классификация:1)Энергитическая(митохондрии)2)катоболическая(митохогдрии лизосомы,пероксисомы,агранулярная ЭПС)3)анаболическая(митохондрии агранулярная ЭПС,гранулярная ЭПС,комплекс Гольджи,рибосомы) 4)Опорно-сократительная(микрофиламенты,промежуточные филаменты,микротрубочки,центриол Органеллы общего назначения
|
3,10)Жизненный цикл клетки.
Клеточный цикл соматических клеток высших растений и животных можно разделить на две стадии: митоз и интерфазу. Под интерфазой понимают период клеточного цикла между концом одного деления и началом следующего, т.е. между двумя последовательными митозами. При световой микроскопии ядра, находящегося на стадии интерфазы, хромосомы как отдельные структуры не видны, а их окрашенное вещество имеет вид гранул, более или менее равномерно распределенных в поле зрения. Интерфазу принято разделять на три периода: G1 -пресинтетический, S — синтез ДНК и G2- постсинтетический. Длительность интерфазы в клетках разных тканей различна, и определяется в основном периодом G1. Как правило, этот период — самый продолжительный. Примерно в середине G1 находится контрольная точка, до достижения которой митоз можно заблокировать ингибиторами транскрипции и трансляции. После этой точки клетка неизбежно проходит стадии синтеза ДНК, постсинтетическую — G2 и митоз. К началу деления клетки ее ДНК реплипирована и каждая хромосома уже состоит из двух идентичных нитей - хроматид, соединенных одной центромерой. Клетки, прекратившие деление, находятся в стадии покоя — G0. Разные клетки имеют разную продолжительность жизненного цикла, и
Клеткам (даже генетически родственным) предопределены разные пути развития и неодинаковая продолжительность жизни. Практически во всех тканях имеются так называемые стволовые, камбиальные (малодифференцированные)испециализированные (дифференцированные) клетки. Стволовые клетки обнаружены не во всех тканях. Они, как правило, пребывают в фазе пролиферативного покоя, и основной их функцией является неограниченное во времени поддержание популяции малодифференцированных клеток. камбиальные клетки
Деление клеток на камбиальные и специализированные в некотором роде условно, т.к. нередко клетка, начав дифференцировку, может остановиться и перейти в деление. Особенности регуляция клеточного цикла (для пролиферирующих
Деление клеток осуществляется митозом - образующиеся дочерние Клетки получают. равное и одинаковое количество генетического материала Митоз
В профазе
В метафазе
В анафазе
В телофазе
Митозу предшествует длительная интерфазная подготовка. В интерфазе выделяют ностмиготический (g1) период, синтетический (s период, постсинтетический (g2) период. Фазность митотического цикла генетически детерминирована. В каждой клетке существует внутренняя система контроля жизненного цикла и митоза. При нарушениях прохождения клеткой фаз жизненного цикла она под влиянием собственных факторов регуляции либо шдерживается в одной из фаз цикла, либо элиминируется путем запуска Программы апоптоза. Ключевое значение в прохождении каждой фазы клеточного цикла и подготовки клетки к вступлению в следующую фазу имеет сочетанное инияпие внутриклеточных циклинов и циклин-зависимых киназ Группа циклинов включает Оьциклины , циклины s-фазы циклины М-фазы Соответственно этим формам циклинов в Клетке существуют циклин-зависимые киназы 01, 8 и М фаз цикла. В ходе цикла содержание циклинов существенно меняется, в то время как уровни Цз-К остаются относительно стабильными. Увеличение уровня тех или иных циклинов является сигналом, побуждающим клетку к прохождению очередной фазы цикла. Например, упеличение уровня G1Ц является сигналом для подготовки хромосом к репликаций, а вхождение клетки в 8 фазу стимулируют факторы, приводящие к репликации ДНК и центриолей'. По завершении репликации ДНК уровень указанных циклинов снижается и возрастает уровень митотических циклинов. Митоз Юзникает при активации М-фазу-стимулирующего фактора, который Является комплексом митотических циклинов и циклин-зависимой киназы М-фазы. М-фазу-стимулирующий фактор инициирует сборку митотического веретена, разрушение ядерной оболочки, конденсацию хромосом и вхождение клетки в метафазу митоза. С этого момента активируется другой пептидный комплекс - стимулирующий анафазу, Олагодаря которому сестринские хроматиды начинают расходиться к полюсам клетки, при этом циклины М-фазы разрушаются, и в клетке инициируется синтез 01 циклинов для следующего цикла (но уже дочерних клеток). Одним из наиболее сложных моментов является репликация ДНК. В процессе раскрутки молекулы ДНК и последующего достраивания комплементарных цепей часто возникают спонтанные разрывы и нарушения структуры ДНК. В этой ситуации в клетке синтезируется белок р53, который воспринимает происходящие нарушения и останавливает клетку при прохождении ею G1 или G2 фаз клеточного цикла. В связи с чрезвычайно важной ролью данного белка его называют хранителем генома и молекулой века. В случае нарушения репликации ДНК р5S инициирует самоуничтожение клетки. Существуют и некоторые другие белки, определяющие повреждения ДНК и прерывающие клеточный цикл и митоз - это так называемые опухоль-супрессирующие белки. Гибель
Естественная Насильственная (также как и орган в целом, и любая клетка стареет, либо «заболевает» и включает программу самоуничтожения, или апоптоз) Поддержание жизнедеятельности организма основано на законах клеточной генетики -
Гибели клеток как физиологическому явлению уделялось мало внимания. Первые публикации об этом появились в литературе еще в конце XIX века. Различают две формы гибели клеток: некроз и апоптоз. Некроз
состояние «гель»; либо развитие отёка цитоплазмы и последующего её лизиса (растворения). Апоптоз
Существует предположение, что явление «апоптоз» выработано в процессе эволюции у многоклеточных организмов для регуляции самих к исток и установления определенного характера взаимоотношений между отдельными клетками. 11ри апоптозе в ядре запускается каскад реакций запрограммированной I кбели клетки, что активирует гены самоуничтожения, меняется метаболизм, и клетка гибнет. • Изменения в ядре могут выражаться в виде его сморщивания (парипикноз),
|
13,25,5)Ядро.
Клеточное ядро
• в интерфазе ядро хранит закодированную в ДНК информацию о белковом синтезе и обеспечивает синтез чех белковых молекул, которые необходимы для процессов роста, дифферепцировки и физиологической регенерации клетки: в ядре синтезируются рибосомальные, информационные и транспортные РНК, формируются и выделяются в цитоплазму предшественницы субъедипиц рибосом; » при подготовке клетки к делению ядро удваивает генетическую информацию о белковом синтезе для передачи ее дочерним клеткам. Таким образом, ядру принадлежит главная роль в обеспечении важнейшего жизненного процесса клетки белкового синтеза, хранении и передачи генетического кода этого синтеза последующим поколениям клеток. Различным функцио-нальным состояниям ядра соответствуют особенности его светооптического строе-пия и ультраструктуры. В интерфазном ядре присутствуют: оболочка - кариолемма, хроматин,
Согласно соврёТйёТгатлм" представлениям, в ядре, как структурно-функциональной системе, выделяют следующие субсистемы: ядерная
оболочка, хроматин, ядрышко, ядерный белковый матрикс, пуклеопротеидные комплексы, кариоплазма.
Кариолемма
В световом микроскопе
ядра. Ультраструкт^рный
анализ.
Ядерная_мембрана
щелевидная полость перинуклеарное пространство. Наружная
переходит в г-ЭПС, и обеспечивает присоединениеструктурныхэлементов цитоплазмы. Со стороны гиалоплазмы она окружена сетью виментиновых промежуточных филаментов и имеет на своей поверхности свободные рибосомы, прикрепленные большими субъединицами. Рибосомы наружного листка синтезируют мембранные и секретируемые белки, которые транспортируются в полости канальцев гранулярной эндоплазматической сети. Внутренняя мембрана
Перинукле арное пространство
Схематично прерываемую порами кариолемму можно представить состоящей из нескольких расплющенных мембранных мешков (фрагментов мембранной канальцевой системы клетки), которые при
Ядерная пластинка (ламина)
Ядерные поры
Размеры ядерных пор во всех клетках стандартны (около 9 нм), иначе кариолемма не исполняла бы строго избирательной транспортной функции (смотрите ниже), а численность пор варьирует в зависимости от функционального состояния клетки и ядра. Поровые туннели не Свободны - они заполнены поровыми комплексами. Последние состоят из тух поровых колец - внутреннего и наружного (прерывистых белковых Диафрагм), каждое из которых построено из 8-ми белковых субъединиц. «)т каждой субъединицы радиально к центру поры отходят множественные тонкие фибриллы, свободные центральные концы которых ограничивают просвет поры, диаметр которого постоянен и равен 9 нм. Функциональное значение ядерных пор
Ядерный ^матрикс
Ядерный матрикс не является застыв
шей структурой — он достаточно быстро перестраивается в зависимости от фазы клеточного цикла.
Хромати
В зависимости от степени деспирализации (деконденсации) различают гетерохроматин - остающиеся спирализованными участки хромосом, в| которых в период интерфазы не происходит считывание информации И образование и-РНК, и эухроматин - деспирализованные локусы хромосом, с которых происходит транскрипция. По соотношению содержания эу- и гетерохроматина в ядре можно судить о степени синтетической активности и уровне специализации клетки. Во всем клетках, независимо от уровня их дифференцировки, в период интерфазы существуют постоянно конденсированный (так называемый конститутивный) хроматин, соответствующий центромерными и теломерным участкам хромосом. В интерфазном ядре гетерохроматин
Субмикроскопически хроматин СОСТОИТ ИЗ ДНК и белка, и представляет собой деспирализованные в период пптерфазы хромосомы. У особей! женского пола к категории конститутивного хроматина принадлежат! тельца Барра. Тельце Барра -
Крупная глыбка хромосомы В ядре соматической клетки мужского' организма, ярко светящаяся при окраске флнюрохромами (производными акридинового оранжевого, например, акрихином) представляет собой] конденсированный участок длинного плеча У-хромосомы - мужской половой хроматин.
Хромосомы прикрепляются к внутреннему листку кариолеммы с помощью теломерного, прсцептромерпого, околоядрышкового! хроматина. Конститутивный хроматин
В период митоза хроматин приобретает наивысшую степень конденсации (спирализации) - при этом хромосомы становятся, видимы в световой микроскоп. Роль ДНК в структуре хроматина состоит в кодировании белкового синтеза; значение белковых молекул вспомогательное - с помощью гистоновых белков,
нуклеосомные нити, затем - в хроматиновые фибриллы и далее - в петельные домены. Кариоплазма
|
5)Митоз
В профазе
В метафазе
В анафазе
В телофазе
Митозу предшествует длительная интерфазная подготовка. В интерфазе выделяют ностмиготический (g1) период, синтетический (s период, постсинтетический (g2) период. Фазность митотического цикла генетически детерминирована. В каждой клетке существует внутренняя система контроля жизненного цикла и митоза. При нарушениях прохождения клеткой фаз жизненного цикла она под влиянием собственных факторов регуляции либо шдерживается в одной из фаз цикла, либо элиминируется путем запуска Программы апоптоза. Ключевое значение в прохождении каждой фазы клеточного цикла и подготовки клетки к вступлению в следующую фазу имеет сочетанное инияпие внутриклеточных циклинов и циклин-зависимых киназ Группа циклинов включает Оьциклины , циклины s-фазы циклины М-фазы Соответственно этим формам циклинов в Клетке существуют циклин-зависимые киназы 01, 8 и М фаз цикла. В ходе цикла содержание циклинов существенно меняется, в то время как уровни Цз-К остаются относительно стабильными. Увеличение уровня тех или иных циклинов является сигналом, побуждающим клетку к прохождению очередной фазы цикла. Например,упеличение уровня G1Ц является сигналом для подготовки хромосом к репликаций, а вхождение клетки в 8 фазу стимулируют факторы, приводящие к репликации ДНК и центриолей'. По завершении репликации ДНК уровень указанных циклинов снижается и возрастает уровень митотических циклинов. Митоз Юзникает при активации М-фазу-стимулирующего фактора, который Является комплексом митотических циклинов и циклин-зависимой киназы М-фазы. М-фазу-стимулирующий фактор инициирует сборку митотического веретена, разрушение ядерной оболочки,конденсацию хромосом и вхождение клетки в метафазу митоза. С этого момента активируется другой пептидный комплекс - стимулирующий анафазу, Олагодаря которому сестринские хроматиды начинают расходиться к полюсам клетки, при этом циклины М-фазы разрушаются, и в клетке инициируется синтез 01 циклинов для следующего цикла (но уже дочерних клеток). Одним из наиболее сложных моментов является репликация ДНК. В процессе раскрутки молекулы ДНК и последующего достраивания комплементарных цепей часто возникаютспонтанные разрывы и нарушения структуры ДНК. В этой ситуации в клетке синтезируется белок р53, который воспринимает происходящие нарушения и останавливает клетку при прохождении ею G1 или G2 фаз клеточного цикла. В связи с чрезвычайно важной ролью данного белка его называют хранителем генома и молекулой века. В случае нарушения репликации ДНК р5S инициирует самоуничтожение клетки. Существуют и некоторые другие белки, определяющие повреждения ДНК и прерывающие клеточный цикл и митоз - это так называемыеопухоль-супрессирующие белки.роль клеточного центра
Разделение цитоплазмы (цитотомия)
. В составе веретена деления два основных типа микротрубочек:
. Ядерная ламина поддерживает ядерную мембрану и контактирует с хроматином и ядерными РНК. Важной функцией полипептидов ядерного матрикса является дезинтеграция ядерной оболочки в процессе митоза |
4,12,17)Система связанный с плазмалеммой мембранных органелл
Лизосомы )
Лизосомы открыл в 1955 г. бельгийский учёный, лауреат Нобелевской премии по физиологии и медицине (1974 г.) Де Дюв В лизосомах происходит разрушение комплексов лиганд-рецептор, метаболизм холистерола, а её гидролазы разрушают белки, липиды, углеводы, нуклеиновые кислоты При световой микроскопии
Строение первичных лизосом (ультраструктура).
Внутри лизосом поддерживается стационарное значение рН клетки (постоянный рН = 5), обеспечиваемый АТР-зависимой помпой
Ферменты лизосом:
Формы лизосом (зависят от их функционального состояния): первичные—» вторичные, или фаголизосомы (аутофаголизосомы и гетерофаголизосомы)—*
гидролитического расщепления. Функции:
Аутофагия
Гетероцитоз
Цитоплазматические белки могут разрушаться в лизосомах. Разрушаемые белки имеют специфический участок, узнаваемый шаперонами. {Шапероны
В некоторых дифференцированных клетках лизосомы могут выполнять I специфические функции, образуя дополнительные органеллы. Например: | меланосомы; неспецифическис гранулы лейкоцитов (нейтрофилов, эозинофилов, базофилов и лимфоцитов) и тромбоцитов; ламеллярные тельца клеток ацинуса лёгкого (альнеолоциты И-го типа); тельца Вейбеля-Палладе (в эндотелиальных клетках); гранулы остеокласов и другие. Эндоплазматический ретикулум
ЭПС была открыта американским учёным К.Р. Портером (Кекп К.. РоПег) на электронной микроскопиив 1945 г. в фибробластах. При световой микроскопии
При электронной микроскопии
Функция.
центральная роль в липидном и белковом синтезе - на её мембране синтезируютсявсетрансмембранные белки и липиды для большинства органелл, включая саму ЭПС, комплекс Гольджи, лизосомы,эндосомы, секреторные везикулы и плазматическую мембрану. ЭПС продуцирует большую часть липидов митохондрий. Она участвует в экскреции продуктов из клетки. Вещества синтезируемые в ЭПС предназначены для клеточных компартментов, а не для цитозоля. В зависимости от того, связана ли обращенная к цитозолю поверхность ЭПС с рибосомами, принято выделять: гранулярную и агранулярную виды ЭПС. Гранулярная (шероховатая) ЭПС
ядра (эргастоплазма). Скопления эндоплазматической сети являются принадлежностью секреторные белки. Так, в клетках клеток, активно синтезирующих Гранулярная ЭПС,
Функции:
гормоны) - предназначены для нужд организма; б) синтез белков - ферментов лизосом; в)' синтез белков и белков -ферментов для пластинчатого комплекса Гольджи, где г) синтез белков - ферментов «доработкасобой систему анастомозирующих происходит их дальнейшая цитозоля. Аграиулярная (гладкая)
Представляет мембранных трубочек и мипицисторп. Гладкая -эндоплазматическая сеть возникает и развиваемся за очс1 гранулярной эндоплазматической сети (при освобождении се ОТ рибосом). Деятельность гладкой эндоплазматической сети связана с метаболизмом липидов и некоторых внутриклеточных полисахаридов Гладкая эндоплазматическая сеть участвует в заключительных папах синтеза липидов. Она сильно развита в клетках, секретирующих такие категории липидов, как стероиды, например, в клетках коркового вещества надпочечников, в суетентоцитахсеменников. Тесная топографическая связь гладкой эндоплазматической сети <. отложениями гликогена (запасной внутриклеточный полисахарид л п потных) в гиалоплазме различных клеток (клетки печени, мышечные Юлокна) указывает на её возможное участие в метаболизме углеводов. Ипоперечнополосатыхмышечныхволокнахгладкая эндоплазматическая сеть способна депонировать ионы кальция, необходимые для функции мышечной ткани. Морфология:
Функции:
Промежуточная ЭПС
Пластинчатый
При световой микроскопии визуализируются, используя способ импрегнации солями серебра в виде «запятых» или глыбок (аргентофильные) коричневого или чёрного цвета, различной конфигурации, расположенных возле ядра клетки. Поданнымэлектронно-микроскопическогоисследования, ультраструктура комплекса Гольджи включает три основных компонента: 1. Система плоских цистерн -
10-15 штук, сшитых микротрубочками, 2. Система трубочек. 3. Крупные и мелкие вакуоли
Все три компонента аппарата Гольджи взаимосвязаны и могут возникать друг из друга. В клетках различных органов и тканей компоненты аппарата Гольджи развиты неодинаково. Все три ультраструктурных' компонента хорошо развиты в железистых клетках, в лейкоцитах, в овоцитах и во многих других клетках, вырабатывающих белковые] продукты - полисахариды и липиды. В недифференцированных|
В комплексе Гольджи выделяют: цис компартмент
внутренней поверхности мембран комплекса Гольджи имеются рецепторы, способные специфически соединяться с теми или иными белковыми молекулами (принцип селективной агрегации). Они доставляются сюда ПО канальцам гранулярной ЭПС с помощью транспортных пузырьков. Таким образом, па внутренней поверхности мембран комплекса Гольджи осуществляется адресная сортировка белков. Далее в нём идёт их ДОСборка (модификация). Функции:
низосом, а также в регенерации мембран мембранных органоидов и цитолеммы. При делении клеток часть аппарата Гольджи из материнской клетки передается в дочернюю. Возможность образования аппарата Гольджи заново не доказана. эндосома
Окаймленные пузырьки быстро теряют свою кайму и сливаются с другими пузырьками, образуя более крупные пузырьки - эндосомы . Эндосомы, в свою очередь, сливаются с первичными лизосомами , в результате чего формируются вторичные лизосомы. |
8)Ядрышко
Ядрышко - это хромосомные участки, определяющие синтез рРНК и Образование клеточных рибосом. Субмикроскопически ядрышко
Ядрышковый организатор
Гранулярны^юмгюнент
Фибриллярный компонент
Фибриллярный и гранулярный компоненты способны образовывать нитчатые структуры - нуклеолонемы
Приведенные выше описания дают основу для понимания разнообразия строения ядрышек в клетках с соответствующим уровнем синтеза рРНК. Однако кроме различной степени выраженности гранулярного и фибриллярных компонентов существуют и иные иарианты структурной организации ядрышек. Обычно различают несколько структурных типов ядрышек: ретикулярный (нуклеолонемный), компактный,
сегрегированный.
Остаточное ядрышко
Остаточные ядрышки характерны для клеток полностью потерявших способность к синтезу рРНК (нормобласты, дифференцированные энтероциты, клетки шиповатого слоя кожного эпителия и другие). Они настолько малы и так окружены конденсированным хроматином, что с трудом обнаруживаются в световом микроскопе. В ряде случаев они' могут снова активироваться и переходить в компактную или ретикулярную форму. Сегрегированные__ядрышки
Функция ядрышек
РибосоМы
немембранного принципа строения, входящая в состав метаболической системы клетки. При световой микроскопии не визуализируются, но о его активности - ^ят по базофилии цитоплазмы (за счёт биосинтеза белка). Состоят из малой (зЫе А) и большой (§1с1е В) субъединиц, обе субъединицы «сшиты» ионами магния. Рибосомы содержат рибосомальную РНК, связанную с молекулами белков. Диаметр рибосом около 20 Нм. Выделяют: свободные (полисомы) и несвободные рибосомы. Биосинтез белка
Схема синтеза рибосом 1 -синтез мРНК рибосомных белков РНК полимеразой II; 2 - экспорт мРНК из ядра; 3 - узнавание мРНК рибосомой и 4 - синтез рибосомных белков; 5 - синтез предшественника рРНК (45 S — предшественник) РНК полимеразой I; 6 - синтез 5 S рРНК РНК полимеразой III; 7 - сборка большой рибонуклеопротеидной частицы, включающей 45 S-пред-шественник, импортированные из цитоплазмы рибосомные белки, а также специальные ядрышковые белки и РНК, принимающие участиевсозревании рибосомных субчастиц; 8 -присоединение5 SрРНК, нарезание предшественника и отделение малой рибосомной субчастицы; 9 большой созревание субчастицы, высвобождениеядрышковых белков и РНК; 10 - выход рибосомных субчастиц из ядра; 11 - вовлечение их в трансляцию. |
7)Органеллы специального назначения (специализированные
Реснички
Проксимальная часть реснички (базальное тело) погружена в
Аксонема в своем составе имеет в отличие от базального тельца или центриоли 9 дублетов микротрубочек с динеиновыми «ручками», образующих стенку цилиндра аксонемы. Кроме периферических дублетов микротрубочек, в центре аксонемы располагается пара центральных микротрубочек. В целом систему микротрубочек реснички описывают как (9 х 2) + 2 в отличие от (9x3) + и системы центриолей и базальных телец. Базальное тельце и аксонема Структурно связаны друг с другом и составляют единое целое: две мпкротрубочки триплетов базального тельца являются микротрубочками нублетов аксонемы. Свободные клетки, имеющие реснички и жгутики, обладают способностью двигаться, а неподвижные клетки движением ресничек могут перемещать жидкость и частицы. Траектория движения ресничек очень разнообразна. В различных клетках это движение может быть маятникообразным, крючкообразным,воронкообразным или ■однообразным. Основной белок ресничек - тубулин
Функция -
Локализация:
Жгутик.
Микроворсинки
Включения клетки.
-
При световой микроскопии определяются лишь при использовании методов цито- или гистохимии. Исключения составляют - пигментные и желточные включения. Классификация включений по химизму:
Углеводные включения.
Монослоеммолекулферментов(гликогенсинтетазаи I чикогенфосфорилаза), которые катализируют его синтез, расщепление. Iранулы гликогена могут быть: а) одиночными
Углеводные «ключения
Липидные включения.
жира. Мелкие капли (большинство клеток) - специализированы для
Слизистые включения
Белковые включения
•Более подробно о слизистых и белковых включениях будет рассказано ниже в разделе «Железистый эпителий». Пигментные включения
Эндогенные пигментные включения
Некоторые эндогенные пигментные включения (меланин, липофусцин) имеют собственную мембранную оболочку, поэтому визуализируются как гранулы определённого цвета. Меланин
субстанция мозга, клетки мозгового вещества надпочечников и другие)! Это гидрофобный гетерогенный высокомолекулярный полимещ дигидроксииндола - производное тирозина. Пигмент синтезируется 1 специальных гранулах - меланосомах. Липофусцин -
Экзогенные пигментные включения
Секреторные включения
Экскреторные включения
|
6)Хромати
В зависимости от степени деспирализации (деконденсации) различают гетерохроматин - остающиеся спирализованными участки хромосом, в| которых в период интерфазы не происходит считывание информации И образование и-РНК, и эухроматин - деспирализованные локусы хромосом, с которых происходит транскрипция. По соотношению содержания эу- и гетерохроматина в ядре можно судить о степени синтетической активности и уровне специализации клетки. Во всем клетках, независимо от уровня их дифференцировки, в период интерфазы существуют постоянно конденсированный (так называемый конститутивный) хроматин, соответствующий центромерными и теломерным участкам хромосом. В интерфазном ядре гетерохроматин
Субмикроскопически хроматин СОСТОИТ ИЗ ДНК и белка, и представляет собой деспирализованные в период пптерфазы хромосомы. У особей! женского пола к категории конститутивного хроматина принадлежат! тельца Барра. Тельце Барра -
Крупная глыбка хромосомы В ядре соматической клетки мужского' организма, ярко светящаяся при окраске флнюрохромами (производными акридинового оранжевого, например, акрихином) представляет собой] конденсированный участок длинного плеча У-хромосомы - мужской половой хроматин.
Хромосомы прикрепляются к внутреннему листку кариолеммы с помощью теломерного, прсцептромерпого, околоядрышкового! хроматина. Конститутивный хроматин
В период митоза хроматин приобретает наивысшую степень конденсации (спирализации) - при этом хромосомы становятся, видимы в световой микроскоп. Роль ДНК в структуре хроматина состоит в кодировании белкового синтеза; значение белковых молекул вспомогательное - с помощью гистоновых белков,
нуклеосомные нити, затем - в хроматиновые фибриллы и далее - в петельные домены. Роль ядерной оболочки в организации хроматина
|
9)Цитоскелет (,
Большой вклад по изучению цитоскелета внёс, начиная с 1950 года вдающийся отечественный морфолог Николай Кольцов. Этот органощ .1 является при помощи метода иммунофлюресценции Значение.
Цитоскелет - сложная система неразветвлённых белковых нитей, которая не является стационарной. Расположена в цитозоле, постоянно перестраивается, то есть является мобильной системой клетки. К структурным элементам цитоскелета относят:
• Микрофиламенты )
Сборка микрофиламентов происходит при гидролизе АТФ и при определённой внутриклеточной концентрации ионов кальция. Сборка идёт по типу полимеризации и начинается с отрицательного конца глобул. Последние молекулы с положительного конца всегда остаются, так как всегда связаны либо с белками - интегринами плазмалеммы, либо с мембранными компонентами (органеллами), либо друг с другом. В стабильном состоянии микрофиламенты поддерживаются с помощью обслуживающих их белков: 1. тропомиозин - образует временные, легко диссоциирующие соединения; 2. фасцин;3. фимбрин. Основными функциями микрофиламентов являются:
1. обеспечивают субплазмолеммальный актиновый кортекс (придаёт жёсткость плазмалеммы, поддержание формы клетки); 2. участвуют в процессе разделения цитозоля на биохимические отсеки, где проходят комплексы биохимических реакций; 3. участвуют в процессе клеточного деления на этапе цитотомии; 4. обеспечивают функционирование микроворсинок и стереоцилий; 5. участвуют в образовании некоторых межклеточных контактов. Морфологические аспекты этих функции.
актиновый кортекс сохраняется, образуя связи с интегральными белками плазмалеммы. В месте инвагинации (при эндо- и экзоцитозе) происходят локальные разрушения актинового кортскса под влиянием цитозольного белка - гельзолин. Второй аспект связан с образованием акгинового пояска. • Микротрубочки .
Функции:
1. обеспечивают внутриклеточный транспорт; 2. участвуют в компартментализации цитоплазмы совместно с микрофиламентами (перемещение органоидов внутри клетки); 3. образуют реснички и жгутики; 4. участвуют в формировании митотического аппарата делящейся клетки (веретена деления клетки). Сборка осуществляется за счёт ГТФ. Повышенная концентрация Са в клетке способствует разборке микротрубочек. Стабилизируют БАМ-белки. Действие лекарственных препаратов (группа «Цитостатики») является губительным для микротрубочек. В осуществление транспорта микротрубочкам помогают два белка - кинезин
Микротрубочки интерфазных клеток
Практически во всех эукариотических клетках в гиалоплазме можно видеть длинные неветвящиеся микротрубочки. В больших количествах они обнаруживаются в цитоплазматических отростках нервных клеток, фибробластов и других изменяющих свою форму клеток. Они могут быть выделены сами или можно выделить образующие их белки: это те же тубулины со всеми их свойствами. Главное функциональное значение таких микротрубочек заключается в создании эластичного, но одновременно устойчивого внутриклеточного каркаса (цитоскелета), необходимого для поддержания формы клетки. Действие яда колхицина, вызывающего деполимеризацию тубулинов, сильно меняет форму клеток. Так, если отростчатую и плоскую клетку в культуре фибробластов обработать колхицином, то она теряет полярность и сжимается. Точно так же ведут себя другие клетки: колхицин прекращает рост клеток хрусталика, отростков нервных клеток, образование мышечных трубок и др. Так как при этом не исчезают элементарные формы движения, присущего клеткам, в частности пиноцитоз, ундулирующие движении мембран, образование мелких псевдоподий, вероятнее всего, роль микротрубочек заключается в образовании каркаса для поддержания формы клеточного тела, для стабилизации и укрепления клеточных выростов. Создавая внутриклеточный скелет, микротрубочки могут быть факторами ориентированного движения клетки в целом и ее внутриклеточных компонентов, задавать своим расположением векторы для направленных потоков разных веществ и для перемещения крупных структур. Разрушение микротрубочек например колхицином, нарушает транспорт веществ в аксонах нервных клеток, приводит к блокаде секреции и другим нарушениям транспорта веществ. Са цитоплазматическими микротрубочками связаны специальные белки, участвующие в механическом переноос отдельных внутриклеточных компонентов: микровакуолей, рибосом, митохондрий, другихорганелл. В неделящейся (иптерфазпой) клетке система микротрубочек развивается в связи с особой клеточной органеллой — центриолью, которая является местом, где ПРОИСХОДИТ начальная полимеризация тубулинов и рост микротрубочек ЦИТОСКСЛСТа • Промежуточные филамешпм
Они представляют собой тонкую нить, диаметром до 10] 11м, ВХОДЯТ в состав межклеточных контактов и являются стабильными единственными •неразбира ющимиея элементами опорно-двигательной системы клетки. В разных клетках они состоят из РОЗНЫХ белков, но по строению МОЛекуЛ все это фибриллярные белки Чаще промежуточные филаменты построены из белка вимеитипа (клетки соединительной ткани) и актиноподобных белков (кератина в эпителиальной ткани, десмина - в мышечных тканях и других) Иммуноморфологическими методами можно определить белковый состав промежуточных филаментов и, тем самым, установить тканевое происхождение тех или иных опухолей и правильно подобрать химиотерапевтические препараты для лечения. Они обеспечивают опорную функцию и амебовидное движение клеток. Хорошо выражены в мезенхимных клетках, фибробластах, макрофагов и других. Клеточный центр
органелла общеклеточного значения, немсмбраппого принципа строения. Он входит в состав опорно-сократителыюго аппарата клетки. Представляет собой две центриоли (материнекая и дочерняя), которые расположены перпендикулярно друг другу и связанные с ними микротрубочками - центросфера.
Совокупность центриолей и центросферы называют клеточным центром
Кроме микротрубочек в состав центриоли входят дополнительные структуры - «ручки», соединяющие триплеты. Соединительные «ручки» построены из белка динеина, обладающею ЛТФ-азиой активностью и обеспечивающего движение микротрубочек друг относительно друга. Системы микротрубочек центриоли можно описать формулой: (9x3) + 0, подчеркивая отсутствие микротрубочек в вС центральной части. Вокруг каждой центриоли расположен бесструктурный, или тонковолокнистый, матрикс. Часто можно обнаружить несколько дополнительных структур, связанных С центриолями: спутники (сателлиты), фокусы схождения мпкротрубочек, дополнительные микротрубочки, образующие особую ЗОНУ, центросферу вокруг центриоли. При подготовке клеток к ми готическому делению происходит удвоение центриолей. Этот процесс у различных объектов происходит в разное время — в течение синтеза ядерной ДНК или после него. Он заключается в том, что две центриоли в дпилосомс расходятся и около каждой из них возникает заново по одной повой дочерней, так что в клетке перед делением обнаруживаются две диплосомы, т.е. четыре попарно связанные центриоли. Этот способ увеличения числа центриолей был назван дупликацией. Важно ОТМСТИТЬ, что увеличение числа центриолей не связано с их делением, почкованием или фрагментацией, а происходит путем образования зачатка, процептриоли, вблизи и перпендикулярно к исходной центриоли. Функция -
однуполнуюмикротрубочку и 2 примыкающиекн*й неполныемикрогруби С), Особыебелкиобраз поперечныесшивкиподдерживающиецилиндрическую структуру
|
Клеточная теория
В 1665 году с помощью увеличительных линз в срезе пробки англичанин Роберт Гук обнаружил «ячейки» («камеры», «клетки»). С этого года проводились систематические исследования строения растений и животных (1671 г. - М. Мальпиги, Н. Грю, Ф. Фонтана; I половина ХК века - Я. Пуркинье, Р. Броун). Впервые эти исследования обобщили и оценили значение клетки как основного структурного компонента организма в 1838 году немецкие ученые Теодор Шванн и Матиас Якоб Шлейден Они, обобщив имеющиеся знания о клетке, доказали, что клетка является основной единицей любого организма. Клетки животных, растений и бактерий имеют схожее строение. Позднее эти заключения стали основой для доказательства единства организмов. Т. Шванн и М. Шлейден ввели в науку основополагающее представление о клетке: вне клеток нет жизни.
Основные положения клеточной теории:
1. Клетка
Клетка - структурно-функциональная единица живой материи, которая состоит из ядра (обеспечивающего сохранность и передачу генетического материала) и цитоплазмы, отграниченная клеточной оболочкой (цитолеммой) и обладающая всеми свойствами живого.
Живые организмы представляют собой системы, которые - открытые (то есть находятся в постоянном обмене с окружающей средой веществами и энергией), самостоятельно регулируются и воспроизводятся, и осуществляют свои функции благодаря белкам и нуклеиновым кислотам, носителям генетической информации. Именно клетка как таковая является наименьшей единицей, обладающей всеми свойствами, отвечающими определению «живое» {способность к воспроизведению, использование и трансформация энергии, метаболизм, движение, раздражительность (таксисы), чувствительность, адаптация, изменчивость и другие).
2. Клетки сходны по общему плачу строения
Все клетки гомологичные (схожие) по основным признакам и различаются по признакам специальным и второстепенным, что обеспечивается их специфическими функциями и закрепляется определённым строением.
Клетки могут иметь самую разнообразную внешнюю форму полиморфизм
звёздчатую и (нервные и многогранную (клетки железистого эпителия), рпчнотпленно-отростчатую костные клетки), веретспоиидную (гладкие мышечные клетки, фиброциты), призматическую (клетки эпителия кишечника и другие. уплощенную (мезотелий и эндотелий) Однако, практически все клетки имеют общий план их организации (три основных компонента), что указывает на общность происхождения всех эукариотических (, з. ядроеодержащих организмов): клеточная оболочка (цитолемма) - отделяет содержимое клетки от внеклеточной среды, ядро - содержит наследственный материал (ДНК), связанный с ядерными белками, 41 цитоплазма - это внеядерпая часть клетки, включающая гомогенную гиалоплазму
исключениесоставляют эритроциты
чешуйки
лишены ядра. Отношение между цитоплазмой и матриксом ядра в разных клетках различно и может варьировать. В связи с этим возникает понятие ядерно-цшпоплизматическое
3. Клетки размножаются только путём деления
4. В организме клетки функционируют не изолированно, а в тесной связи друг с другом, образуя единое целое
Клетки не существуют в составе органа независимо, а они объединяются в сложные биологические ансамбли - ткани, в которых взаимодействуют друг с другом, влияют друг на друга и каждая выполняет свой набор функций.
Многоклеточные организмы представляют собой сложные ансамбли специализированных клеток, объединённых в целостные, интегрированные системы тканей и органов, подчинённые и связанные межклеточными, гуморальными и нервными формами регуляции. Вот почему мы говорим об организме как о целом, а о клетках - как об Элементарных единицах его, специализированных на выполнении строго определённых функций, осуществляющих их в комплексе со всеми Элементами, входящими в состав сложно организованной живой системы многоклеточного единого организма. Поэтому клетки различны: одни Настроены на выполнение одного круга функций, другие - другого. ()тсюда - различия структуры клеток и образуемого ими межклеточного вещества. У"Го есть, имея общий план строения (плазматическая мембрана, ядро, цитоплазма), клетки разных видов в большей или меньшей степени отличаются друг от друга. ^Особое значение и колоссальная роль принадлежит не только самим клеткам, но и их производным: межклеточное вещество
|