ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
Московский Государственный Текстильный Университет
имени А. Н. Косыгина
кафедра экономики
ИНДИВИДУАЛЬНОЕ ЗАДАНИЕ (вариант №23, 1 и 2 часть)
По курсу:
«Прогнозирование емкости и коньюктуры рынка».
Выполнил: студент группы 47-03
Котляр Владимир
Проверил:
Станкевич А.В.
Москва – 2007
Задание № 1
Период | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Уровень ряда | 16,7 | 17,2 | 17,5 | 19,4 | 16,8 | 19,3 | 16,5 | 19,4 | 18,1 | 16,1 |
На основании данных о еженедельном спросе на текстильную продукцию:
1. построить график (рис. 1) и визуально оценить наличие в нем тенденции;
2. проверить наличие или отсутствие в исходном временном ряде тенденции с помощью коэффициента Кендэла;
3. если исходный ряд является стационарным, то рассчитать точечный и интервальный прогноз с периодом упреждения прогноза, равным 1.
Рис. 1. Еженедельный спрос на текстильную продукцию
При визуальной оценке наличия в графике тенденции можно отметить сильную его приближенность к полиному высокого порядка (шестой степени), использование которого нецелесообразно, поскольку полученные таким образом аппроксимирующие функции будут отражать случайные отклонения, что противоречит смыслу тенденции.
Таким образом, в результате визуальной оценки можно сделать вывод об отсутствии в графике тенденции.
2).
t | Yt | Pt |
1 | 16,7 | - |
2 | 17,2 | 1 |
3 | 17,5 | 2 |
4 | 19,4 | 3 |
5 | 16,8 | 1 |
6 | 19,3 | 4 |
7 | 16,5 | 0 |
8 | 19,4 | 6 |
9 | 18,1 | 5 |
10 | 16,1 | 0 |
итого | 177 | 22 |
Определим расчетное значение коэффициента Кендэла (tр
):
tр
= |
4 × р | – 1, |
n× (n – 1) |
где n – количество уровней во временном ряде.
tр
= |
4 × 22 | – 1 = -0,0222 |
10 × (10 – 1) |
Коэффициент Кендэла является случайной величиной, соответствует нормальному распределению и изменяется от -1 до +1. Теоретическими характеристиками коэффициента Кендэла являются математическое ожидание, которое равно нулю (Мt
= 0) и дисперсия, рассчитываемая по формуле:
st
2 = |
2 × (2 × n + 5) | . |
9 × n ×(n – 1) |
st
2 = |
2 × (2 ×10 + 5) | = | 50 | = 0,062 |
9 ×10×(10 – 1) | 810 |
Если сопоставить расчетное и теоретическое значение коэффициента Кендэла, то может возникнуть три ситуации.
1) (0 – td
×) < tр
< (0 + td
×),
где td
– коэффициент доверия.
Данный вариант означает, что с вероятностью td
во временном ряде нет тренда.
2) tр
< (0 – td
×)
Данный вариант означает, что с выбранной вероятностью в ряде имеет место убывающая тенденция.
3) tр
> (0 + td
×)
Данный вариант означает, что с выбранной вероятностью в ряде имеет место возрастающая тенденция.
При выбранной вероятности 0,95 (95%) коэффициент доверия td
= 1,96.
(0 – 1,96 ×) < tр
< (0 + 1,96 ×)
- 0,488 < - 0,0222 < + 0,488
Таким образом, с вероятностью 95% можно говорить об отсутствии тенденции среднего уровня (тренда) во временном ряде.
3)
t | Yt | Yt-Yсреднее | (Yt-Yсреднее)^2 |
1 | 16,7 | -1 | 1 |
2 | 17,2 | -0,5 | 0,25 |
3 | 17,5 | -0,2 | 0,04 |
4 | 19,4 | 1,7 | 2,89 |
5 | 16,8 | -0,9 | 0,81 |
6 | 19,3 | 1,6 | 2,56 |
7 | 16,5 | -1,2 | 1,44 |
8 | 19,4 | 1,7 | 2,89 |
9 | 18,1 | 0,4 | 0,16 |
10 | 16,1 | -1,6 | 2,56 |
177 | 14,6 |
Так как во временном ряде нет тенденции, то данный временной ряд является стационарным процессом.
Поскольку в ряде отсутствует тенденция, то точечный прогноз определяется как средняя арифметическая простая:
== | Syt
|
, |
n |
где n – количество уровней ряда.
== | 177 | = 17,7 |
10 |
Интервальный прогноз:
=+ tg
×,
где tg
– табличное значение по распределению Стьюдента с числом степеней свободы
К = n – 1 и уровнем значимости а; – дисперсия временного ряда.
= | S(yt
–)2 |
= | 14,6 | = 1,46 |
n | 10 |
При заданном уровне значимости a = 0,05 (g = 1 – а = 1 – 0,05 = 0,95) и числе степеней свободы К = 10 – 1 = 9, определим табличное значение t-критерия Стьюдента (см. Приложение 1). Табличное значение критерия Стьюдента tg
= 2,262.
Определим интервальный прогноз.
=17,7 – 2,262 ×= + 14,8
=24,16 + 2,262 ×= + 20,6
Таким образом, с вероятностью 0,95 (95%) можно говорить о том, что на 11-ю неделю уровень ряда будет находиться в промежутке между 14,8 и 20,6.
Задание № 2
Период | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
Уровень ряда | 11,0 | 10,8 | 10,7 | 10,5 | 11,7 | 12,2 | 12,5 | 12,1 | 13,0 | 13,7 | 13,0 | 14,0 |
По данным о ежедневном обороте магазина «Ткани для дома»:
1. построить график исходного временного ряда и визуально оценить наличие в нем тенденции и возможный ее тип. Сгладить исходный временной ряд с помощью скользящей средней (шаг сглаживания равен 3). Построить график сглаженного ряда и визуально оценить возможный в нем тип тенденции. Оба графика построить на одном чертеже (рис. 2). Результаты обеих визуальных оценок отметить в отчете;
2. оценить с помощью метода Фостера – Стюарта и коэффициента Кендела наличие тенденции (в среднем и дисперсии) в исходном временном ряде. Сравнить полученные оценки с оценками, полученными при выполнении пункта 1, и сделать окончательный свой вывод. Результаты вывода отметить в отчете;
3. по исходным данным методом усреднения по левой и правой половине определить параметры линейного тренда = а0
+ а1
t. Построить график исходного временного ряда и полученного линейного тренда на одном чертеже (рис. 3). Оценить визуально, отражает ли линейный тренд тенденцию временного ряда? Свой вывод отразить в отчете;
4. по исходным данным методом МНК рассчитать параметры линейного тренда = а0
+ а1
t. Кроме того, выбрать нелинейную модель, которая, по вашему мнению, может хорошо описать тенденцию исходного временного ряда. Рассчитать параметры выбранной вами нелинейной трендовой модели. Построить три графика (исходный временной ряд, линейная и выбранная вами нелинейная трендовая модели) на одном чертеже (рис. 4). Определить аналитическим способом, какая из двух трендовых моделей (линейная и нелинейная) наилучшим образом аппроксимирует исходный временной ряд;
5. построить график ряда отклонений еt
(рис. 5) и визуально оценить отсутствие в нем тенденции. Оценить адекватность выбранной модели тренда исходному ряду на основе анализа данных ряда отклонений;
6. рассчитать точечную и интервальную прогнозную оценку с периодом упреждения, равным t = 1.
1)
t | yt
|
Скользящая сумма 3 уровней | Скользящая средняя из 3 уровней |
1 | 11,9 | - | |
2 | 12,6 | 36,7 | 18,35 |
3 | 12,2 | 38,7 | 19,35 |
4 | 13,9 | 40,4 | 20,2 |
5 | 14,3 | 42,8 | 21,4 |
6 | 14,6 | 44,2 | 22,1 |
7 | 15,3 | 44,3 | 22,15 |
8 | 14,4 | 45,5 | 22,75 |
9 | 15,8 | 46,9 | 23,45 |
10 | 16,7 | 49,9 | 24,95 |
11 | 17,4 | 50,2 | 25,1 |
12 | 16,1 | - | - |
Рис. 2. Еженедельный оборот магазина «Ткани для дома» (исходный и сглаженный ряд)
После построения графика (рис. 2) можно сделать вывод о наличии возрастающей тенденции. После построения сглаженного ряда стало более наглядно видно наличие возрастающей тенденции.
2). а) Метод Фостера – Стюарта
t | Yt | Ut | lt | S | D | Pt |
1 | 11,9 | - | - | - | - | - |
2 | 12,6 | 1 | 0 | 1 | 1 | 1 |
3 | 12,2 | 0 | 0 | 0 | 0 | 1 |
4 | 13,9 | 1 | 0 | 1 | 1 | 3 |
5 | 14,3 | 1 | 0 | 1 | 1 | 4 |
6 | 14,6 | 1 | 0 | 1 | 1 | 5 |
7 | 15,3 | 1 | 0 | 1 | 1 | 6 |
8 | 14,4 | 0 | 0 | 0 | 0 | 5 |
9 | 15,8 | 1 | 0 | 1 | 1 | 8 |
10 | 16,7 | 1 | 0 | 1 | 1 | 9 |
11 | 17,4 | 1 | 0 | 1 | 1 | 10 |
12 | 16,1 | 0 | 0 | 0 | 0 | 9 |
175,2 | 8 | 8 | 61 |
Выдвинем нулевую гипотезу: во временном ряде (данные графы 2) нет тенденции среднего уровня и нет тенденции дисперсии. Для проверки выдвинутой нулевой гипотезы необходимо рассчитать по формулам и значения t1
и t2
. Но для этого надо знать значения μ, σ1
,σ2
. В приложении 1 приведены данные для n=10 и для n=15, а нам надо найти данные для n=12.
Для нахождения данных при n=12 используем принцип интерполяции, предположив, что эти данные в интервале от n=10 до n=15 изменяются линейно, т.е. равномерно. Поэтому нам нужно к значениям данных при n=10 прибавить их изменения за два (2=12–10) шага и получить искомые данных.
Найдем μ для n=12 следующим образом. Значение μ для n=10, согласно приложению 1, равно 3,858. Увеличение μ при изменении n на 2 шага найдем следующим образом
.
Отсюда μ(12)=μ(10)+Δμ=3,858+0,311=4,169. Аналогичным образом найдем значения для σ1
(12)=1,381 и для σ2
(12)=2,040. По формулам (2.7) найдем значения t1
и t2
= (8 – 4,169)/1,381 = 3,326; = (8-0)/2,040 = 3,92
Случайные величины t1
и t2
имеют распределение Стьюдента с числом степеней свободы К = n – 1 = 12 – 1 = 11 и уровнем значимости a, который может принимать значения 0,01; 0,05 и т.д. Примем уровень значимости (вероятность, с которой исследователь может ошибиться), равный 0,05 (5%). На основе выбранного уровня значимости а = 0,05 рассчитаем доверительную вероятность: g = 1 – а = 1 – 0,05 = 0,95.
По числу степеней свободы К = 11 и величине доверительной вероятности g = 0,95 по таблице «Значение t-критерия Стьюдента» (Приложение 1)определим табличное значение случайной величины (tg
): tg
= 2,201.
Расчетные значения t1
и t2
сопоставим с табличным tg
.
Если сопоставить расчетные значения t1
и t2
с табличным tg
, то может возникнуть четыре ситуации.
1) |t1
| > |tg
|.
Данный вариант означает, что нулевая гипотеза об отсутствии в ряде тенденции отвергается и с вероятностью g во временном ряде имеет место тенденция дисперсии.
2) |t1
| < |tg
|.
Данный вариант означает, что нулевая гипотеза об отсутствии в ряде тенденции принимается и с вероятностью g во временном ряде нет тенденции дисперсии.
3) |t2
| > |tg
|.
Данный вариант означает, что нулевая гипотеза об отсутствии в ряде тенденции отвергается и с вероятностью g во временном ряде имеет место тенденция в среднем.
4) |t2
| < |tg
|.
Данный вариант означает, что нулевая гипотеза об отсутствии в ряде тенденции принимается и с вероятностью g во временном ряде нет тенденции в среднем.
1) 3,326 > 2,201; 3,92 > 2,201Þ нулевая гипотеза об отсутствии в ряде тенденции отвергается и с вероятностью g = 0,95 можно говорить, что во временном ряде имеет место тенденция дисперсии
б) Метод коэффициента Кенделла
Определим расчетное значение коэффициента Кендэла (tр
):
tр
= |
4 × р | – 1, |
n× (n – 1) |
где n – количество уровней во временном ряде.
tр
= |
4 × 61 | – 1 = 0,85 |
12 × (12 – 1) |
Коэффициент Кендэла является случайной величиной, соответствует нормальному распределению и изменяется от -1 до +1. Теоретическими характеристиками коэффициента Кендэла являются математическое ожидание, которое равно нулю (Мt
= 0) и дисперсия, рассчитываемая по формуле:
st
2 = |
2 × (2 × n + 5) | . |
9 × n ×(n – 1) |
st
2 = |
2 × (2 × 12 + 5) | = | 58 | = 0,049 |
9 × 12 × (12 – 1) | 1188 |
Если сопоставить расчетное и теоретическое значение коэффициента Кендэла, то может возникнуть три ситуации.
1) (0 – td
×) < tр
< (0 + td
×),
где td
– коэффициент доверия.
Данный вариант означает, что с вероятностью td
во временном ряде нет тренда.
2) tр
< (0 – td
×)
Данный вариант означает, что с выбранной вероятностью в ряде имеет место убывающая тенденция.
3) tр
> (0 + td
×)
Данный вариант означает, что с выбранной вероятностью в ряде имеет место возрастающая тенденция.
При выбранной вероятности 0,95 (95%) коэффициент доверия td
= 1,96.
tр
> (0 + 1,96 ×)
0,85 > + 0,434
Таким образом, с вероятностью 0,95 (95%) можно говорить о наличии в ряде возрастающей тенденции в среднем (тренда).
В ходе анализа временного ряда на наличие в нем тенденции среднего уровня (тренда) по методу Фостера – Стюарта и методу коэффициента Кенделла получены аналогичные результаты. Следовательно, в ряде отмечается возрастающая тенденция в среднем.
Таким образом, визуальная оценка нашла свое подтверждение в ходе аналитических расчетов с использованием соответствующих методов оценки временного ряда на наличие в нем тенденции.
3). Метод усреднения по левой и правой половине
Метод усреднения по левой и правой половине - графический метод, используется для нахождения параметров линейного тренда.
Для нахождения параметров а0
и а1
разделим исходные данные пополам и по каждой половине рассчитаем средние значения фактора и уровня ряда.
1
= |
1 + 2 + 3 + 4 + 5 + 6 | = 3,5 |
6 |
1
= |
11,9 + 12,6 + 12,2 + 13,9 + 14,3 + 14,6 | = 13,25 |
6 |
2
= |
7 + 8 + 9 + 10 + 11 + 12 | = 9,5 |
6 |
2
= |
15,3 + 14,4 + 15,8 + 16,7 + 17,4 + 16,1 | = 15,95 |
6 |
В результате расчетов получили две точки: А (3,5; 13,25), В (9,5; 15,95).
Построим графическую модель исходного временного ряда и найдя точки А и В, проведем через них прямую, которая будет отображать тенденцию исходного временного ряда (рис. 3).
|
Рис. 3. Еженедельный оборот магазина «Ткани для дома» (исходный ряд и линейный тренд)
Из графика видно, что построенный линейный тренд отражает тенденцию исходного ряда: возрастающий тренд.
Для нахождения параметра а0
продолжим линию до пересечения с осью ординат. Чтобы найти параметр а1
, преобразуем уравнение тренда:
а1
t = – а0
| :t
а1
= |
– а0
|
t |
Зададимся произвольным значение параметра t (например, t = 3,5). По графику модели найдем значение параметра а0
(а0
= 13,45). Рассчитаем значен
.
а1
= |
13,25 – 11,8 | = 0,41 |
3,5 |
Таким образом, уравнение линейного тренда будет иметь следующий конкретный вид:
= 11,8+ 0,41t.
4). Расчет параметров линейного тренда t
= а0
+ а1
t по исходным данным методом МНК.
t | y | t2
|
yt
|
1 | 11,9 | 1 | 11,9 |
2 | 12,6 | 4 | 25,2 |
3 | 12,2 | 9 | 36,6 |
4 | 13,9 | 16 | 55,6 |
5 | 14,3 | 25 | 71,5 |
6 | 14,6 | 36 | 87,6 |
7 | 15,3 | 49 | 107,1 |
8 | 14,4 | 64 | 115,2 |
9 | 15,8 | 81 | 142,2 |
10 | 16,7 | 100 | 167 |
11 | 17,4 | 121 | 191,4 |
12 | 16,1 | 144 | 193,2 |
78 | 175,2 | 650 | 1204,5 |
Для нахождения параметров строится система нормальных уравнений.
=(175,2*650-78*1204,5)/(12*650-78*78)=11,614;
=(12*1204,5-175,2*78)/(12*650-78*78)=-0,459
Расчет параметров параболического тренда t
= а0
+ а1
t + a2
t2
по исходным данным методом МНК.
t | y | t2
|
yt
|
t4
|
yt2
|
t3
|
1 | 11,9 | 1 | 11,9 | 1 | 11,9 | 1 |
2 | 12,6 | 4 | 25,2 | 16 | 50,4 | 8 |
3 | 12,2 | 9 | 36,6 | 81 | 109,8 | 27 |
4 | 13,9 | 16 | 55,6 | 256 | 222,4 | 64 |
5 | 14,3 | 25 | 71,5 | 625 | 357,5 | 125 |
6 | 14,6 | 36 | 87,6 | 1296 | 525,6 | 216 |
7 | 15,3 | 49 | 107,1 | 2401 | 749,7 | 343 |
8 | 14,4 | 64 | 115,2 | 4096 | 921,6 | 512 |
9 | 15,8 | 81 | 142,2 | 6561 | 1279,8 | 729 |
10 | 16,7 | 100 | 167 | 10000 | 1670 | 1000 |
11 | 17,4 | 121 | 191,4 | 14641 | 2105,4 | 1331 |
12 | 16,1 | 144 | 193,2 | 20736 | 2318,4 | 1728 |
78 | 175,2 | 650 | 1204,5 | 60710 | 10322,5 | 6084 |
Для нахождения параметров строится система нормальных уравнений.
na0
+ a1
St + a2
St2
= Sy;
a0
St + a1
St2
+ a2
St3
= Syt;
a0
St2
+ a1
St3
+ a2
St4
= Syt2
.
а0
= |
SySt2
St4 + StSt3 Syt2 + SytSt3 St2 – StSytSt4 – St3 St3 Sy – St2 St2 Syt2 |
. |
nSt2
St4 + StSt3 St2 + StSt3 St2 – St2 St2 St2 – St3 St3 n – StStSt4 |
а0
= |
175,2× 650 × 60710 + 78 × 6084 ×10322,5 + 1204,5× 6084 × 650 – 78 ×1204,5× 60710 – |
12 × 650 × 60710 + 78 × 6084 × 650 + 78 ×6084× 650 – 650 × 650 × 650 – |
– 6084 × 6084 ×175,2 – 650 × 650 ×10322,5 | = 11,12. |
– 6084 × 6084 × 12 – 78 × 78 × 60710 |
а1
= |
n Syt St4
+ St Syt2 St2 + Sy St3 St2 – St2 Syt St2 – Syt2 St3 n – Sy St St4 |
. |
n St2
St4 + St St3 St2 + St St3 St2 – St2 St2 St2 – St3 St3 n – St St St4 |
а1
= |
12 ×1204,5× 60710 + 78×10322,5× 650 + 175,2 × 6084 × 650 – 650 ×1204,5× 650 – |
12 × 650 × 60710 + 78 × 6084 × 650 + 78 × 6084 × 650 – 650 × 650 × 650 – |
– 10322,5× 6084 × 12 – 175,2 × 78 × 60710 | = 0,67. |
– 6084 × 6084 × 12 – 78 × 78 × 60710 |
а2
= |
nSt2
Syt2 + StSt3 Sy + StSytSt2 – SySt2 St2 – SytSt3 n – StStSyt2 |
. |
n St2
St4 + St St3 St2 + St St3 St2 – St2 St2 St2 – St3 St3 n – St St St4 |
а2
= |
12 × 650×10322,5 + 78×6084 × 175,2 + 78×1204,5× 650 – 175,2×650×650 – |
12 × 650 × 60710 + 78 × 6084 × 650 + 78 ×6084× 650 – 650 × 650 × 650 – |
– 1204,5× 6084 ×12 – 78×78×10322,5 | = -0,016. |
– 6084 × 6084 × 12 – 78 × 78 × 60710 |
Таким образом, параболический тренд имеет следующий вид:
t
= 11,12 + 0,67 ×t - 0,016 ×t2
.
Рис. 4. Еженедельный оборот магазина «Ткани для дома» (исходный ряд, линейный и параболический тренд)
Проведем оценку аппроксимации линейного тренда и выбранной параболической трендовой модели с помощью критерия наименьшей суммы квадратов отклонений, который имеет следующий вид:
S = | S(yt
– )2 |
Þ min |
n – m |
где n – количество уровней ряда; m – число параметров трендовой модели.
t | yt
|
Линейный тренд | Параболический тренд | ||
t
|
(yt
– t )2 |
t
|
(yt
– t )2 |
||
1 | 11,9 | 12,21 | 0,0961 | 11,774 | 0,015876 |
2 | 12,6 | 12,62 | 0,0004 | 12,396 | 0,041616 |
3 | 12,2 | 13,03 | 0,6889 | 12,986 | 0,617796 |
4 | 13,9 | 13,44 | 0,2116 | 13,544 | 0,126736 |
5 | 14,3 | 13,85 | 0,2025 | 14,07 | 0,0529 |
6 | 14,6 | 14,26 | 0,1156 | 14,564 | 0,001296 |
7 | 15,3 | 14,67 | 0,3969 | 15,026 | 0,075076 |
8 | 14,4 | 15,08 | 0,4624 | 15,456 | 1,115136 |
9 | 15,8 | 15,49 | 0,0961 | 15,854 | 0,002916 |
10 | 16,7 | 15,9 | 0,64 | 16,22 | 0,2304 |
11 | 17,4 | 16,31 | 1,1881 | 16,554 | 0,715716 |
12 | 16,1 | 16,72 | 0,3844 | 16,856 | 0,571536 |
- | - | 173,58 | 4,483 | 175,3 | 3,567 |
Для линейного тренда
S = | 4,483 | = 0,4483. |
12 – 2 |
Для параболического тренда
S = | 3,567 | = 0,396. |
12 – 3 |
0,4483 > 0,396; Þ параболическая модель наилучшим образом аппроксимирует исходный временной ряд.
5)
t | yt
|
et
|
Pt
|
et
2 |
(et
–t ) 2 |
(et
– et-1 ) 2 |
|
1 | 11,9 | 12,21 | -0,31 | – | 0,0961 | 0,198025 | – |
2 | 12,6 | 12,62 | -0,02 | 1 | 0,0004 | 0,024025 | 0,166 |
3 | 12,2 | 13,03 | -0,83 | 1 | 0,6889 | 0,931225 | 0,107 |
4 | 13,9 | 13,44 | 0,46 | 1 | 0,2116 | 0,105625 | 0,200 |
5 | 14,3 | 13,85 | 0,45 | 0 | 0,2025 | 0,099225 | 0,870 |
6 | 14,6 | 14,26 | 0,34 | 1 | 0,1156 | 0,042025 | 0,045 |
7 | 15,3 | 14,67 | 0,63 | 1 | 0,3969 | 0,245025 | 0,000 |
8 | 14,4 | 15,08 | -0,68 | 1 | 0,4624 | 0,664225 | 0,529 |
9 | 15,8 | 15,49 | 0,31 | 0 | 0,0961 | 0,030625 | 0,306 |
10 | 16,7 | 15,9 | 0,8 | 0 | 0,64 | 0,442225 | 0,111 |
11 | 17,4 | 16,31 | 1,09 | 1 | 1,1881 | 0,912025 | 1,182 |
12 | 16,1 | 16,72 | -0,62 | – | 0,3844 | 0,570025 | 0,352 |
S | 175,2 | 173,58 | 1,62 | 7 | 4,483 | 4,2643 | 3,868 |
Найдем величины случайных отклонений для исходного ряда по формуле: et
= yt
– t
.
Построим график ряда отклонений et
(рис. 5).
|
Рис. 5. График ряда отклонений et
Из графика видно, что в ряде отклонений et
отсутствует тенденция.
Оценим адекватность выбранной трендовой модели (параболы) исходному ряду на основе анализа ряда отклонений et
.
1) Колебание величины et
носит случайный характер. Выполнение этого условия означает, что величина et
не содержит элементов тренда. Проверим это условие с помощью критерия поворотных точек. Точка считается поворотной, если выполняется одно из следующих условий:
et-1
< et
> et+1
et-1
> et
< et+1
Обозначим поворотные точки как Рt
= 1. В противном случае Pt
= 0. Найдем сумму всех поворотных точек P = SPt
.
Выдвинем нулевую гипотезу – Н0
: колебание величины et носит случайный характер. Для проверки нулевой гипотезы рассчитаем математическое ожидание и дисперсию поворотных точек.
М(Р) = | 2 (n – 2) | = | 2 × (12 – 2) | = 6,667. |
3 | 3 |
D(Р) = | 16 n – 29 | = | 16 × 12 – 29 | = 1,811. |
90 | 90 |
При вероятности 0,95 (95%) коэффициент доверия td
= 1,96.
Если расчетное значение числа поворотных точек попадает в интервал (М(Р) – td
) < P < (М(Р) + td
), то с выбранной вероятностью можно утверждать, что колебания величины et
носит случайный характер.
(6,667 – 1,96 ) < 7 < (6,667 + 1,96 )
4,029 < 7< 9.305
Таким образом, с вероятностью 95% можно утверждать, что колебания величины et
носит случайный характер.
2) Распределение величины et
соответствует нормальному распределению. Для этого используем RS-критерий.
S= == 0,706
RSр
= |
emax
– emin |
= | 1.09– (- 0,83) | = 2,777. |
S | 0,706 |
Определим табличное значение RS-критерия по таблице «Значения RS-критерия для n от 10 до 30» (Приложение 3).
RS12Н
= 2,67 + 2 × |
3,18 – 2,67 | = 2,772 |
20 – 10 |
RS12В
= 3,85 + 2 × |
4,49 – 3,85 | = 3,978 |
20 – 10 |
Выдвинем нулевую гипотезу: величина et
соответствует нормальному распределению. Для этого должно выполняться условие: RS12Н
< RSр
< RS12В
.
Поскольку это условие выполняется (2,772 < 2,777 < 3,978), то с вероятность 0,95 (95%) можно утверждать, что распределение величины et
соответствует нормальному распределению.
3) Математическое ожидание величины et
равно нулю. Для проверки этого условия выдвинем нулевую гипотезу – Н0
: М(et
) = 0, после чего определим расчетное значение величины tр
:
tр
= |
– 0 | ×, |
Se
|
где – средняя арифметическая простая величины et
; Se
– среднее квадратическое отклонение величины et
.
Set
|
= | 1.62 | = 0,135 | |
n | 12 |
Se
= == 0,623
tр
= |
0,135 – 0 | ×= 0,75. |
0,623 |
Найдем табличное значение tт
(Приложение 1) по распределению Стьюдента при доверительной вероятности g = 1 – а = 1 – 0,05 = 0,95 и числе степеней свободы К = n – 1 = 12 – 1 = 11. В данном случае tт
= 2,201.
Сопоставим табличное и расчетное значения. Если th
<tт
, то нулевая гипотеза принимается, и наоборот.
0,75 < 2,201, Þ с вероятностью 0,95 (95%) принимается нулевая гипотеза, т.е. М(et
) = 0.
4) Независимость членов ряда между собой (проверка временного ряда на отсутствие автокорреляции). Для проверки данного условия используется критерий Дарбина – Уотсона, расчетное значение которого определяется следующим образом:
dр
= |
S(et
– et-1 ) 2 |
= | 8,4451 | =1,88. |
S et
2 |
4,483 |
dр
¢ = 4 – 1,88 = 2,12.
По таблице «Распределение критерия Дарбина – Уотсона» для положительной автокорреляции (для 5% уровня значимости)» находим табличное значение dт
. При n = 12 и V = 1 нижнее и верхнее значения распределения будут соответственно равны d1
= 1,08 и d2
= 1,36.
Сравним расчетное и табличное значения: dр
> d2
(2,12 > 1,36). Таким образом, с вероятностью 95% можно говорить об отсутствии в ряде автокорреляции.
6). Рассчитаем точечную прогнозную оценку с периодом упреждения t = 1 для линейного тренда (t
= 11,614+ 0,459×t):
(
n
+
t
)
= а0
+ а1
× (n+t);
(12+1)
= 11,614+ 0,459× (12 + 1) = 17,581.
Интервальный прогноз для линейного тренда:
(n+
t
)
=(n+
t
)
+ tт
× S×,
где n – число уровней ряда в периоде основания прогноза; t - период упреждения прогноза; tт
– табличное значение по Стьюденту с уровнем значимости (а) и числом степеней свободы (К = n - 2); S– стандартная ошибка тренда.
tт
×= К¢; Þ(
n
+
t
)
=(
n
+
t
)
+ S× К¢.
При t = 1 и n = 12 по таблице «Значение К для оценки доверительных интервалов прогноза при вероятности g = 0,9 (линейный тренд)» (Приложение 6) К¢ = 2,1274.
S= == 0,67.
Интервальный прогноз для линейного тренда
(12+1)
= 17,581 + 0,67 × 2,1274=19,0064
(12+1)
= 17,581 - 0,67 × 2,1274=16,1556
16,1556 < 13
< 19,0064, т.е. с вероятностью 0,9 (90%) можно утверждать, что на 13-ый день оборот магазина «Ткани для дома» составит от 16,1556 до 19,0064 д.е.
t
= 11,12 + 0,67 ×t - 0,016 ×t2
.
Рассчитаем точечную прогнозную оценку с периодом упреждения t = 1 для параболического тренда (t
= 11,12 + 0,67 ×t - 0,016 ×t2
):
(
n
+
t
)
= а0
+ а1
× (n+t) + а2
× (n+t)2
;
13
= 11,12 + 0,67 × 13 - 0,016 × 132
= 17,126.
Интервальный прогноз для нелинейного (параболического) тренда:
(n+
t
)
=(n+
t
)
+ S×К¢.
При t = 1 и n = 12 по таблице «Значение К для оценки доверительных интервалов прогноза при вероятности g = 0,9 (параболический тренд)» (Приложение 7) К¢ = 2,636.
S= == 0,63.
Интервальный прогноз для нелинейного (параболического) тренда
13
= 17,126 + 0,63 × 2,636=18,7867
13
= 17,126 - 0,63 × 2,636=15,4653
15,4653 < 13
< 18,7867, т.е. с вероятностью 0,9 (90%) можно утверждать, что на 13-ый день оборот магазина «Ткани для дома» составит от 15,4653 до 18,7867 д.е.