РефератыБиология и химияМоМоделирование состава жидких фармформ на основе азотсодержащих органических трииодидов

Моделирование состава жидких фармформ на основе азотсодержащих органических трииодидов

с учетом влияния иодкоординирующего растворителя


Е.Б. Подгорная, М.С. Черновьянц, А.И. Пыщев, Ростовский государственный университет


Известно, что иодсодержащие соединения обладают высокой антимикробной и антивирусной активностью [1]. Синтезированы новые биологически активные соединения - трииодиды азотсодержащих органических катионов: 1,3-диметилбензимидазолия (I), 1,3-диэтилбензимидазолия (II), N-децилпиридиния (III), N-цетилпиридиния (IV), N-метилуротропиния (V), тетраэтиламмония (VI). Сочетание биологической активности иодсодержащих соединений и токсичности свободного иода делает необходимым точное установление формы существования иода в составе органических азотсодержащих соединений. Подбор оптимальных условий синтеза с учетом влияния иодкоординирующего растворителя позволит прогнозировать образование биологически активных форм с заданной способностью освобождать молекулярный иод.


На основании спектрофотометрического исследования равновесия KtI+nI2 = KtI2n+1 в хлороформных растворах сделана оценка предельного количества молекул иода, координируемых иодидами азотсодержащих органических катионов: одна - для иодидов производных бензимидазолия и тетраэтиламмония с образованием структуры KtI3 и две - для иодидов трех остальных катионов с образованием структуры KtI5. Впервые для расчета констант устойчивости полииодиодидов предложена функция nI2 - среднеиодное число [2]. Найденные значения констант устойчивости органических трииодидов (1) и пентаиодидов (2) позволяют рассчитать мольные доли продуктов взаимодействия иода с иодидами I-VI от концентрации свободного иода в хлороформной среде по уравнению:


ф = А / (1 + 1 [I2] + 2 [I2]2),


где А = 1 для KtI; A = 1 [I2] для трииодидов; A = 2 [I2] для пентаиодидов.


Концентрация свободного иода определялась спектрофотометрически для каждого значения аналитической концентрации иода (СI2) по индивидуальной полосе поглощения иода, выделенной из суммарной спектральной кривой методом традиционного нелинейного регрессионного анализа [3]. Кривые распределения для систем II - I (а) и III - I (б) представлены на рис. 1.


Зависимости мольных долей образующихся органических трииодидов и пентаиодидов в хлороформной среде от концентрации иода предоставляют возможность подобрать оптимальные условия синтеза трииодидов I-VI при минимальной примеси иодида и пентаиодида.



Рис.1. Кривые распределения продуктов взаимодействия иода с органическими азотсодержащими иодидами в хлороформной среде CKtI = 5 ·10-5 моль/л.










CII, моль/л ФII в ДМСО ФII в этаноле

3,6.10-1


1,0.10-2


1,0.10-3


1,0.10-4


0,96


0,80


0,50


0,15


0,99


0,92


0,76


0,43



Мольные доли субстанции II в растворе для различных растворяемых концентраций.


Для приготовления жидких фармформ обычно используют малотоксичные кислородсодержащие органические растворители, такие как этанол или диметилсульфоксид (ДМСО). Однако иод (свободный или в составе комплексного аниона) активно взаимодействует с этими растворителями (S), образуя молекулярные комплексы:


I2 + S = SI2 или KtIn + S = KtIn-2 + SI2,


что влияет на устойчивость фармсубстанции в используемом растворителе.


Спектрофотометрическим методом исследовано взаимодействие иода с кислородсодержащими органическими растворителями и определены константы устойчивости и оптические характеристики их молекулярных комплексов. Результаты сопоставлены с неэмпирическими расчетами в базисе 3-21G(d,p) теплот образования молекулярных комплексов [3]. С учетом полученных величин - констант устойчивости молекулярных комплексов иода с этанолом (Кмк = 0,37) и ДМСО (Кмк = 3,38), количественно оценена реальная устойчивость лекарственных субстанций I-VI различных концентраций в иодкоординирующих растворителях:


b = 1 / (1 + Kмк[S]).


На основании этого рассчитаны мольные доли для различных концентраций лекарственной субстанции II в этаноле и ДМСО (двух наиболее часто применяемых для приготовления жидких фармформ растворителей) по уравнению


Ф = [II]/CII = b[I2]/(1 + b[I2]).


Результаты представлены в таблице.


Очевидно, для того, чтобы содержание биологически активной формы KtI3 в жидкой матрице было максимальным, необходимо использовать концентрации не ниже 0,01 моль/л.


Список
литературы


Stang P.J., Zhdankin V.V. Organic polyvalent iodine compounds // Chem. Rew. 1996. Vol.96. N 3-5. P.1123-1178.


Черновьянц М.С., Подгорная Е.Б., Пыщев А.И., Щербаков И.Н. Исследование влияния природы органического азотсодержащего катиона на возможность образования и устойчивость полииодиодидных соединений // Журнал общей химии. 1998. Т.68 (130). N 5. С.822-825.


Джонсон К. Численные методы в химии. М.: Мир, 1983. 285с.


Подгорная Е.Б., Черновьянц М.С., Щербаков И.Н., Пыщев А.И. Исследование комплексообразования иода с кислородсодержащими органическими растворителями // Журнал общей химии. 1999. Т.69 (В печати).

Сохранить в соц. сетях:
Обсуждение:
comments powered by Disqus

Название реферата: Моделирование состава жидких фармформ на основе азотсодержащих органических трииодидов

Слов:633
Символов:5681
Размер:11.10 Кб.